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Self-optimized construction of transition rate matrices from accelerated atomistic simulations with
Bayesian uncertainty quantification
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A massively parallel method to build large transition rate matrices from temperature-accelerated molecular
dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time
in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such
as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration
is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to
explore the state space of complex systems. The method is tested against exactly solvable models and used to
explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate
modeling of the evolution of these defects over timescales of several seconds.
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I. INTRODUCTION

The vast size and complexity of the potential energy
landscape of materials make the investigation of their long-
time dynamical evolution extremely difficult, as significant
free-energy barriers between different regions of configuration
space prohibit the use of direct simulation methods. Indeed,
molecular dynamics (MD) simulations of materials are typi-
cally restricted to sub-microsecond timescales, a time that is
often much too short for a trajectory to cross the barriers that
determine the long-time behavior. This makes extrapolation
of long-time behavior based on short simulations fraught with
danger.

Overcoming the extremely restrictive timescale limitation
of MD is a long-standing challenge and numerous solution
strategies have been proposed over the years. In open-ended
situations where the goal is to generate dynamically correct
evolution from a given initial condition without regards to
possible end states, these methods often adopt one of two
philosophies. First, trajectory-based methods such as accel-
erated molecular dynamics (AMD) [1–4] and adaptive kinetic
Monte Carlo [5,6] generate individual trajectories that span
long timescales without having to extensively explore con-
figuration space. They do so by breaking up the problem of
generating a long trajectory into that of generating a proper
sequence of state-to-state transitions, which can be effectively
carried out using specifically crafted MD simulations. The
second class of techniques, including methods such as discrete
path sampling [7] or Markov state models [8], instead begin by
thoroughly exploring the energy landscape, thereby producing
a kinetic model that can then be postprocessed to infer long-
time behaviors.

While the local nature of the exploration required by the
first class of approaches typically leads to more accurate
and affordable results, it produces only one (or a few) of
an astronomically large number of possible trajectories; the
representativity of the results it generates can therefore be
difficult to assess. On the other hand, the second approach

produces a comprehensive global model of the dynamics
that can account for the contribution of large ensembles of
trajectories, but the accuracy of its prediction requires that the
underlying model be complete (or at least “sufficiently” so),
an assumption that can be hard to assess, as fully sampling
configuration space is typically impossible for nontrivial sys-
tems. Quantifying the completeness of models of the potential
energy landscape has therefore recently emerged as a critical
issue [9–11]. It is important to note that this same challenge also
affects trajectory-based methods that rely on having a complete
local description of the landscape (e.g., as in adaptive kinetic
Monte Carlo [5,6]). A further challenge that has received
comparatively less attention is that generating a sufficiently
complete model that is accurate enough to make long-time
predictions is likely to be an extremely computationally costly
endeavor. Finding optimal strategies to allocate computational
resources, in particular on massively parallel architectures,
can therefore be expected to be paramount in making such
approaches practical and scalable.

In this paper, we introduce a self-optimizing scheme called
TAMMBER (temperature-accelerated Markov models with
Bayesian estimation of rates) that comprehensively addresses
these challenges. As illustrated in Fig. 1, TAMMBER relies on
an AMD method, namely temperature-accelerated dynamics
(TAD) [3,12], as an efficient local exploration tool. The local
completeness of the TAD exploration is assessed using a
Bayesian framework. TAMMBER then invokes the mathe-
matics of absorbing continuous-time Markov chains (CTMCs)
[13–18] to provide a global exploration completeness metric,
the expected residence time in the known configuration space.
This completeness metric is then systematically optimized
using a parallel resource allocation protocol.

To put the central concepts of this paper in a concrete
setting, consider a system with a total discrete state space S .
States are here defined as basins of attraction under energy
minimization, as is customary for hard materials. After a given
period of exploration with TAD, we will have discovered a
subset K ⊂ S of the total state space, the known states. While
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FIG. 1. TAMMBER workflow. TAD MD produces interstate
transition trajectories which are analyzed by Bayesian rate estimators
and static calculation. An absorbing Markov chain then gives the
expected residence time and optimally allocates resources and the
degree of temperature acceleration. The cycle is then repeated until
the target residence time is achieved.

an observed system state i ∈ K will be connected to a subset of
statesSi ⊂ S , in general we will have observed only a subset of
connections Ki ⊂ K in the explored state space [19]. Defining
the transition rate from a state i to a state j at a temperature
T = 1/(kBβ) as kij (β), the total escape rate for a state i reads

ktot
i (β) ≡

∑
j∈Si

kij (β). (1)

As discussed above, due to incomplete exploration we will
only have access to the observed escape rate

kobs
i (β) ≡

∑
j∈Ki

kij (β), (2)

which immediately defines the statewise unknown escape rate

kun
i (β) ≡ ktot

i (β) − kobs
i (β) =

∑
j∈Si\Ki

kij (β), (3)

where Si \ Ki ≡ {x : x ∈ Si , x /∈ Ki} is the set difference
between Si Ki . In an absorbing CTMC, the unknown rates
kun
i are encoded as transition rates to single or multiple

absorbing states (sinks) that represents the entire unexplored
space and unobserved connections within the explored state
space. Standard results [20] can be used to obtain the residence
time of the model, which quantifies the expected amount of
time before an unknown transition should statistically occur.
The residence time can be interpreted as a typical duration
over which model trajectories are a valid representation of the
true system trajectories, providing an important uncertainty
quantification metric when using the calculated rate matrices
in coarse-grained methods such as kinetic Monte Carlo or
cluster dynamics. The direct optimization of this metric with
respect to additional computational work then provides an
optimal allocation strategy to maximally improve the quality
of the model at the smallest possible computational cost. Upon
completion of a batch of TAD simulations, the model is updated
and the cycle repeats.

The mathematics of absorbing CTMCs have previously
been used to accelerate kinetic Monte Carlo simulations
of superbasin escape [13] and highly heterogeneous glassy
systems [14,15] though in both of these cases the chains were
fully specified and this partitioning into two groups was made
for computational convenience. Estimation of the unknown
rate for each state has previously been investigated in molecular
dynamics simulations of biological systems [17,18], while
high-temperature dynamics has also been used to estimate
the degree of sampling completeness in individual states [16]
which is closely related to estimation of the unknown rate. The
central development of this work is both the robust form of our
estimators for the unknown escape rate from each state and an
expression for the expected decrease in the unknown rate with
additional computational work. Using these expressions we
are able to determine both the optimal degree of temperature
acceleration for each state on the fly and the response of the
residence time to additional computational effort applied to a
given distribution of states, an essential feature for application
to massively parallel computers. Importantly, by optimizing the
distribution of computational resources to grow the residence
time as fast as possible, we optimize a global metric of
sampling completeness, a point we return to below.

