Anomalous double-stripe charge ordering in β -NaFe₂O₃ with double triangular layers consisting of almost perfect regular Fe₄ tetrahedra

Shintaro Kobayashi,^{1,*} Hiroaki Ueda,² Chishiro Michioka,² Kazuyoshi Yoshimura,^{2,3} Shin Nakamura,^{4,5} Takuro Katsufuji,⁶ and Hiroshi Sawa¹

¹Department of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan ²Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

³Research Center for Low Temperature and Material Sciences, Kyoto University, Kyoto 606-8501, Japan

⁴Department of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan

⁵Advanced Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan ⁶Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

(Received 28 February 2018; published 7 May 2018)

The physical properties of the mixed-valent iron oxide β -NaFe₂O₃ were investigated by means of synchrotron radiation x-ray diffraction, magnetization, electrical resistivity, differential scanning calorimetry, ²³Na NMR, and ⁵⁷Fe Mössbauer measurements. This compound has double triangular layers consisting of almost perfect regular Fe₄ tetrahedra, which suggests geometrical frustration. We found that this compound exhibits an electrostatically unstable double-stripe-type charge ordering, which is stabilized by the cooperative compression of Fe³⁺O₆ octahedra due to Jahn-Teller distortion. Our results indicate the importance of electron-phonon coupling for charge ordering in the region of strong charge frustration.

DOI: 10.1103/PhysRevMaterials.2.054402

I. INTRODUCTION

Antiferromagnets with triangular and pyrochlore lattices have been intensively studied because they have the potential to exhibit exotic ground states realized by the influence of spin frustration [1–4]. Mixed-valent oxides are expected to exhibit electrostatically stable charge ordering (Wigner crystallization) mediated by long-range Coulomb repulsions. However, in the case of geometrically frustrated systems, exotic electronic states, such as exotic charge ordering (CO), charge glasses, and charge liquids, are expected to originate from "charge frustration" [5-9]. Specifically, mixed-valent pyrochlore oxides often show electrostatically unstable CO patterns [10–13]. One well-known example is magnetite Fe₃O₄, where parts of the Fe₄ tetrahedra in its CO pattern do not satisfy the local charge neutrality condition (Anderson's condition) that a Fe₄ tetrahedron should contain two Fe²⁺ and two Fe³⁺ ions [14–20]. If the tetrahedral topology consisting of mixed-valent ions plays an important role in unusual CO phenomena, exotic CO states are also expected in other geometrically frustrated systems with tetrahedral frameworks.

Mixed-valent oxides with double triangular layers (W layers) have characteristic tetrahedral frameworks and are one of the ideal candidates to study the effects of charge frustration on tetrahedra. A W layer consists of a set of two regular triangular sheets as shown in Fig. 1(b). The geometric relationship of interactions among metal ions within a W layer is classified by the local symmetry. Figure 1(a) exhibits the definition of the interlayer distance *h* within a W layer and the side length l_1 of regular triangles. In the condition $h/l_1 = \sqrt{2/3}$, l_1 is

equal to the interplane nearest-neighbor metal-metal distance l_2 within a W layer, and thus, the W layer consists of regular tetrahedra. For $h/l_1 \ll \sqrt{2/3}$, l_2 is shorter than l_1 , and the geometric relation of the W layer gets closer to that of a honeycomb lattice, in which geometrical frustration is eliminated. For $h/l_1 \gg \sqrt{2/3}$, interplane interactions between triangular sheets become weak, and the geometrical configuration gets closer to a triangular lattice. Thus, the system is suitable to systematically study the effects of charge frustration by controlling the distortion of tetrahedra. One famous example is LuFe₂O₄ [21–30] with $l_2/l_1 \sim 0.9$, which exhibits large dielectric constants arising from polar CO.

The mixed-valent oxide β -NaFe₂O₃ is one of the candidates having W layers consisting of almost perfect regular Fe₄ tetrahedra. Figure 1(c) shows a crystal structure of β -NaFe₂O₃. There is one crystallographic Fe site with mixed valence of +2.5, and l_2/l_1 is very close to 1 [31–33], which suggests charge frustration. The arrangement of Fe ions in β -NaFe₂O₃ is similar to that in LuFe₂O₄, whose unusual valence ordering with ferroelectricity is still controversial [21–30]. In contrast, the coordination environment of Fe ions is different, forming FeO₆ octahedra for β -NaFe₂O₃ and FeO₅ bipyramids for LuFe₂O₄. Since it is easy to consider the effects of orbital degrees of freedom for simple FeO₆ octahedra, β -NaFe₂O₃ is suitable to investigate charge degrees of freedom on Fe₄ tetrahedra. However, there are no reports on its physical properties.

