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Phase-field model of insulator-to-metal transition in VO2 under an electric field
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The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood.
Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural
and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal
oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt
universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-
Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic
phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a
geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework
for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal
transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated
systems.
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I. INTRODUCTION

Vanadium dioxide (VO2), a strongly correlated transition-
metal oxide, undergoes a first-order insulator-to-metal tran-
sition (IMT) from a monoclinic insulator (M1) to a rutile
metal (R) at Tc = 338 K upon heating [1]. The coexistence
of the strong electron correlation and the V dimerization
obscures the nature of the resistive transition in VO2. While
the strong dimerization suggests a Peierls transition, recent
microscopic theories uncovered the crucial role of the electron
correlation [2–4]. Moreover, recent experiments demonstrated
that the structural and electronic phase transitions in VO2 may
be decoupled, e.g., through a contact of a VO2 nanobeam
with a metallic substrate [5], an elastic constraint on a VO2

thin film [6], or a combination of hole doping and geo-
metrical confinement for a VO2 thin film [7]. Therefore, it
is imperative that both structural and electronic instabilities
are incorporated in any thermodynamic theory of the IMT
in VO2.

A sufficient amount of free charges may alter the IMT by
screening the electron-electron repulsion and thus reducing the
electron correlation [8]. It was experimentally demonstrated
that an applied electric field is able to drive the IMT via a field-
induced charge accumulation. In a VO2 transistor, the bulk
conductive channels open up collectively above a threshold
voltage, with an extension far exceeding the Thomas-Fermi
screening length [9]. This is in sharp contrast to the standard
field-induced Landau-Zener breakdown activated smoothly at
a field of the order of the energy gap, which is predicted by
the across-gap tunneling [10,11]. There is also experimental
evidence that demonstrates the ability of electronic doping, i.e.,
introduction of holes or electrons through solute dopants and
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defects, to modulate the IMT in VO2, e.g., in doped MxV1−xO2

(M = Ti4+, W6+, Mo6+, or Nb5+) [12] and VO2-VO2−δ

bilayers [7]. The measurement of the phase transitions in the
VO2-VO2−δ bilayer further unveiled the presence of a metallic
monoclinic (MM) phase in the hole-doped and geometrically
confined VO2 layer [7]. Such a MM phase is, however, absent
in the pristine bulk VO2.

Although the microscopic quantum theories may provide
physical insights into the IMT at the electronic structure level
[2–4], the mesoscale mechanisms and domain evolution during
the IMT of a doped crystal under an electric field and/or stress
require mesoscale continuum models that take into account
the electron correlation, structural changes, and the presence
of free charges. In this article, we formulate a phase-field model
with the thermodynamics described by a Landau potential as a
function of structural order parameters, spin-correlation order
parameters [13], and free electron and hole concentrations.
As an example, we study the electric breakdown of a VO2

slab under a uniform electric field. It is shown that inside the
supercooling region, it occurs through an abrupt universal IMT,
in sharp contrast to the smooth Landau-Zener breakdown. We
then study the IMT in a VO2-VO2−δ bilayer and show that
hole doping in the VO2 layer may induce a metastable MM
phase which could be stabilized via a geometrical confinement
between the two layers and the size effect.

II. THERMODYNAMICS OF A LATTICE-ELECTRON
SYSTEM

By examining the symmetry breaking of the magnetic group
during the IMT, we previously formulated a bulk Landau
potential incorporating a set of structural order parameters
ηi,i = 1,2,3,4 and a set of spin-correlation order parameters
μi,i = 1,2,3,4 (characterizing the magnetic order) to explic-
itly describe the structural and electronic transitions during the
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IMT in the pristine VO2 [13]. It reads (per unit cell) [13]
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where T is the temperature and other parameters are constants
(satisfying certain symmetry relations [13]), and the Einstein
summation convention is used. A finite ηi indicates the dimer-
ization of the neighboring V atoms, and a finite μi indicates the
formation of the dynamical singlet situated on the neighboring
V sites [13], which may be directly related to the opening of
the energy gap [2–4]. Hereafter, we simplify the description of
the theory by reducing the four-dimensional order parameters
ηi and μi to one-dimensional order parameters η ≡

√∑
i η

2
i

and μ ≡ −
√∑

i μ
2
i . The order parameter values for R, M1,

and MM phases are (η = 0,μ = 0), (η �= 0,μ �= 0), and (η �=
0,μ = 0), respectively [13]. In the presence of free electrons
and holes, the total bulk Landau potential can be written as a
sum of the contribution from the pristine VO2 and that from
the free charges

�t (η,μ,n,p) = F (η,μ) + �(μ,n,p), (2)

where n and p are the concentrations of the free electrons and
holes, respectively. � is the (nonequilibrium) thermodynamic
potential of the free charges. It must depend on the electronic
order parameter μ. The equilibrium state can be determined by
minimizing �t with respect to all the order parameters η,μ,n,
and p [14].