The paper is organized as follows. In Sec. II we recall
the temperature-accelerated dynamics method [3] and detail
how the method may be extended to allow for a variable
high temperature. In Sec. III we derive a Bayesian estimator
for the kij (β) of observed transitions (j ∈ Ki) at any desired
temperature and the unknown escape rate kun

i (β) from each
state. In Sec. IV we derive an analytical expression to determine
the statewise optimum temperature to reduce the unknown rate
for each state and use these results to derive the residence time
and optimal control protocol using an absorbing CTMC in
Sec. V. Details of the numerical implementation are described
in Sec. VI, along with a test against known rate matrices
(using kinetic Monte Carlo to generate trajectories) and a
demonstrative study of C15 interstitial defects in iron.

II. TEMPERATURE-ACCELERATED DYNAMICS

The temperature-accelerated dynamics (TAD) method
[3,12] is an AMD technique that exploits the Poisson distri-
bution of rare-event escape times [21] and the approximations
of harmonic transition state theory (HTST) [22] to generate
statistically correct low-temperature trajectories from high-
temperature MD data alone. When the transition barriers
are sufficiently large, TAD can provide a very significant
acceleration of the state-to-state dynamics as compared to MD,
because the first event to occur at low temperature will typically
occur after only a much shorter time at a higher temperature.
TAD provides a statistically sound way of assessing when the
said first event has indeed been observed at high temperature,
and hence of selecting a proper low-temperature transition.

We recall that when the free-energy barrier �Fij for some
state transition i → j is much larger than the thermal energy
β−1, the transition rate kij (β) is well approximated by the
Arrhenius expression [22]

kij (β) = ωij exp[−β�F (β)] � νij exp[−β�Eij ]. (4)
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The second equality in Eq. (4) constitutes the HTST approx-
imation, where the entropic contribution to the barrier �Sij

is assumed to be constant, leading to a constant prefactor
νij = ωij exp(�Sij /kB) and a potential-energy barrier �Eij .
The extension of the approach developed here to incorporated
anharmonic entropic effects [23] will be the topic of a future
publication. HTST (4) can be exploited in the present context
by noting that the event times for a Poisson process of rate k(β)
are distributed as

τij (β) ∼ − log |U (0,1)|/kij (β), (5)

where U (0,1) is the uniform distribution on the unit interval;
from this functional form it is clear that a valid event time
τij (β ′) at a different temperature can be obtained from a sample
τ (β) through

τij (β ′) = τij (β)
kij (β)

kij (β ′)
� τij (β) exp[(β ′ − β)�Eij ], (6)

where the HTST approximation was used to obtain the final
relation. As �Eij is readily calculated using minimum-energy-
path algorithms such as the NEB method [24], after a process
has been observed for the first time at high temperature, we
can thus generate a corresponding first-passage time at other
temperatures.

In TAD, this remapping of first-passage times is exploited
as follows. Consider a state i that has dynamically accessible
pathways to a set of connected states j ∈ Si , with escape rates
kij (β) = νij exp[−β�Eij ]. TAD uses high-temperature MD to
produce high-temperature escape times {τij (βH )} to a subset
of connected states Ki ⊂ Si . Once an escape is detected, the
system is put back into state i, accumulating a total effective
state time τi(β). The escape times along each pathways can
then be rescaled to yield a set of low-temperature first-passage
times {τij (βL)}, which will in general have a different ordering
given the nonlinear character of (6). In conventional TAD, the
goal is to identify the transition that should have occurred first,
i.e., the transition which corresponds to the minimum value of
τij (βL). The central difficulty is the observed escape times are
only to a subset of all possible final states Ki . It is therefore
important to avoid prematurely choosing a low-temperature
transition from the set transitions so far observed at high
temperature. TAD achieves this through a Poisson uncertainty
bound; defining a minimum prefactor νmin � 0.1 THz, high-
temperature MD is carried out until the probability that the
proper first escape pathway at low temperature has yet to be
observed at high temperature is less than δ ∼ 0.05. The worst
possible case in this setting is that of a low-barrier and low-
prefactor process with rate νmin exp(−βH Emin

i ), where Emin is
the smallest barrier that could potentially remain unobserved
after running dynamics at high temperature for a time τi(βH ).
It is simple to show that [12]

Emin
i = β−1

H log

[
νminτi(βH )

log(1/δ)

]
, (7)

which produces a low-temperature effective state time

τi(βL) = τi(βH ) exp
[
(βL − βH )Emin

i

]
, (8)

after which we have a confidence 1 − δ to have seen all relevant
first passages up to this time.

FIG. 2. Left: Illustration of the TAD method developed here.
Low-temperature first-passage times become valid as they are swept
past, while the high temperature can be changed to accommodate
trajectory data at a new temperature. Left: Qualitatively representative
posterior for the total escape rate from a state. The unknown rate is
the difference between the mean total rate and the observed rate.

In the original TAD method, the goal is to follow the first
valid escape process; i.e., state time is accumulated until τi(βL)
is greater than the smallest rescaled first-passage time. In the
present case we continue accumulating state time, producing an
ever greater catalog of valid low-temperature escape times [i.e.,
all of those whose rescaled event times are smaller than τi (βL)],
for use in our rate estimators detailed in the next section. As
the total state time τi and first-passage times τij are defined at
any temperature, we can incorporate multitemperature data by
using (8). An illustration of this procedure is detailed in Fig. 2.

III. DETERMINATION OF THE KNOWN AND UNKNOWN
ESCAPE RATES FROM A STATE

In order to apply the absorbing CTMC analysis which is
central to our approach, we need to produce an estimate for
the individual rates kij (β) between known states at any given
temperature and for the unknown escape rate kun

i (β) from each
known state. In the following we derive Bayesian likelihood
estimators for the individual and total escape rates from a given
state using the first-passage trajectories τij (β) and state time
τi(β).

A. Estimation of individual escape rates

Once an individual escape process from a state i to a state j

has been observed, the NEB method can be used to obtain the
minimum-energy pathway and hence the energy barriers �Eij

and �Eji . To calculate the individual escape rates kij and kji

we therefore only require calculation of the rate prefactors νij

and νji .
It is possible to directly calculate an estimate for the

rate prefactors using harmonic transition state theory [22]. A
key advantage is that the HTST approximation to ν is often
accurate and produces a rate matrix which satisfies detailed
balance, but calculation requires computationally expensive
diagonalization of the Hessian matrix at the end points and
saddle point of the transition pathway [25]. An alternative
approach is to directly estimate the rate prefactor from the
transitions observed during MD simulation. A disadvantage of
this approach is that this requires multiple observed transitions
to give reliable results and that the resultant prefactors have no
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guarantee of satisfying detailed balance. Nevertheless, when
transitions are sufficiently rapid (which can be expected when
using accelerated approaches such as TAD) sufficient data can
often be obtained to produce accurate estimates.