In this paper, we report on the physical properties and low-temperature structure of β -NaFe₂O₃. Charge ordering and magnetic ordering occur at 250 K and 230 K, respectively. The results of careful structural analysis show the formation of a local electrostatically unstable double-stripe CO pattern, and its origin is discussed.

^{*}kobayashi.shintaro@b.mbox.nagoya-u.ac.jp

FIG. 1. (a) Geometric frameworks of a double triangular layer. (b) A double triangular layer. Large and small balls indicate atoms in upper and lower sheets, respectively. Bold solid lines indicate the unit cell. (c) Crystal structure of β -NaFe₂O₃. (d) FeO₆ octahedron. The quantization axis (z axis) is defined as the direction of a Fe-O bond.

II. EXPERIMENTAL METHODS

Polycrystalline samples of β -NaFe₂O₃ were prepared from high-purity β -NaFeO₂, α -Fe₂O₃, and Fe using a solid-state reaction similar to those of previous reports [31]. β -NaFeO₂ was synthesized by heating stoichiometric mixtures of Na₂C₂O₄ and α -Fe₂O₃ under an oxygen stream at 750°C. Fe powder was prepared by the reduction of α -Fe₂O₃ under a hydrogen stream at 500°C. High quality polycrystalline samples of β -NaFe₂O₃ were synthesized using a solid-state reaction. The mixture of stoichiometric amounts of β -NaFeO₂, α -Fe₂O₃, and Fe was pressed into a pellet, placed in an Au crucible, and sealed in a silica tube under a N₂ atmosphere. Next, they were heated at 700°C for 24 h, and then rapidly cooled in a water bath. The obtained samples were very sensitive to air, and thus, they were not exposed to air during the preparation or measurement.

Synchrotron radiation x-ray diffraction (SR-XRD) profiles of powder samples were collected using a high-resolution onedimensional solid-state detector (MYTHEN) at the BL02B2 beamline of SPring-8 ($\lambda = 0.4964$ or 0.7981 Å) [34]. The samples were sealed in a glass capillary with a diameter of 0.2 mm in a N₂ atmosphere. DC magnetization was measured in a magnetic properties measurement system (Quantum Design MPMS-XL system). Electrical resistivity was measured using a conventional four-probe method. Differential scanning calorimetry (DSC) was performed (NETZSCH DSC 204F1 Phoenix). ²³Na (spin I = 3/2) nuclear magnetic resonance (NMR) spectra were collected at 6T for sintered polycrystalline samples using a standard phase-coherent-type pulsed spectrometer. Frequency-swept NMR spectra were obtained by using a spin-echo method. ⁵⁷Fe Mössbauer spectra were measured in conventional transmission geometry using ⁵⁷Coin-Rh (25 mCi) as the γ -ray source. A powder specimen, which was sealed in an acrylic cell, was used as an absorber. The Doppler velocity scale was calibrated with respect to

FIG. 2. The synchrotron x-ray diffraction pattern of polycrystalline samples of β -NaFe₂O₃ measured at 300 K and the Rietveld fit. Black dots: observed data. Red curve: calculated profile. Green tick marks: positions of reflections. Blue dots: differences.

Fe-metal foil. Lorentzian line shapes were assumed for the spectrum analysis. Parts of the analysis procedure for NMR and Mössbauer measurements are described in the Supplemental Material [35].

III. RESULTS AND DISCUSSION

A. Physical properties

Although there are several reports on the difficulty of this synthesis [31–33], we successfully obtained high-quality black polycrystalline samples of β -NaFe₂O₃. As shown in Fig. 2, SR-XRD profiles obtained at 300 K were well reproduced using the previously reported structural model with the trigonal space group $P\overline{3}m1$ [31–33]. The lattice parameters at 300 K were a = 3.061173(5) Å, and c = 7.80045(2) Å. The result of refinements at 300 K is shown in Table I. The ratio l_2/l_1 was equal to 1.03, indicating the occurrence of strong frustration effects on Fe₄ tetrahedra.