� may be approximated using the effective two-band
model for semiconductors, in which the energy bands are
approximated as only one band below (valence band, at energy
Ev with an effective density of states Nv) and one band above
(conduction band, at energy Ec with an effective density of
states Nc) the Fermi level EF0 [15]. The equilibrium electron
and hole concentrations at zero field can be approximated by
the Boltzmann distribution, n = Nc exp[−(Ec − EF0)/kBT ]
and p = Nv exp[−(EF0 − Ev)/kBT ] [15], where kB is the
Boltzmann constant. Substituting EF0 = EF + (Ec + Ev)/2
into these expressions where EF is the Fermi level mea-
sured from the midpoint of the energy gap, one can see
that equivalently n = Nc exp[−(Eg/2 − EF )/kBT ] and p =
Nv exp[−(Eg/2 + EF )/kBT ], where Eg = Ec − Ev is the
gap. Hence, referencing the midpoint of the gap, the energies
of the electrons and holes are both Eg/2, while their chemical
potentials are EF and −EF , respectively. � may then read (per
unit cell)

� = Eg

2
(n + p) + eV (p − n) − T S

− EF (n − p + Na − Nd ) − �0. (3)

Here V is the electric potential, e is the elementary charge, S =
−kBn[ln(n/Nc) − 1] − kBp[ln(p/Nv) − 1] is the entropy, and
Na and Nd are the acceptor and donor concentrations,
respectively. �0 = −2kBT ni is a reference energy with ni =√

NcNv exp(−Eg/2kBT ) being the intrinsic carrier concen-

tration. Note that in the EF term in Eq. (3), (Nd − Na) is
subtracted from (n − p); i.e., (Nd − Na) free charges, which
are released from dopants, do not participate in the (nonequi-
librium) process of particle number variation (recombination).
This is because these dopants are assumed a priori to remain
ionized. Eg can be approximated as [13]

Eg ≈ 2U 2μ2
0μ

2

kBTc

, (4)

where U is the onsite Coulomb repulsion and μ0 is a dimen-
sionless parameter. Fitting this to the measured value of the
energy gap ∼0.67 eV of the M1 phase [16] with U ∼ 4 eV
[2], we obtain μ0 = −0.025. The minimization of �t with re-
spect ton andp givesn = Nc exp[−(Eg/2 − EF − eV )/kBT ]
and p = Nv exp[−(Eg/2 + EF + eV )/kBT ], reconciling the
Debye-Hückel approximation [17]. With the charge neutrality
condition at zero field n + Na = p + Nd , one also finds EF =
kBT ln [

√
Nv

Nc

(Nd−Na )/2+
√

(Nd−Na )2/4+n2
i

ni
]. We note that mathe-

matically EF in Eq. (3) is a Lagrange multiplier for maintaining
charge neutrality.

The � added to F in Eq. (2) may alter the IMT of the
pristine VO2. To see this, one can substitute n and p with
their equilibrium values and leave �t as a function of μ and η

only, which allows for a convenient comparison between the
total Landau potentials before and after the inclusion of �.
In the zero field and intrinsic (no doping) case, one obtains
� = 0 and �t (η,μ) = F (η,μ) at equilibrium, which recovers
the Landau potential of the pristine VO2. In the intrinsic
case but with an applied electric field, one has �t (η,μ) =
F (η,μ) − 2kBT ni[cosh(eV/kBT ) − 1] at equilibrium, which,
by expansion to the first order of Eg (considering temperatures
near Tc), gives

�t (η,μ) ≈ F (η,μ) + [cosh(eV/kBTc) − 1]
√

NcNvEg, (5)

in which the constant terms independent of η and μ have
been dropped. Using Eq. (4), one finds that the Eg term
added to F will renormalize the Curie-Weiss temperature
of the spin-correlation order parameter, i.e., T ′