In this section we derive a simple Bayesian estimator
for the rate prefactor which incorporates prior knowledge of
the prefactor and dynamical information from an ensemble
of escape-replace trajectory data. The prior estimate for the
prefactor can either be set to a typical value of ν0 = 1 THz or a
static HTST calculation. In a Bayesian setting, this knowledge
can be encoded in an unnormalized prior distribution

π0(νij ) = exp[−α(νij /ν0 − 1)2/2], (9)

where ν0 is the prior estimate and α will turn out to control the
number of data points that are needed to override the influence
of the prior. As a result, if a full HTST calculation is undertaken,
α should be large as we are confident that our prior is accurate.
In practice, as a full prefactor calculation is computationally
intensive, we only undertake such calculations when we expect
dynamical data to be rare, i.e., when �Eij is large, though
many strategies can be envisaged, for example performing
an approximate calculation with the degree of approximation
reflected in the prior distribution.

We represent escape-replace trajectory data as {βi,τi,Nij },
where βi is the inverse temperature, τi is the total effective state
time at that temperature, and Nij is the total number of i → j

transitions observed [26]. For clarity of presentation we also
define the dimensionless, Boltzmann-scaled trajectory times

τ̃i;j = τiν0 exp[−βi�Eij ], (10)

where the notation distinguishes τ̃i;j from the first-passage
times τij . Using the Poisson likelihood for N events in a
time τ , (kτ )N exp(−kτ )/N!, the HTST relation (4), and the
prior distribution (9), the unnormalized posterior for the rate
prefactor reads

π (νij |τ̃i;j ,Nij ) = π0(ν)(νij τ̃i;j )Nij exp(−νij τ̃i;j /ν0). (11)

While the posterior distribution is quite cumbersome, we can
produce an estimator for νij using the maximum log likelihood
(MLL) technique, where the logarithm of the unnormalized
posterior (11) is maximized with respect to νij , a well known
procedure in parameter estimation [27]. Through elementary
operations one obtains from ∂ν log π = 0 a quadratic equation
for νij which has the unique positive solution

νij = ν0

2

⎡
⎣1 − τ̃i;j

α
+

√(
1 − τ̃i;j

α

)2

+ 4
Nij

α

⎤
⎦. (12)

In the small time and data limit τ̃i;j 	 α,Nij 	 α, we find
νij = ν0, as one would expect, while at long times τ̃i;j 
 α

we recover νij = Nij exp[βi�Eij ]/τi , which is the minimum-
variance estimator for this Poisson process [28].

We have found α � 10 to give robust sampling behavior
using a standard initial prefactor ν0 = 0.1 THz. A key advan-
tage of the Bayesian approach is that if a more detailed HTST
prefactor calculation is undertaken to give a more reliable prior
estimate, we make the prior distribution sharper by increasing
the α parameter. As a result, a much larger number of dy-
namical data are required to significantly change the posterior

prediction of the prefactor, thus naturally incorporating the two
estimation methods.

B. Estimation of the unknown escape rate from a state

With calculated prefactors and energy barriers {νij ,�Eij }
for each observed escape process, we can readily calculate
the corresponding escape rates kij (β). Furthermore, using the
procedure described above, we can also obtain an effective
state time τi(β) at any given temperature. In this section, we
show how this information, taken together with the sampled
first-passage time τij (β) obtained with TAD, can be used to
produce a Bayesian estimator for the unknown escape rate
from the generated first-passage-time trajectory, again at any
temperature.

In anticipation of the results below, we time-order the
individual escapes labels such that τi(j−1)(β) < τij < τi(j+1)

and then define the running total rate

kobs
i;j (β) ≡

∑
τik(β)�τij (β)

kik(β); (13)

i.e., the running total rate kobs
i;j (β) includes all events that

occurred at times τij (β) that are lower or equal to the effective
residence time at β, τi(β). As all rates are evaluated at a
constant temperature for the entirety of this section, we now
omit β for clarity of presentation.

To build a posterior distribution for the unknown rate,
consider the likelihood of observing a first passage i → j after
waiting a time τij − τi(j−1) since the last event. For a postulated
total rate k, the remaining rate in this time interval is simply
k − kobs

i;j−1, giving a likelihood for τij of

π
(
τij |ktot

i = k
) =[

k − kobs
i;j−1

]
(τij − τi(j−1))

× exp
{ − [

k − kobs
i;j−1

]
(τij − τi(j−1))

}
.

(14)

We note the use of the remaining total rate in the interval
[τi(j−1),τij ] is essential to give the correct likelihood. In addi-
tion, as we know that the total rate satisfies ktot

i = kobs
i + kun

i ,
we can write the same likelihood for τij for a postulated
unknown rate k as

π
(
τij |kun

i = k
) =[

k + kobs
i − kobs

i;j−1

]
(τij − τi(j−1))

× exp
{−[

k + kobs
i − kobs

i;j−1

]
(τij−τi(j−1))

}
,

(15)

where kobs
i [as defined in (2)] is the sum of the escape rates for

events at any temperature, independently of their first-passage
times at β. A total likelihood for all the observed event
times for a postulated unknown rate is simply the product
of (15) for each event satisfying τij (β) � τi(β), multiplied
by the likelihood of not seeing any other events over a time
δτW

i = τi − maxτij <τi
(τij ) to give

π
({τij }|τi,k

un
i = k

) = exp
( − kδτW

i

) ∏
τij�τi

π
(
τij |kun

i = k
)
.

(16)
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We can now use Bayes’ formula to construct an unnor-
malized posterior for the unknown rate, using the Jeffreys
prior [29] π0(k) = 1/k for the initial likelihood function
k exp(−kt). Removing all multiplicative factors independently
of the postulated unknown rate, as these will disappear under
renormalization, we obtain a central result of this paper, an
unnormalized posterior distribution for the unknown rate

π
(
kun
i |τi,{τij }

) =exp
( − kun

i τi

)
kun
i + kobs

i

×
∏

τij <τi

(
kun
i + kobs

i − kobs
i;j−1

)
. (17)

We emphasize that although all trajectory information is
used in the individual rate calculations, we only use first-
passage information in the Bayesian posterior (17). It can in
fact be shown that subsequent passages in fact do not contribute
additional information, as we assume that the rate for a given
process can be calculated once it has been observed. This is
ideal for implementation in a TAD setting, as multitemperature
MD data can be incorporated to produce an effective first-
passage trajectory at a wide range of desired temperatures.