Clear anomalies were observed at $T_{t1} = 250$ K in the temperature dependence of electrical resistivity ρ and DSC signals of β -NaFe₂O₃ as shown in Fig. 3(a). ρ increases with decreasing temperature *T* over the whole temperature range. At T_{t1} , ρ exhibits a clear jump with a thermal hysteresis, indicating a first-order transition. The activation energy increases slightly from 0.12 eV ($T > T_{t1}$) to 0.13 eV ($T < T_{t1}$). A large entropy change $\Delta S \simeq 2.8$ J/K \cdot molFe was observed at T_{t1} in DSC signals. ⁵⁷Fe Mössbauer spectra also exhibit a drastic change

TABLE I. Refined structural parameters for β -NaFe₂O₃ at 300 K determined using synchrotron x-ray diffraction patterns. The space group is $P\bar{3}m1$, and the obtained lattice parameters are a = 3.061173(5) Å, and c = 7.80045(2) Å. The obtained *R* factors are $R_{wp} = 4.89\%$, $R_p = 3.61\%$.

Atom	Site	x	у	z	$B(\text{\AA}^2)$
Na	1b	0	0	1/2	0.68(2)
Fe	2d	1/3	2/3	0.1672(1)	0.55(2)
01	1a	0	0	0	1.36(4)
O2	2d	1/3	2/3	0.7056(2)	0.74(2)

FIG. 3. (a) Temperature dependence of electrical resistivity (top panel), differential scanning calorimetry signals (middle panel), and magnetic susceptibility (bottom panel) of β -NaFe₂O₃. Arrows indicate heating and cooling directions. (b)⁵⁷Fe Mössbauer spectra of β -NaFe₂O₃. (c)²³Na NMR spectra of β -NaFe₂O₃. Black circles and red curves indicate results of experiments and simulations, respectively.

approximately at T_{t1} . Typical Mössbauer spectra are shown in Fig. 3(b). The Mössbauer spectra at 270 K and 230 K exhibit quadrupole splitting originating from the noncubic symmetry of Fe sites. The spectrum at 270 K consists of a paramagnetic quadrupole doublet with the isomer shift of 0.7 mm/s, which is a typical value for high-spin Fe^{2.5+}. The Mössbauer spectrum at 230 K was reproduced by two paramagnetic quadrupole doublets of almost equal intensity. Their isomer shifts are 0.4 and 1.0 mm/s, which are consistent with typical values of Fe^{3+} and Fe^{2+} , respectively. While the value of quadrupole splitting for Fe^{2.5+} at 270 K is 0.3 mm/s, those for Fe³⁺ and Fe²⁺ at 230 K are 0.6 and 1.8 mm/s, respectively. The values for $Fe^{2.5+}$ and Fe^{3+} are reasonable for slightly distorted FeO_6 octahedra, and the large value for Fe^{2+} is due to the electric field gradient originating from the single extra electron outside the half-filled d shell. From the above results, we conclude that the transition at T_{t1} originates from CO.

Above T_{t1} , the ρ of β -NaFe₂O₃ is semiconducting rather than metallic in spite of the mixed-valent state. Although extrinsic effects such as grain boundary scattering in polycrystals often cause semiconductor-like temperature dependence of ρ , we consider that the semiconducting behavior is due to short-range correlation of Fe²⁺ and Fe³⁺ ions above the CO temperature as discussed for LuFe₂O₄ [23,24]. This interpretation is consistent with the small change of activation energy and small ΔS at T_{t1} in comparison with the calculated one $R \ln 2 = 5.76$ J/K · molFe [16].

Magnetic susceptibility M/H exhibits distinct anomalies not only at T_{t1} but also at $T_{t2} = 230$ K, although ρ does not show a clear anomaly at T_{t2} . Here, M is the magnetization and H is the magnetic field. The bottom panel of Fig. 3(a) shows the temperature dependence of M/H of β -NaFe₂O₃. Above

FIG. 4. Top panel: Temperature variation of lattice constants; inset shows the relation between the trigonal (red lines) and monoclinic (purple lines) unit cells. Between 245 K and 250 K, lattice parameters could not be determined correctly because of the coexistence of HT and IT phases. Bottom panel: Temperature dependence of the unit cell volume and the integrated intensity of superlattice reflection of 0 1/2 7/2 peak indexed with the trigonal cell. The error bars of the lattice constants and the unit cell volume are smaller than the corresponding symbols. The dotted lines are visual guides.