0 in Eq. (1),
by always lowering it by an amount 4[cosh(eV/kBTc) −
1]

√
NcNvU

2μ2
0/kBA. This indicates that the applied electric

potential assists the transition from an insulator to a metal.
In the doped case but at zero field, imagining hole doping
Na � ni and Nd = 0, one obtains at equilibrium p ≈ Na �
n ≈ n2

i /Na and

�t (η,μ) ≈ F (η,μ) + NaEg

2
, (6)

in which the constant terms independent of η and μ have also
been dropped. Similar to the case with the applied electric field,
the Eg term added to F will renormalize T ′

0 by always lowering
it by an amount 2U 2μ2

0Na/kBA, indicating that hole doping
assists the transition from an insulator to a metal.

III. RESISTIVE SWITCHING IN VO2 UNDER
AN ELECTRIC FIELD

We employ Eq. (5) to simulate the IMT in VO2 under an
electric field. As shown in the inset of Fig. 1(a), we consider
a VO2 slab of a length L = 250 nm (along the x direction)
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FIG. 1. (a) Spatial profiles of the spin-correlation order parameter
at an applied voltage 0.4 V, outside (T = 300 K) and inside (T =
337 K) the supercooling region, respectively. The inset is a schematic
of the geometry. (b) The length of the metallic region as a function of
the applied electric field at the two temperatures. The lines are guide
to eyes. The inset shows the theory fit of the nonzero lM at T = 300 K.

subject to a uniform electric field E = �V/L (Coulomb
gauge, where �V is the voltage drop across the slab) in the x

direction, assuming an open circuit configuration. The electric
potential is V (x) = E(x − L/2) as we set the x = 0 point at
the left surface of the slab. Using the phase-field method [18],
we calculate the stable states of the slab subject to an applied
voltage �V = 0.4 V, at T = 300 K and T = 337 K, which
are outside and inside the supercooling region, respectively
(the Landau potential yields a supercooling temperature Ts =
309 K). The results are shown in Fig. 1(a).

At 300 K, the two oppositely charged surfaces of the slab
turn into metal that gradually grows as the electric field E

increases [see Fig. 1(b)], while the middle part of the slab
remains insulating, forming an insulating tunnel between the
two metallic regions. The metallic regions will finally touch
each other at a threshold electric field Eth, which essentially
corresponds to the Landau-Zener tunnel breakdown [10,11].
To calculate Eth, we employ a theory fit to extrapolate the
simulation data in Fig. 1(b), as numerical errors occur in
simulations at large V due to the exponential dependence
of � in Eq. (5) on V . Since the applied voltage creates
two metal-insulator domain walls, we consider the effective
domain wall repulsion induced by finite domain wall width,
Frep = v exp[−(L − lM)/w] [19], with the parameters v and

E

t
k B

T
c

Eth = 4.5×105 V/m
lM = 126 nm

Sandwich

Metal

FIG. 2. Total Landau potentials of the metal-insulator-metal sand-
wich (blue squares) and the metal (red diamonds) as a function of
the electric field at 337 K. The lines are guide to eyes. Filled and
empty markers indicate stable and metastable states, respectively. The
threshold E and lM of the sandwich at the crossing point of the Landau
potentials are 4.5 × 105 V/m and 126 nm, respectively, as indicated
in the figure.

w to be fitted (lM is the total length of the metallic regions).
The equilibrium lM corresponds to the minimum of the total
Landau potential (including Frep) with respect to lM, which is
achieved by

�t (x = lM/2)|R − �t (x = lM/2)|M1

V + dFrep

dlM
= 0, (7)

where V is the unit cell volume of VO2. The inset of Fig. 1(b)
presents the comparison of lM obtained from Eq. (7) and that
from the simulation data, showing a good fitting yielding
v = 273 mJ/m2 and w = 109 nm. Extrapolation from the
theory fit gives Eth = 2.87 × 107 V/m at 300 K, which is
comparable with the Eth measured by the experiment �108

V/m [20] and that estimated from the Zener tunnel breakdown
∼4 × 107 V/m [11] for VO2.