A prediction for the unknown rate 〈kun
i (β)〉 and total rate

〈kun
i (β)〉 at an inverse temperature β can now be produced by

evaluating (17), yielding moments

〈[
kun
i (β)

]n〉 =
∫ ∞

0 knπ (k|β,τi,{τij })dk∫ ∞
0 π (k|β,τi,{τij })dk

, (18)

where we have reintroduced the temperature dependence
explicitly. In Appendix A we show that these integrals can be
expressed analytically by exploiting properties of exponential
integrals and a recursive scheme to expand the product,
avoiding numerical quadrature issues.

This is the first important result of this paper: the first
moment, namely the mean, will be used as an estimator of the
unknown rate out of a given state given an observed sequence of
first-passage times generated with TAD. This provides a crucial
local completeness metric. The higher moments also prove
critical to solve the important question of the choice of the
optimal high temperature at which the TAD procedure should
be carried out in order to maximize computational efficiency,
a problem which we discuss next.

IV. OPTIMAL TAD TEMPERATURE

The TAD method uses an elevated temperature TH =
1/(kBβH ) to reduce the computational effort required to
produce a valid set of first-passage times and pathways at
some lower temperature TL = 1/(kBβL). When all barriers are
sufficiently large compared to kBTL, the efficacy of the TAD
method initially increases with increasing TH away from TL.
However, if TH becomes too high, transitions with very large
energy barriers will become more frequent. As characterizing
these transitions incurs a cost but contributes very little to the
low-temperature total rate, the computational efficiency of the
procedure should ultimately decrease with increasing TH . In
addition, known events will reoccur more frequently at higher
TH , increasing the frequency at which the system must be
re-prepared in the initial state in order to accumulate additional
effective state time.

These arguments indicate that there will in general ex-
ist an optimum high temperature TH , the precise value of
which depends on the desired outcome. Recent work [30]
has investigated finding the optimal TH in TAD to produce
a single valid escape event from a given state, i.e., a single
rescaled first-passage time less than the effective state time
[τij (βL) < τi(βL)]. In this section, we instead ask for the
temperature which maximizes the decrease of the expected
low-temperature unknown rate 〈kun

i (βL)〉 with respect to addi-
tional computational effort ci(βH ) that consists of carrying out
the TAD procedure at temperature βH , namely

βTAD
i = arg max

βH

[
−d〈kun

i (βL)〉
dci(βH )

]
. (19)

Given that the simulation cost is dominated by force
calculation (also known as force calls), the total computational
effort per unit high-temperature MD time can be written in units
of force calls as

dci(βH )

dτi(βH )
= ċMD + cSTkobs

i (βH ) + cNEBkun
i (βH ), (20)

where ċMD is the number of force calls per unit MD time
in frequency units, cST is the cost of state identification and
preparation in force calls, and cNEB is the cost of an NEB
calculation in force calls. In a typical example, where transition
rates are quoted in THz and the MD time step is a femtosecond,
we have ċMD = 1000, cST � 1000, and cNEB � 10 000. By the
chain rule we make the useful expansion

d
〈
kun
i (βL)

〉
dci(βH )

= d
〈
kun
i (βL)

〉
dτi(βH )

(
dci(βH )

dτi(βH )

)−1

. (21)

To evaluate the first term in (21) we first consider the
expected change in the low-temperature unknown rate from a
small interval δτi(βH ) of high-temperature MD when E , a new
transition, is observed, or !E , when no new transition occurs.
The corresponding change in the low-temperature state time,
δτi(βH ), is readily evaluated through the use of (7) as

δτi(βL) = δτi(βH )
βL

βH

(
log(1/δ)

νminτi(βH )

)βL/βH −1

. (22)

We evaluate changes in kun
i (βL) through perturbation the-

ory applied to expectation values over the low-temperature
posterior for the total rate, π (ktot

i |βL,τi). If no event is seen in
high-temperature MD, the new posterior is given by

π
(
kun
i |βL,τi + δτi

) = π
(
kun
i |βL,τi

)
exp

( − [
kun
i

]
δτi

)
. (23)

To leading order in δτi(βL) the expected change in the unknown
rate takes the simple form〈

δkun
i (βL)|!E 〉 = −δτi(βL)

[〈[
kun
i (βL)

]2〉 − 〈
kun
i (βL)

〉2]
. (24)

If an event E is seen in high-temperature MD, to a state p

with a rescaled low-temperature rate knew = kip(βL), the new
posterior distribution is given by

π
(
kun
i |βL,τi + δτi

) =π
(
kun
i + knew|βL,τi

)
× (

kun
i + kobs

i − max kobs
i;j

)
. (25)

While we can progress without any assumptions, to simplify
the expectation value over this new distribution we take the
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mild assumption that max kobs
i;j � kobs

i , i.e., that the majority of
the rate has been seen at the temperature of interest. We have
found this to hold in practice, and can be expected from the
form of the rescaled state time τi . Under this approximation,
the expected change in the unknown rate reads

〈
δkun

i (βL)|E 〉 = −knew +
〈[
kun
i (βL)

]2〉 − 〈
kun
i (βL)

〉2〈
kun
i (βL)

〉 . (26)

To complete this expression we require an estimate for the
new low-temperature rate knew = kip(βL), ideally without mak-
ing any additional assumptions on the spectrum of escape rates.
We base our assumption on the expected first-passage-time
relation 〈τip〉 = 1/knew. New events are therefore expected to
be first observed in order of descending rate. If the barrier
spectrum is dense, then a reasonable estimate for the next new
event rate is simply the minimum of all the observed rates so
far, min{kij (βL)}. However, if the spectrum has a large spectral
gap, we would expect long periods without any new events,
meaning the minimum of the seen rates could significantly
overestimate the next event rate. In this long-waiting-time
limit, it can be shown that the Bayesian estimator gives a max
log likelihood unknown rate of 〈kun

i (βL)〉 ∼ 1/τi(βL). As the
new rate is expected to occur at a time τi(βL), we see that the
unknown rate estimate is expected to be a slight overestimate,
i.e., our estimates tend to be conservative. Combining these
two cases, our estimate for the next observed rate is therefore

〈knew〉 � min
[〈
kun
i (βL)

〉 ∪ {kij (βL)}]. (27)

Given that the expected probability of seeing a new event in
high-temperature MD is simply P (E) = δτi(βH )kun

i (βH ) in the
limit of small δτi(βH ), with P (!E) = 1 − P (E), we can write
the expected change in the low-temperature unknown rate as〈

δkun
i (βL)

〉 = P (E)
〈
δkun

i (βL)|E 〉 + P (!E)
〈
δkun

i (βL)|!E 〉
.