 T_{t2} , M/H is almost field independent. In the high-temperature (HT) phase $(T_{t1} < T)$, M/H gradually increases as decreasing T. Then, M/H sharply decreases at T_{t1} and slightly decreases in the intermediate-temperature (IT) phase $(T_{t2} < T < T_{t1})$. At T_{t2} , M/H exhibits a distinct anomaly, and DSC signals show small peak. In the low-temperature (LT) phase ($T < T_{t2}$), M/H has field dependence, and a small spontaneous magnetization appears. The spontaneous magnetization at 200 K was estimated to be approximately 0.01 $\mu_{\rm B}/{\rm Fe}$. In addition, the broadening of the ²³Na NMR spectrum was observed in the LT phase as shown in Fig. 3(c), indicating a magnetic ordering. The NMR spectrum was well reproduced assuming the internal field 0.06 T at Na sites. The small spontaneous magnetization and small internal field below T_{t2} indicate the occurrence of antiferromagnetic ordering with a slightly canted spin structure. Our preliminary ⁵⁷Fe Mössbauer measurements also suggest that magnetic ordering occurs below T_{t2} .

B. Charge-ordering pattern

To investigate a structural change associated with CO, we conducted powder SR-XRD measurements at low temperatures. At T_{t1} , a structural transition from the trigonal to monoclinic symmetry occurs. Figure 4 shows the temperature dependence of the unit cell volume V and lattice constants a, b, and c, which are converted to the trigonal cell a_t , b_t , and c_t , respectively. Through the phase transition from the HT phase to the IT phase, a_t and c_t drop, and b_t jumps by about 1%. In contrast, the volume change at T_{t1} is very small, although ΔS is large. In addition, dozens of superlattice reflections were observed below T_{t1} as shown in Fig. 5. The bottom panel of Fig. 4 shows that the integrated intensity of superlattice reflections below T_{t1} increases as T decreases. Although the integrated intensity of superlattice reflections at

FIG. 5. Synchrotron x-ray diffraction patterns of polycrystalline samples of β -NaFe₂O₃ measured at 100 K and the Rietveld fit. Black dots: observed data. Red curves: calculated profiles. Green tick marks: positions of reflections. Blue dots: differences. The bottom section of the figure shows the magnified Rietveld refinement for superlattice reflections. The triangles mark the superlattice reflections.

100 K is approximately 4 orders of magnitude lower than that of fundamental reflections, structural analysis is available by using high-resolution and wide dynamic-range SR-XRD data collected at the BL02B2 beamline [34]. All the superlattice reflections were well indexed with the monoclinic cell: $\vec{a}_{m} =$ $2\overrightarrow{a_t} + \overrightarrow{b_t}, \overrightarrow{b_m} = 2\overrightarrow{b_t}$, and $\overrightarrow{c_m} = 2\overrightarrow{c_t}$. The inset of Fig. 4 shows the relation between the trigonal cell and the monoclinic cell. Systematic absence of the Bragg reflections is given at k+l = 2n+1 for h k l indices and h = 2n+1 for h 0 lindices. From the above results, the space group below T_{t1} is determined to be A2/a, one of the subgroups of $P\overline{3}m1$ in the HT phase. Here, we use the space group A2/a instead of the general notation of C2/c to maintain the direction of the b and c axes in the space group P3m1 in the HT phase. The following lattice parameters at 100 K are obtained: a = 5.23447(3) Å, b = 6.18814(4) Å, c = 15.53028(11) Å, and $\beta = 90.426(1)^{\circ}$.