At 337 K, the whole slab turns into metal with a uniformly
distributed zero-valued order parameter at �V = 0.4 V. As can
be seen in Fig. 1(b), the metallic regions initiated from the two
surfaces first grow gradually to 126 nm as E increases, and then
abruptly spread throughout the whole slab, which is in sharp
contrast with the 300 K case. This behavior essentially rises
from the presence of the metastable metallic phase inside the
supercooling region. We plot in Fig. 2 the total Landau poten-
tials �̄t = ∫

(�t + VFgr)dx/L versus E of the metal-insulator-
metal sandwich formed during growth of the metallic regions
and the metastable metal. Here Fgr = [κ1(∇η)2 + κ2(∇μ)2]/2
is the gradient energy density arising from the spatial variance
of the order parameters [18], where κ1 and κ2 are positive
constants. As can be seen in Fig. 2, at small E the total Landau
potential of the metal-insulator-metal sandwich is lower than
that of the metastable metal, which corresponds to the regime
of the gradual growth of the metallic region. When E exceeds a
small threshold value Eth = 4.5 × 105 V/m, the total Landau
potential of the sandwich is higher than that of the metastable
metal, which stabilizes the metallic phase throughout the slab.
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FIG. 3. Temperature-electric field phase diagram of VO2. The
threshold voltage �Vth = EthL corresponding to each value of the
threshold electric field is also shown on the right y axis.

The reason why the total Landau potential of the
sandwich could be higher than that of the metastable
metal lies in the energy loss from the two metal-insulator
domain walls in the sandwich, i.e., the metal-insulator
domain wall energy FDW = 2

∫
Fgrdx ∼ 25 mJ/m2 [21].

Although the bulk Landau potential of the sandwich
(
∫ lM/2

0 �t |Rdx + ∫ L−lM/2
lM/2 �t |M1dx + ∫ L

L−lM/2 �t |Rdx)/L is al-

ways lower than that of the metastable metal
∫ L

0 �t |Rdx/L,
the total Landau potential of the sandwich (including FDW and
Frep) and that of the metastable metal may cross for

2FDW + Frep +
(∫ lM/2

0
dx

�t |R
V +

∫ L−lM/2

lM/2
dx

�t |M1

V

+
∫ L

L−lM/2
dx

�t |R
V

)
=

∫ L

0
dx

�t |R
V ,

or equivalently∫ L−lM/2

lM/2
dx

�t |R − �t |M1

V = 2FDW + Frep, (8)

signaling the genuine resistive transition during which the
stable state of the slab sharply changes from the sandwich
to the metal [22]. Eth can be calculated directly from Eq. (8)
together with Eq. (7).

Figure 3 presents the threshold electric field as a function of
the temperature, showing two distinct regimes separated by Ts .
Eth drops dramatically at Ts as T increases, characterizing the
similar behavior found experimentally in the VO2 transistor
[9]. For T < Ts , the metallic regions initiated from the two
surfaces gradually grow and finally touch each other as the
electric field increases, which corresponds to the smooth
insulating tunnel breakdown. For T > Ts , the whole slab
sharply turns into metal at much smaller electric fields than
those in the former case due to the competition between
the metal-insulator-metal sandwich and the metastable metal,
which corresponds to the genuine resistive transition [22].

IV. MM PHASE IN THE VO2-VO2−δ BILAYER

As aforementioned, a MM phase was found stabilized in
the VO2-VO2−δ bilayer [7]. When the VO2 layer and the

0.06 00.03

t (kBTc)

270 280 290 300 310
Temperature (K)

M1
MM R

(a)

(b)

M1
MM

FIG. 4. (a) Stable (solid lines) and metastable (empty lines)
phases of the independent hole-doped (Na = 5 × 10−3 per unit cell)
VO2 thin film at various temperatures. (b) Total Landau potential
landscape of the same hole-doped VO2 thin film at 283 K, showing
the stable M1 phase accompanied with the metastable MM phase.

VO2−δ layer are separated by an insulating TiO2 layer, i.e.,
they are electronically disconnected from each other, the
two layers both undergo the normal IMT as in the pristine
bulk, at critical temperatures Tc1 ∼ 290 K and Tc2 ∼ 280 K,
respectively [7]. However, when the VO2−δ layer is epitaxially
grown on the VO2 layer, i.e., they are electronically connected
with each other, the phase transition in the bilayer becomes
more complicated than in the disconnected case. It was found
that, while the VO2−δ layer stays in the R phase between Tc1

and Tc2 as in the disconnected case, the MM phase is stabilized
in the VO2 layer inside this temperature interval [7].