(28)

Combining the above manipulations we can write the final
objective function as

− d
〈
kun
i (βL)

〉
dci(βH )

=
(

dci(βH )

dτi(βH )

)−1[
〈knew〉〈kun

i (βH )
〉

+
(

τi(βL)

τi(βH )
−

〈
kun
i (βH )

〉
〈
kun
i (βL)

〉
){〈[

kun
i (βL)]2

〉

− 〈
kun
i (βL)

〉2}]
. (29)

While this expression appears complex, all relevant quanti-
ties can be readily calculated using our Bayesian estimator and
the results derived above. In our numerical implementation, we
find the maximum of (29) to determine a different optimal βH

for every state in the system. This determination is periodically
refined to ensure optimal performance.

V. ABSORBING MARKOV CHAIN ANALYSIS

In the preceding sections, we have described a scheme to es-
timate transition rates kij (β) between known states i,j ∈ K and
the unknown rate for each state kun

i (β). We have also derived
the expected change (29) in the low-temperature unknown rate

kun
i (βL) with additional computational work at a temperature

βH in order to determine the optimum temperature at which
to carry out the TAD procedure. In this section we use the
estimated rates to build an absorbing Markov chain [20], giving
both the expected residence time 〈τ res〉 spent in the known state
space and the expected change in 〈τ res〉 as a result of additional
computational effort. As discussed in the introduction, the
expected residence time 〈τ res〉 is an important global measure
of sampling completeness, providing an estimate of the length
of trajectories that can safely be generated from the CTMC;
trajectories longer than 〈τ res〉 on the complete CTMC would
have a significant probability of containing transitions that are
not part of the estimated CTMC. One should therefore avoid
using the CTMC to make predictions on times that exceed
〈τ res〉.

We emphasize that 〈τ res〉 is a global metric that accounts
for the wider energy landscape. This is quite distinct from a
statewise approach to uncertainty; for example, if a particular
state has a high unknown rate, a statewise approach would
always demand more computational work in this state to
reduce the uncertainty. However, in our global approach, work
would only be done in this state if it is sufficiently frequently
visited to have a significant influence on the global trajectory
distribution.

In our setting, 〈τ res〉 can be estimated as follows. Consider
an absorbing CTMC in a discrete state space K ∪ �, namely
the set of observed states and an absorbing state�, as illustrated
in Fig. 1. Let P(t) = PK(t) ⊕ P�(t) give the probability that the
system is in a state i ∈ K ∪ � at time t ; the continuous-time
limit yields

Ṗ(t) = P(t) · Q ⇒ P(t) = P(0) · exp(Qt). (30)

The absorbing transition matrix Q, illustrated in Fig. 1, has a
structure

Q =
[

QK ku

0T 0

]
, (31)

where (QK)ij ≡ kij − ktot
i δij for i,j ∈ K, 0 is a vector of zeros

and (ku)i ≡ kun
i . From the structure of Q one finds that

PK(t) = PK(0) · exp(QKt). (32)

As the probability of transition to � from a state i at a time t

is given by [PK(t)]ikun
i , the expected residence time is simply

〈τ res〉 =
∫ ∞

0
tPK(t) · kudt = PK(0) · Q−2

K · ku

PK(0) · Q−1
K · ku

. (33)

Defining a vector of ones 1K, it is simple to show that QK ·
1K = −ku, giving the further simplification

〈τ res〉 = −PK(0) · Q−1
K · 1K. (34)

This expression for the residence time can be evaluated by
solving the linear equation QT

K · x = PK(0) to give 〈τ res〉 =
−x · 1K.

Since 〈τ res〉 quantifies the quality of the current CTMC, it
is natural to use it as an objective function to guide further
improvement given a computational effort δc that can be
invested. To best harness massively parallel computational
resources, the optimal allocation will be expressed as an
allocation distribution {si} which gives the proportion of
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workers assigned to each state i ∈ K. The computational effort
ci allocated to state i is therefore

δci ≡ siδc,
∑
i∈K

si ≡ 1. (35)

In the expression (34) for the residence time, only the unknown
rates are affected by the additional computational work, giving
to leading order in δc a change in the residence time of (see
Appendix B)

δ〈τ res〉
δc

= −
∑
i∈K

si

δkun
i (βL)

δci

[
PK(0) · Q−1

K
]
i

[
Q−1

K · 1K
]
i
,

(36)

where −δkun
i /δci is precisely the maximized statewise cost

function (29) found in the previous section, evaluated at its
maximum, i.e., at the high temperature βH which maximizes
−δkun

i /δci . As Eq. (36) takes the form of an inner product the
optimal choice of si is simply

si = η
δkun

i (βL)

δci

[
PK(0) · Q−1

K
]
i

[
Q−1

K · 1K
]
i
, (37)

where η−1 = ∑
j∈K sj ensures normalization. Solving the

linear equation [QK] · y = 1K, one gets si = ηxiyi(δkun
i /δci).

This simple procedure ensures that additional resources are
optimally invested in order to maximize 〈τ res〉 at the smallest
computational cost. In practice, the optimal allocation is
periodically updated using the latest CTMC.

The optimal allocation has a clear interpretation using two
expressions that follow from Eq. (34) for the residence time.
As the inner product with 1K is simply a sum over the known
states, the second term in (37), −[PK(0) · Q−1

K ]
i
, is simply

the expected time spent in a state i conditional on the initial
distribution PK(0), which when summed over all states yields
〈τ res〉. If we instead take the initial distribution to be a delta
function on a state i, the third term in (37), −[Q−1

K · 1K]
i
, can

be interpreted as the expected residence time in the known
network, conditional on starting from a state i. The allocation
of computational work to a state is thus a product of three
factors: the degree to which the unknown rate will change
under additional sampling, the amount of time (on average)
spent in the state before absorption under the desired initial
conditions, and the characteristic residence time of trajectories
starting in the state. If a state is very well sampled, the last two
factors might be large, but the change in the unknown rate
with additional sampling will be very small, suppressing the
allocation weight. Conversely, a poorly sampled state might
be rarely visited and have a small residence time, but the
change in the unknown rate will be very large, increasing
the allocation weight. In this manner, TAMMBER is able to
allocate computational work to a state according to a global
measure of the state’s influence on the ensemble of trajectories
in the known state space, dependent only on the prescribed
initial condition PK(0).