Two CO models are allowed based only on the space group A2/a, which are shown in Fig. 6 as Zigzag A and Zigzag B. Each model contains equal amounts of Fe1 and Fe2 sites, which is consistent with our Mössbauer measurement. In a triangular sheet within a W layer, their CO patterns are the same, and two types of Fe zigzag chains alternate along the *b* axis. The difference between two CO models is the relation between upper and lower triangular sheets owing to the different position of twofold rotation axes in its structure. As shown in Fig. 5, the Rietveld refinement assuming Zigzag B gave good fits to the SR-XRD profile at 100 K. The result of refinements at 100 K is shown in Table II. Since the superlattice intensity is not strong, we verified the validity of Zigzag B by using ²³Na NMR techniques. Here, we focus on the difference

FIG. 6. (a), (b) Two charge-ordering models, (a) Zigzag A and (b) Zigzag B, within a double triangular layer. Solid lines indicate the unit cell. (c) $Fe^{3+}O_6$ octahedron. (d) $Fe^{2+}O_6$ octahedron. Note that these figures represent the general change of FeO_6 octahedra associated with the valence change and Jahn-Teller distortion and do not correspond to the actual displacement of O atoms. The quantization axis (*z* axis) is shown. (e) Uniaxial deformation of a double triangular layer in Zigzag B.

of site symmetries of Na sites in these two models. The number of crystallographically independent Na sites is 2 and 1 for Zigzag A and Zigzag B, respectively. Assuming one crystallographic Na site, NMR spectra in all the phases were well reproduced as shown in Fig. 3(c). Both NMR and SR-XRD measurements support Zigzag B.

The volume of FeO₆ octahedra clearly changes accompanied by CO. The average bond length of Fe1O₆ and Fe2O₆ octahedra at 100 K is approximately 2% shorter and longer than that at 300 K, respectively. Based on the bond valence sum calculation [36], the valences for Fe1 and Fe2 sites at 100 K are estimated to be 2.63 and 2.02, respectively. The results of structural analysis are consistent with the CO picture.

TABLE II. Refined structural parameters for β -NaFe₂O₃ at 100 K determined using synchrotron x-ray diffraction patterns. The space group is A2/a, and the obtained lattice parameters are a = 5.23447(3) Å, b = 6.18814(4) Å, c = 15.53028(11) Å, and $\beta = 90.426(1)^\circ$. The obtained *R* factors are $R_{wp}=8.01\%$, $R_p=5.21\%$. The same values of isotropic temperature factors *B* were given for oxygen atoms (B(O1)=B(O2) and B(O3)=B(O4)). Here, O1 and O2 in the monoclinic cell are the symmetry-related pairs of O1 in the trigonal cell, and O3 and O4 in the monoclinic cell are the symmetry-related pairs of O2 in the trigonal cell.

Atom	Site	x	у	z	$B(\text{\AA}^2)$
Na	8f	0.2472(18)	0.6272(30)	0.2472(4)	0.71(4)
Fe1	8f	0.9183(5)	0.6253(11)	0.4147(1)	0.09(3)
Fe2	8f	0.9161(5)	0.6248(10)	0.9180(1)	0.14(3)
01	4e	1/4	0.110(5)	0	0.85(9)
02	4e	1/4	0.655(3)	0	0.85(9)
O3	8f	0.9008(15)	0.6401(25)	0.1452(5)	0.15(6)
O4	8f	0.9183(16)	0.6104(26)	0.6521(5)	0.15(6)

C. The origin of electrostatically unstable charge ordering

In terms of Coulomb interactions, Zigzag B is seemingly less stable than Zigzag A. Zigzag A satisfies Anderson's condition that each Fe₄ tetrahedron of four neighboring sites should contain two Fe²⁺ and two Fe³⁺ ions considering local Coulomb repulsions on Fe_4 tetrahedra [15]. In the CO pattern satisfying Anderson's condition, a large Fe²⁺O₆ octahedron and a small $Fe^{3+}O_6$ octahedron are spatially arranged as far apart as possible, which can decrease lattice distortions. In contrast, Zigzag B does not satisfy Anderson's condition, which suggests an electrostatically unstable CO pattern. Furthermore, Zigzag A is present in the theoretical phase diagram, considering long-range Coulomb repulsions within a W layer, while Zigzag B is absent [37,38]. The stability of Zigzag B cannot be explained using a simple model. Electrostatically unstable CO patterns are sometimes reported in mixed-valent iron oxides [18,39]. It is expected that a hidden mechanism stabilizes such CO patterns in these compounds.