To understand the phenomenon, we first establish a Landau
potential in the same form of Eq. (1) that describes the phase
transition in pristine VO2 thin films. It is simplified such
that the Landau parameters have already been renormalized
by the (fixed) elastic energy (see details in Ref. [7]). The
stoichiometry of the VO2−δ layer is accounted for by the
simultaneous −10 K shifting of T0 and T ′

0 with respect to
the VO2 layer case, which simply corresponds to Tc2 − Tc1 ∼
−10 K. This is simple yet sufficient to describe the phase
transition in the bilayer, since in the temperature range of
interest (Tc1–Tc2), the VO2−δ layer remains in the R phase,
and we are mainly concerned with the stable phase in the
VO2 layer. In the VO2-VO2−δ bilayer, the first principles
calculation shows that the VO2 layer is hole doped through
its touching with the VO2−δ layer [7]. By minimizing Eq. (6)
with a typical Na = 5 × 10−3 per unit cell (causing a T ′

0 shift
∼ −10 K), we calculate the stable and metastable phases of the
independent hole-doped VO2 thin film at various temperatures,
and the results are presented in Fig. 4(a). As can be seen,
the metastable MM phase appears in the temperature interval
279–292 K, which is totally absent in the pristine case.
Figure 4(b) presents the Landau potential landscape of the
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same hole-doped VO2 thin film at T = 283 K, showing the
stable M1 phase accompanied with the metastable MM phase.

The appearance of the hole-doping-induced metastable MM
phase in the VO2 layer may lead to nontrivial phase transitions
in the VO2-VO2−δ bilayer. We propose that the metastable
MM phase in the VO2 layer could further be stabilized via the
interfacial interaction with the VO2−δ layer and the size effect.
In the temperature interval Tc1–Tc2, the VO2−δ layer stays in the
R phase, and a M1-R interface or a MM-R interface will form
between the VO2 and VO2−δ layers depending on whether the
VO2 layer is in the M1 phase or the MM phase. The interfacial
energy 2

∫
Fgrdz of the MM-R interface will be smaller than

that of the M1-R interface, since the κ2 term in Fgr almost
vanishes for the MM-R interface [with (η ∼ 1,μ ∼ 0)-(η =
0,μ = 0)] while the κ1 and κ2 term are both finite for the
M1-R interface [with (η ∼ 1,μ ∼ −1)-(η = 0,μ = 0)]. This
may allow for a lower total Landau potential of the MM-R
configuration than that of the M1-R configuration for the
bilayer at small VO2 layer thicknesses, at which the interfacial
energy will dominate the total Landau potential. The critical
thickness below which the MM-R configuration is stable can
be expressed as

tc = 2
∫

dz (Fgr|M1-R − Fgr|MM-R)

�t |MM − �t |M1
,

where z is the coordinate along the direction of the layer
thickness.

To demonstrate this, we set up a VO2-VO2−δ bilayer
geometry and employ the phase-field method [18] to calculate
the total Landau potentials �̄t = ∫

(�t + VFgr)dz/(t + t0) of
the MM-R and M1-R configurations as a function of the VO2

layer thickness t at 283 K (t0 is the VO2−δ layer thickness). The
results are shown in Fig. 5. Indeed, our model yields a tc ∼
9.4 nm, which is comparable to the metal-insulator domain
wall width ∼10 nm found in the phase-field simulations. When
the VO2 layer thickness is below tc, the total Landau potential
of the MM-R configuration will be lower than that of the M1-R
configuration, resulting in a stable MM phase in the VO2 layer.

V. CONCLUSION AND DISCUSSION

We formulated a phase-field model incorporating structural
and electronic order parameters as well as free electrons and
holes to describe the IMT in doped VO2 under an electric field.
The theory reveals that in the VO2 slab under an electric field,
the electric breakdown inside the supercooling region occurs
through an abrupt universal IMT at threshold electric fields
much smaller than those expected in the smooth Landau-Zener
breakdown, in agreement with the experiment [9].