VI. TAMMBER SIMULATION CODE

We have implemented the TAMMBER workflow, illustrated
in Fig. 1, within the ParSplice [31] simulation code, which pro-
vides the underlying framework for generating state-to-state

trajectories, state identification, and asynchronous control over
the requested work using massively parallel computational
resources. MD trajectories themselves are generated by the
LAMMPS molecular dynamics package [32]; after a 1 ps
thermalization and dephasing stage (which is repeated if a
transition occurs [31]), a snapshot of the system is recorded 2–4
times over each ps trajectory segment, with the final snapshot
relaxed and analyzed [31] to check for transitions between
metastable states. If a transition is detected, the intermediate
snapshots are relaxed and analyzed to find a more precise
transition time and to check for multiple transitions, which can
occur if a low barrier is found at a high temperature. Transition
times and pathways are sent back to the central task manager,
with new transitions submitted for climbing-image NEB cal-
culations [24] and, if desired, Hessian prefactor calculations
using LAMMPS force calls and the FIRE minimization routine
[33].

The central task manager of TAMMBER analyzes, at
regular intervals, all of the state-to-state trajectory data using
the multitemperature TAD formalism outlined in Sec. II to
produce a list of time-ordered first-passage times and final
states for each state. The dynamical data {τij } and static data
ν0

ij ,Eij for each transition are then used to produce an estimate
of the rate prefactor using the Bayesian estimators derived
in Sec. III. With knowledge of the individual transition rates
kij (β) = νij exp(−β�Eij ) at the desired temperature, we can
estimate 〈ku(β)〉 and 〈k2

u(β)〉 using the Bayesian posterior
distribution for the total escape rate (17) and therefore fully
populate the matrix Q for the absorbing Markov chain (30)
at the low temperature βL. The quality of this CTMC is
assessed by computing 〈τ res〉 for a given initial distribution
and further allocation of resources carried out according to the
distribution (37) that maximizes the rate of increase of 〈τ res〉.
The cycle then repeats until 〈τ res〉 is deemed sufficiently small,
or computational resources are exhausted. In the next section,
we first test TAMMBER against an exactly known total rate
matrix using kinetic Monte Carlo to generate trajectories, then
use TAMMBER to explore the evolution of interstitial clusters
in iron.

A. Validation using a known rate matrix

A key component of the TAMMBER code is to estimate
〈kun

i 〉, the unknown (or remaining) rates from each explored
state, in order to construct an absorbing CTMC which both
allocates resources and provides a metric for the degree of
exploration. To validate our estimator for 〈kun

i 〉, we replaced
the molecular dynamics engine with a simple kinetic Monte
Carlo (kMC) routine [34] using a prescribed matrix rate
matrix kij = νij exp(−β�Eij ) constructed at any tempera-
ture from a pre-specified list of energy barriers �Eij and
prefactors νij . To ensure the rate matrix satisfies detailed
balance, we assign a free energy Fi = Ei − β−1 log ωi to each
state and a symmetric-saddle-point free energy Fij = Fji =
Eij − β−1 log ωij , then build barriers and prefactors through
�Eij = Eij − Ei and νij = ωij /ωi . The energies were drawn
from a uniform distribution and prefactors from a log uniform
distribution between 0.01 THz and 100 THz.

When using the kMC back end, we have access to the exact
remaining rate at any point in the simulation, which can be
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FIG. 3. Comparison of TAMMBER and typical TAD sampling a
single state at a target temperature of 300 K, using kMC to generate
escape times, with an estimated computational cost in units of ps
of MD. The optimal TAD scheme implemented in TAMMBER is
able to find the optimum instantaneous TAD temperature to reduce
the unknown rate for minimal computational cost, and thus is able
to autonomously outperform constant-temperature TAD. Left inset:
Optimal temperature during simulation. Right inset: The objective
function (29) at the end of the simulation.

compared to our estimates 〈kun
i 〉. Figure 3 demonstrates the

estimate of the unknown rate for a single state against the
simulated computational cost (performing MD, identifying
states, and NEB calculations) at a range of fixed TAD temper-
atures β−1

H , and the TAMMBER process, which uses a variable
TAD temperature determined by maximizing the benefit func-
tion −δ〈kun

i 〉/δci , Eq. (29). It can be seen that TAMMBER
successfully adjusts the TAD temperature to decrease the
unknown rate as fast as possible with computational effort,
while the estimate 〈kun

i 〉 decreases with increasing sampling
time. Importantly, the estimated unknown rate is greater than
the actual remaining rate, meaning that we can have high
confidence that the predicted residence times are conservative.
This behavior emerges naturally from our Bayesian estimator;
given only the knowledge that rare events are Poisson random
variables (through the likelihood function) our estimate for the
remaining rate cannot be significantly lower than the inverse
time spent in the state; i.e., one cannot exclude the possibility
of a given kun

i remaining without running dynamics for a time
of order 1/kun

i . While it is in principle possible to improve the
estimator by encoding knowledge of the rate distribution into
a Bayesian prior, such information is typically not available in
atomistic simulation, so the estimator (17) is a good choice.

We have also used the kMC back end to test self-optimizing
capability of TAMMBER beyond a single state (see Fig. 4).
Two rate matrices were generated, each with 100 states and
on average 40 connections per state, but with a different
distribution of energy barriers. We chose a high connectivity
to ensure each state has a similar spectrum of escape rates,
while as before the target temperature was 300 K and TAD
temperatures between 300 K and 1500 K were considered. To
investigate the response of our control protocol 29, the first
rate matrix (system 1) had barriers drawn between 0.25 eV
and 1 eV, while the second rate matrix (system 2) had barriers
drawn between 0.5 eV and 1.25 eV, suggesting a higher optimal

FIG. 4. Self-optimization of the TAMMBER code for two test
systems. Left: Histogram of energy barriers. Right: Mean and standard
deviation of the benefit function across the range of temperatures.
System 2 has a systematically larger barrier spectrum than system 1,
leading to an increase in the optimal TAD temperature.

temperature. As can be seen in 4, TAMMBER is able to
self-optimize for these two systems; the mean optimal TAD
temperature for system 1 is around 600 K, while for system 2
this rises to 1200 K.

For the example cases considered here, where each state
has a similar spectrum of escape rates, the spread of optimal
temperatures across the states is relatively narrow, but in a
general case this can vary significantly as a function of rate
spectrum and time spent in the state. In general, the optimal
temperature will start at the lowest value, quickly rise as state
time is accumulated before the first event is observed, then fall
to a degree dependent on the discovered transition rates.