Here, we discuss the inherent degrees of freedom in the HT phase to drive the phase transition at T_{t1} in β -NaFe₂O₃. Since β -NaFe₂O₃ does not show magnetic ordering in the HT phase, β -NaFe₂O₃ has spin degrees of freedom. However, the coupling between charge and spin degrees of freedom is expected to be weak, since CO and magnetic ordering occur at different temperatures, which is commonly observed in mixed-valent iron oxides [17,20–23,39,40]. Thus, we conclude that spin degrees of freedom do not significantly influence on CO. Next, we focus on orbital states in the HT phase. In the HT phase, the distortion of FeO₆ octahedra is small, suggesting a triply degenerate t_2 orbital. Thus, orbital degrees of freedom are present for the d^6 configuration of high-spin Fe²⁺ ions in β -NaFe₂O₃, while they are absent for the d^5 configuration of Fe³⁺ ions.

Here, we focus on the distortion of $Fe^{2+}O_6$ octahedra of β -NaFe₂O₃ in the CO state. The average length of two Fe-O bonds along the *z* axis (quantization axis) at 100 K is approximately 8% shorter than that of the other four bonds. A schematic drawing is shown in Fig. 6(c), which shows the direction of the *z* axis. This deformation corresponds to tetragonal Jahn-Teller (JT) compression that stabilizes an extra single electron occupying one of three t_2 orbitals. Such a tetragonal JT compression often occurs at CO temperature as reported in some mixed-valent iron oxides with Fe^{2.5+} ions [18,39,41].

On the basis of symmetry operations in Zigzag B, all the z axes in $Fe^{2+}O_6$ octahedra point in the same direction, which suggests the ferro-orbital arrangement. Thus, all the $Fe^{2+}O_6$ octahedra expand along the *b* axis and shrink along the z axis.

The ferro-orbital arrangement of Fe^{2+} ions is the key to the stability of Zigzag B. Considering JT distortion of $Fe^{2+}O_6$ octahedra, double-stripe chains consisting of Fe^{2+} ions shrink along the *z*-axis. Double-stripe chains consisting of Fe^{3+} ions also shrink along the *z* axis, since all the $Fe^{3+}O_6$ octahedra become small, owing to the valence change as shown in Fig. 6(d). The cooperative compression along the *z* axis decreases the energy loss of distortion. A schematic drawing of the deformation of a W layer is shown in Fig. 6(e). One important point is that all the $Fe^{2+}O_6$ octahedra expand along the *b* axis. Owing to the stripe-type valence arrangement, the expansion of $Fe^{2+}O_6$ octahedra does not significantly deform the Fe^{3+} octahedra. This uniaxial deformation is consistent with the decrease in *a* and increase in *b* at T_{t1} shown in Fig. 4. This is one reason why the cell volume change associated with CO is small, resulting in the small energy loss of distortion. Thus, electron-phonon interactions play a significant role on the CO transition in β -NaFe₂O₃.

The magnetic properties are consistent with CO accompanied by ferro-orbital arrangement of Fe²⁺ ions. The antiferromagnetic arrangement below T_{t2} can be explained by the ferro-orbital arrangement of Fe²⁺ ions, since antiferromagnetic interactions are dominant between Fe²⁺ ions based on the Kugel-Khomskii theory [42]. The drop of M/H at T_{t1} as Tdecreases likely originates from the enhancement of shortrange antiferromagnetic interactions between Fe ions and/or the increase in magnetocrystalline anisotropy, owing to the existence of Fe²⁺ ions. Furthermore, M/H in the IT phase gradually decreases as T decreases, despite the semiconductor. This result suggests the increase in antiferromagnetic interaction and/or magnetocrystalline anisotropy originating from a gradual structural change.

Although β -NaFe₂O₃ and LuFe₂O₄ have similar W layers, their CO patterns are different. The difference can originate from the different coordination environment of Fe ions: FeO₆ octahedra for β -NaFe₂O₃ and FeO₅ bipyramids for LuFe₂O₄. Thus, JT effects of β -NaFe₂O₃ are significantly different from those of LuFe₂O₄.