A similar phenomenon was also found in a two-orbital Hub-
bard model of a slab with ∼20 unit cells, investigated within
the dynamical mean-field theory [22]. Unlike in the microscale
slab that the abrupt IMT occurs without any precursor on the
insulating side [22], in our mesoscale slab (L = 250 nm) the
metal-insulator-metal sandwich does form as a precursor be-
fore the genuine resistive transition. This difference essentially
results from the different ratio of the domain wall energy over
the total energy in the two scales. In the microscale slab, the
domain wall energy dominates the total energy once the domain
wall forms, and thus the metal-insulator-metal sandwich at its

t

t
k B

T
c

0

0.5

1

t = 12 nm

t = 8 nm

R

M1

R

10 nmMM-R

M1-R

tc

VO2-

t
z

VO2MM

FIG. 5. Total Landau potentials (per unit cell) of the VO2-VO2−δ

bilayer as a function of the VO2 layer thickness at 283 K for the M1-R
(blue circles) and MM-R (green squares) configurations. The lines are
guide to eyes. The insets are the stable profiles of the order parameters
for a t < tc and a t > tc. The bilayer is stacked along the z direction.
The arrows are the two-dimensional order parameter vector (η,μ),
and the color represents its norm

√
η2 + μ2.

onset will have a higher total energy than the homogeneous
metal. Consequently, the electric field will directly change the
ground state of the slab from the homogeneous insulator to
the homogeneous metal without any precursor [22]. However,
in the mesoscale slab, the domain wall energy is not able to
boost the total energy of the sandwich to exceed that of the
homogeneous metal, until the insulating region shrinks by the
electric field to a threshold length Lh [see Fig. 2, in which
Lh = (250 − 126) nm = 124 nm at T = 337 K]. Hence, when
the slab length L is longer than Lh, the ground state of the
slab does not directly change from the homogeneous insulator
to the homogeneous metal by the electric field, but instead
breaks from the homogeneous insulator to the inhomogeneous
metal-insulator-metal sandwich before the genuine resistive
transition.

When L > Lh, the threshold electric field Eth is scale
independent, which can be seen through solving Eqs. (7) and
(8). This qualifies the electric field as a well-defined quantity
to characterize the phase diagram for L > Lh. We note that
for L < Lh, however, Eth is scale dependent. In this case,
the total Landau potentials of the insulator and the metal
cross for

∫ L

0 dx (�t |R − �t |M1) = 0, giving the relation that
Eth satisfies:

2kBTc

eEthL
sinh

(
eEthL

2kBTc

)
− 1 = F |R − F |M1√

NcNv(Eg|M1 − Eg|R)
.

It can be seen clearly that Eth ∝ L−1, and that the scale-
independent quantity is the threshold voltage �Vth = EthL.
Therefore, the well-defined quantity to characterize the phase
diagram for L < Lh is the voltage �V instead of the electric
field. For this reason, we also show �Vth corresponding to each
value of Eth in the phase diagram in Fig. 3.
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It is clear that these qualitative behaviors found above by
thermodynamic analysis are general for any field-driven first-
order IMT.

In this work, we simplified the problem by only considering
a uniform electric field or assuming the charge-neutrality ap-
proximation [22–24]. This allowed us to obtain some analytical
results and interpret the essential physics more clearly. In
the most precise calculation, the total electric field should be
calculated self-consistently by solving the Poisson equation
[25,26]. The applied electric field will be partially screened
by the self-field of charged carriers. From the permittivity
and carrier density yielded from capacitance measurements
[27], the Debye screening length in VO2 is estimated to be
1 × 101 to 2 × 102 nm, which may be comparable to L/2 and
the threshold lM/2. Therefore, the approximation of ignoring
the self-field of carriers or charge neutrality is reasonable.
Particularly if the thickness of the VO2 film is of the order
of 10 nm, as in some experiments [9,20], the screening effect
along the thickness direction will be even less important, and

the simplification will be valid for these experimental setups.
The screening effect will make the calculated threshold electric
fields higher than those calculated without it (thus approaching
the experimental value), yet it shall not alter the essential
physics about the resistive transition.

Employing the phase-field model, we also found that a
metastable MM phase might appear in the hole-doped VO2,
which could be stabilized in the VO2-VO2−δ bilayer via the
geometrical confinement and the size effect. The result may
explain the presence of the stable MM phase in the VO2-VO2−δ

bilayer found in the experiment [7]. Our work extends the field
of the Landau theory and the phase-field method to strongly
correlated systems and may offer a powerful computational
method for studying the mesoscale mechanisms of IMT.
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