B. Interstitial capture by C15 clusters in iron

As a preliminary application of TAMMBER, we have
investigated the capture of mono-interstitial dumbbell defects
[35] by C15 tetra-interstitial clusters [36] using an embedded
atom potential model of iron [37]. C15 clusters have been
observed in irradiation damage simulations [38] and are known
to be the most stable interstitial arrangement for small defect
sizes [39], but their connection to the wider energy landscape of
an irradiated material is still largely unexplored. In particular,
C15 defects have been observed to act as sinks for mono-
interstitials, resulting in C15 growth which is assumed to play
an important role in the evolution of the defect population
[40]. However, due to the vast energy landscape of a defective
material quantitative statements on the nature of this capture
process, beyond observation of individual trajectories, is very
challenging to calculate by traditional methods.

In our simulations, a C15 structure [36] was formed from
4 interstitial atoms in a 10 × 10 × 10 cubic supercell before
adding a further interstitial atom nearby, forming a dumbbell
under further relaxation. Minimizing the hydrostatic pressure
changed the final energy by less than 0.01 eV, consistent
with the known small formation volume of these defects
[36]. The final system, illustrated in Fig. 5(a), contained
2005 atoms. TAMMBER performed constant-volume TAD
MD simulations using an underdamped Langevin thermostat
[32], with a target temperature of 300 K and possible TAD
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FIG. 5. Disconnectivity graph [41] for states found by TAMM-
BER with the tetra-C15 and dumbbell system studied shown in
inset (a). As discussed in the main text, grouping symmetrically
equivalent states leads to a significant reduction in the number of states
and simplifies the graph structure. While all the dumbbell capture
states (inset (b)) reside in the superbasin, distinct dumbbell states
also exist inside this superbasin at relatively low energies, meaning
this illustration is not a perfect representation of the coarse-grained
landscape. Nevertheless, the Markov chain analysis shows the system
remains in a penta-C15 state for multiple seconds at 300 K.

temperatures between 400 K and 900 K. Resource allocation
was determined using the scheme detailed above, with the
initial distribution being a delta function [PK(0)]i = δij on the
starting state of a separated dumbbell and C15 tetra-interstitial.
The upper temperature threshold is limited by the presence
of significant anharmonic effects on the transition rate which
violate the harmonic approximation used in TAD; efficient
anharmonic rate theory implementations [23] would therefore
be extremely beneficial to further extend the range of TAD
temperatures that can be used. As anharmonic vibrational
effects typically act to increase transition rates, it can be shown
that the inclusion of anharmonic effects would act to increase
the expected residence time of the observed network and thus
our present results can be considered a lower bound.

After 12 hours of operation on 2160 processors, TAMM-
BER had identified 2664 metastable states with 7676 con-
necting barriers from around 2 μs of high-temperature MD.
The expected residence time conditional on PK(0) in the set of
known states was found to be 43.4 seconds at 300 K, a testament
to the timescales that can be accessed by the massively parallel
temperature-accelerated dynamics controlled by TAMMBER.

The energy landscape, illustrated through a disconnectivity
graph [41] in Fig. 5, consists of a large number of states
corresponding to dumbbell diffusion [shown in Fig. 5(a)],
with a smaller number of low-energy states corresponding to
dumbbell capture [Fig. 5(b)]. As discussed in the next section,

FIG. 6. Summary of the TAMMBER simulation for the C15-
dumbbell system, discussed in the main text. (a) Histogram of
energy barriers. (b) Histogram of state energies. (d) Effective low-
temperature time versus high-temperature MD time. (d) Histogram
of unknown rates.

while the clear superbasin shown in Fig. 5 contains all the
dumbbell capture states, distinct dumbbell diffusion states
also exist at relatively low energies, meaning the superbasin
structure is an illustrative but imperfect representation of the
coarse-grained landscape. Due to the high stability of the C15
tetra-interstitial, the number of states is expected to scale only
linearly with the size of the system, resulting in the relatively
low number of states found in this example.

Figure 6 gives a more detailed presentation of the fi-
nal state of the TAMMBER simulation. Figure 6(a) shows
the wide distribution of energy barriers found, demonstrating
the need for an adaptive parametrization to optimally sample
the highly heterogeneous energy landscape. The peak around
0.26 eV corresponds to dumbbell migration, with higher energy
barriers typically corresponding to escape pathways from the
superbasin of captured states. Figure 6(b) shows the relative
state energies, with a peak at the minimum energy for the
superbasin of capture states, while the large higher-energy peak
is for dumbbell migration states. Figure 6(c) shows the effective
low-temperature TAD time versus high-temperature MD time
for each state. The slope on the double-log plot is equal to the
temperature ratio βL/βH , as can be seen from Eqs. (7) and (8).
The deepest states have the highest optimum TAD temperature,
and can clearly be seen as the upper envelope to the the
scatter low-temperature TAD times, while the lowest envelope
is simply an equality (βL = βH ). The scatter in slope is a
demonstration of the range of optimal temperatures throughout
the run; deep capture states were typically sampled at 900 K,
while the dumbbell diffusion states were typically sampled
at around 550 K. Finally, Fig. 6(d) shows a histogram of the
low-temperature unknown rates kun

i (βL). States which are not
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deemed influential to the overall behavior by the Markov chain
analysis receive little to no sampling and thus possess a high
unknown rate, leading to the significant upper peak.

At the end of the initial TAMMBER simulation, it was
observed that the resultant Markov chain predicts a long resi-
dence time in the superbasin of low-lying “dumbbell capture”
states [shown in Fig. 5(b)]. To further explore this superbasin,
TAMMBER was restarted using the previously generated
trajectory and transition barrier information and ran for a
further 4 hours on 2160 cores with a new initial distribution,
namely a delta function on the best sampled dumbbell capture
state, giving an expected residence time of 〈τres〉 = 57.6 s at
300 K, with 21 states having an expected visit time of more
than 0.1 seconds, from a total effective low-temperature time
of

∑
i τi(βL) = 2.98 × 104 s. This scale separation between

the total low-temperature time and the residence time is a
consequence of the structure of the energy landscape; as
superbasin states are frequently revisited, the unknown rate
must be significantly lower than the total known escape rate to
to ensure long trajectories before absorption. AMD techniques
are thus essential to provide efficient sampling of the energy
landscape, as otherwise the the raw sampling MD time greatly
exceeds the typical residence time of the found transition
network [17].