The origin of the unusual double-stripe CO pattern of β -NaFe₂O₃ can be summarized as follows. The CO pattern is determined to minimize a distortion of W layers caused by the deformation of FeO₆ octahedra, owing to the valence change and JT distortion. Our results clarify the importance of electron-phonon coupling in the CO transition. Unusual CO phenomena are often observed in geometrically frustrated compounds, such as Fe₃O₄ and LuFe₂O₄ [18–21], in which energy gain mediated by long-range Coulomb interactions in the CO state is small, owing to charge frustration. As a result, cooperative effects of Coulomb repulsions and relatively large electron-phonon interactions induce anomalous CO phenomena. Our experimental results will help to clarify the origin of unusual CO phenomena observed in mixed-valent oxides with charge frustration.

IV. SUMMARY

Polycrystalline β -NaFe₂O₃ was synthesized and characterized using the following techniques: SR-XRD, magnetization, electrical resistivity, DSC, ²³Na NMR, and ⁵⁷Fe Mössbauer measurements. β -NaFe₂O₃ exhibits charge ordering at 250 K and antiferromagnetic ordering with a slightly canted spin structure at 230 K. β -NaFe₂O₃ shows a double-stripe-type charge-ordering pattern of Fe²⁺ and Fe³⁺ ions. This arrangement does not satisfy Anderson's condition of minimal electrostatic repulsions, suggesting that it is electrostatically unstable. The cooperative compression of Fe³⁺O₆ and Fe²⁺O₆ octahedra stabilizes the electrostatically unstable double-stripe charge-ordering pattern. Our experimental results indicate the importance of electron-phonon coupling in the region of strong charge frustration, which is key to clarifying the origin of the electrostatically unstable charge ordering often observed in mixed-valent iron oxides.

ACKNOWLEDGMENTS

The authors thank S. Kawaguchi, A. Nakano, and S. Kitou for supporting the SR-XRD measurements, M. Imai for supporting the analysis of NMR data, and N. Katayama for helpful discussion. This work was partially carried out

- [1] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
- [2] L. Balents, Nature 464, 199 (2010).
- [3] A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 64, 2070 (1990).
- [4] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003).
- [5] T. Kakiuchi, Y. Wakabayashi, H. Sawa, T. Itou, and K. Kanoda, Phys. Rev. Lett. 98, 066402 (2007).
- [6] H. Seo and Y. Motome, Phys. Rev. Lett. 102, 196403 (2009).
- [7] F. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K. Kobayashi, R. Kumai, and Y. Murakami, Nat. Phys. 9, 419 (2013).
- [8] S. Sasaki, K. Hashimoto, R. Kobayashi, K. Itoh, S. Iguchi, Y. Nishio, Y. Ikemoto, T. Moriwaki, N. Yoneyama, M. Watanabe, A. Ueda, H. Mori, K. Kobayashi, R. Kumai, Y. Murakami, J. Müller, and T. Sasaki, Science 357, 1381 (2017).
- [9] T. Sato, K. Miyagawa, and K. Kanoda, Science 357, 1378 (2017).
- [10] Y. Okamoto, S. Niitaka, M. Uchida, T. Waki, M. Takigawa, Y. Nakatsu, A. Sekiyama, S. Suga, R. Arita, and H. Takagi, Phys. Rev. Lett. **101**, 086404 (2008).
- [11] P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H. Chen, R. M. Ibberson, Y. Koyama, Y.-S. Hor, V. Kiryukhin, and S.-W. Cheong, Nature 416, 155 (2002).
- [12] K. Matsuno, T. Katsufuji, S. Mori, Y. Moritomo, A. Machida, E. Nishibori, M. Takata, M. Sakata, N. Yamamoto, and H. Takagi, J. Phys. Soc. Jpn. 70, 1456 (2001).
- [13] Y. Horibe, M. Shingu, K. Kurushima, H. Ishibashi, N. Ikeda, K. Kato, Y. Motome, N. Furukawa, S. Mori, and T. Katsufuji, Phys. Rev. Lett. 96, 086406 (2006).
- [14] E. J. W. Verwey, Nature 144, 327 (1939).
- [15] P. W. Anderson, Phys. Rev. 102, 1008 (1956).
- [16] E. F. Westrum, Jr. and F. Grønvold, J. Chem. Thermodyn. 1, 543 (1969).
- [17] P. A. Miles, W. B. Westphal, and A. Von Hippel, Rev. Mod. Phys. 29, 279 (1957).
- [18] M. S. Senn, J. P. Wright, and J. P. Attfield, Nature 481, 173 (2012).
- [19] J. P. Wright, J. P. Attfield, and P. G. Radaelli, Phys. Rev. Lett. 87, 266401 (2001).
- [20] F. Walz, J. Phys.: Condens. Matter 14, R285 (2002).
- [21] N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kitô, Nature 436, 1136 (2005).
- [22] Y. Yamada, K. Kitsuda, S. Nohdo, and N. Ikeda, Phys. Rev. B 62, 12167 (2000).
- [23] M. Angst, Phys. Status Solidi RRL 7, 383 (2013).

using the facilities of Research Center for Low Temperature and Materials Sciences, Kyoto University. The synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1620 and 2016B1437). This work was supported by JSPS KAKENHI Grants No. 14J01400, No. 16J04046, and No. 16H04131. The figures of crystal structure were created using VESTA [43]. Rietveld analyses were conducted using the GSAS program [44].

- [24] M. Angst, R. P. Hermann, A. D. Christianson, M. D. Lumsden, C. Lee, M.-H. Whangbo, J.-W. Kim, P. J. Ryan, S. E. Nagler, W. Tian, R. Jin, B. C. Sales, and D. Mandrus, Phys. Rev. Lett. 101, 227601 (2008).
- [25] M. Tanaka, K. Siratori, and N. Kimizuka, J. Phys. Soc. Jpn. 53, 760 (1984).
- [26] S. Lafuerza, J. García, G. Subías, J. Blasco, K. Conder, and E. Pomjakushina, Phys. Rev. B 88, 085130 (2013).
- [27] J. Blasco, S. Lafuerza, J. García, and G. Subías, Phys. Rev. B 90, 094119 (2014).
- [28] J. de Groot, T. Mueller, R. A. Rosenberg, D. J. Keavney, Z. Islam, J.-W. Kim, and M. Angst, Phys. Rev. Lett. **108**, 187601 (2012).
- [29] D. Niermann, F. Waschkowski, J. de Groot, M. Angst, and J. Hemberger, Phys. Rev. Lett. 109, 016405 (2012).
- [30] V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, C. Martin, G. Jung, and G. Gorodetsky, Phys. Rev. B 96, 054416 (2017).
- [31] A. M. E. Balkhi, A. Courtois, M. Zanne, and C. Gleitzer, C. R. Acad. Sci. C. Chim. 285, 129 (1977).
- [32] A. M. E. Balkhi, M. Zanne, C. Gleitzer, and A. Courtois, J. Solid State Chem. 18, 293 (1976).
- [33] S. R. Bruno, C. K. Blakely, and V. V. Poltavets, J. Solid State Chem. 192, 68 (2012).
- [34] S. Kawaguchi, M. Takemoto, K. Osaka, E. Nishibori, C. Moriyoshi, Y. Kubota, Y. Kuroiwa, and K. Sugimoto, Rev. Sci. Instrum. 88, 085111 (2017).
- [35] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.2.054402 for analysis procedure and explanation of ²³Na NMR and ²³Fe Mössbauer measurements.
- [36] I. Brown and D. Altermatt, Acta Crystallogr. Sect. B 41, 244 (1985).
- [37] M. Naka, A. Nagano, and S. Ishihara, Phys. Rev. B 77, 224441 (2008).
- [38] A. Nagano, M. Naka, J. Nasu, and S. Ishihara, Phys. Rev. Lett. 99, 217202 (2007).
- [39] P. M. Woodward and P. Karen, Inorg. Chem. 42, 1121 (2003).
- [40] J. Attfield, A. Bell, L. Rodriguez-Martinez, J. Greneche, R. Cernik, J. Clarke, and D. Perkins, Nature 396, 655 (1998).
- [41] M. Angst, P. Khalifah, R. P. Hermann, H. J. Xiang, M.-H. Whangbo, V. Varadarajan, J. W. Brill, B. C. Sales, and D. Mandrus, Phys. Rev. Lett. 99, 086403 (2007).
- [42] K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).
- [43] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
- [44] B. H. Toby, J. Appl. Cryst. 34, 210 (2001).