Upon a detailed investigation of the observed system con-
figurations, it was found that a significant number of states
were identical to each other up to a reindexing of atoms or
an operation of the crystal’s symmetry group. Exploitation
of these symmetries is clearly highly desirable, as well as
the high-temperature MD trajectories and found escape times
across all identical states to be collated, resulting in more
efficient sampling, smaller unknown rates, and a more compact
description of the transition network. As the effective state
time is increased to the power of the temperature ratio used in
TAD, consolidation of MD sampling can produce very large
decreases in the unknown rates. Identification of symmetri-
cally equivalent states is possible using graph isomorphism
algorithms [42] on the connectivity graphs used to identify
states in TAMMBER. Using the graph isomorphism algorithm
to construct a map to the reduced set of symmetrically in-
equivalent states, we reprocessed the TAMMBER simulation
output to construct new effective state times, transition rates,
and unknown rates to build a new Markov chain in the
symmetrically reduced state space. We find a new transition
network of 626 states, illustrated in Fig. 6. The new residence
time with a delta function on the same lowest energy superbasin
state is now

∑
i τi(βL) = 7.38 × 106 s with a residence time

of 80.9 seconds. This very large difference between the total
state and validity is due to the high degree of degeneracy (318
states) of the lowest-lying dumbbell capture state, resulting
in an excessively long effective state time of 4.2 × 106 s,
which would not be allocated in a symmetry-aware resource
management scheme. The development of such a scheme in
TAMMBER is clearly highly desirable but raises a number of
subtle issues which are beyond the scope of the present paper.
In our final section, we use the symmetrically reduced Markov
Chain developed above to investigate superbasin escape times
and explore the consequences of possessing, through the
unknown rates, uncertainty quantification on the completeness
of the discovered network.

VII. DISCUSSION: UNCERTAINTY QUANTIFICATION
OF TRANSITION NETWORK OBSERVABLES

The central goal of the present paper was to construct, with
rigorous uncertainty quantification, a transition network from
atomistic simulations with a maximally long residence time in
the found state space. The previous section demonstrated that
extremely long residence times are readily accessible using
our method. In this final section we provide a preliminary
exploitation of the discovered transition network, in particular
accounting for of uncertainty quantification provided by the
unknown absorbing rates. A full exploration of these ideas,
and a detailed examination of their use when transitioning
to a higher-scale simulation scheme such as kinetic Monte
Carlo, will be the subject of future work. A natural observable
to extract from the transition network is the expected escape
time from the dumbbell capture superbasin. This is clearly an
important input for coarse-grained models of interstitial cluster
evolution, informing the degree to which C15 clusters can be
considered as pure sinks for mono-interstitial defects, which
can otherwise collate into highly mobile prismatic dislocation
loops. To calculate a superbasin escape time, we ask for the
first escape time from a collection of states A, here the lowest
energy dumbbell capture states [Fig. 6(b)]. This can simply be
achieved by artificially making all the remaining states B =
K \ A an absorbing set. Similar ideas are regularly employed
in the biochemical community [7], though the inclusion of an
unknown rate to account for sampling incompleteness is novel
to the best of our knowledge. Defining the known rate matrix
on A as QA one can then define two sets of absorbing rates,
namely the previously estimated unknown rates from A to �

and the sum of all rates from A to B:[
ku

�

]
i
= ku

i ,
[
ku
B
]
i
=

∑
j∈B

kij , i ∈ A. (38)

Restricting the initial distribution of states PA(0) to some
distribution over A, one can define a very useful convergence
measure for averages over trajectories from A to B, namely
the probability of absorbing to B instead of �, given by

PB<� = PA(0) · Q−1
A · ku

B, lim
ku

�→0
PB<� = 1, (39)

where the final limit corresponds to convergence to the com-
plete model. The expected first-passage time from A to B,
conditional on not absorbing to �, reads〈

τ abs
A→B

〉 = PA(0) · Q−2
A · ku

B/PB<�. (40)

However, when PB<� is small, absorption to � is much more
likely and thus the true first-passage time from A to B is
expected to be much greater than the current residence time,
meaning (40) is likely to be a significant underestimate. One
possible strategy to investigate the dependence of 〈τ abs

A→B〉 on
sampling incompleteness is to “artificially” take the perfect
sampling limit 〈

τ abs
A→B

∣∣ku
� = 0

〉 ≡ lim
ku

�→0

〈
τ abs
A→B

〉
, (41)

corresponding to the prediction of approaches without any
uncertainty quantification. Another approach is to recognize
that the conditional expectation in (40) is biased by sampling
only from the subset of trajectories that absorb to B before
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FIG. 7. Analysis escape from the dumbbell capture superbasin
tetra-C15 and shown in Fig. 6(b). Lower panel: Calculated residence
times and unbiased first-passage times across a range of temperatures.
As discussed in the main text, the first-passage-time estimates all
converge when the probability of escape before absorption is high.
Upper panel: The minimum-energy path for superbasin escape. The
highest saddle-point energy of 1.44 eV agrees well with the found
Arrhenius slope of 1.41 eV.

�. An approximate form for the unbiased first-passage time
〈τ abs

A→B〉∞ can be obtained by assuming absorption from A to
B or � are two first-order Poisson processes with mean times
〈τ abs

A→B〉∞ and 〈τres〉; it is simple to show that this gives the
approximate expression for the unbiased first-passage time of

〈
τ abs
A→B

〉
∞ =

(
1

PB<�

− 1

)
〈τres〉. (42)

Coming back to the case of the C15 defects, while the
disconnectivity graph has a clear superbasin structure, a de-
tailed inspection shows that a number of lower-energy states
have a distinct, separate dumbbell structure, meaning that
the “true” capture superbasin has a more complex structure
than that implied by the illustration in Fig. 5. The set A
of capture states was thus chosen to be the minimal set
of connecting states to the found global minimum where a
distinct dumbbell structure could not be found, consisting of
63 symmetrically inequivalent states, or around 500 states of
the original network.

In Fig. 7(b), we plot PB<� along with the residence
time 〈τres〉, the conditional first-passage time 〈τ abs

A→B〉, and
corrected first-passage times 〈τ abs

A→B|ku
� = 0〉 and 〈τ abs

A→B〉∞

across temperatures from the low target temperature 300 K to
900 K, the highest temperature considered in our simulations.
It can be seen that at low temperatures PB<� is very small,
leading the conditional first-passage time to converge to the
network residence time, indicating that the current quality of
the network in insufficient to “certify” that the predicted times
are correct, even if the corrected times are essentially in perfect
agreement with each other. In other words, the model cannot
be used to exclude the possibility that other, yet undiscovered
mechanisms could affect the predicted times at low temper-
atures. In contrast, at higher temperatures PB<� → 1, the
residence time exceeds the first-passage time, with all estimates
for the first-passage time converging. From the Arrhenius
gradient an effective energy barrier for the superbasin escape
of 1.41 eV is found, which closely corresponds to the escape
process illustrated in Fig. 7(a).

While the network produces a reliable superbasin escape
time at high temperature, the large differences between the
residence time and the corrected first-passage times at low tem-
perature, or equivalently the small values of PB<�, demonstrate
that care must be taken when constructing transition networks
from atomistic simulations. The objective function (29) used
in the current work was focused on optimizing a particular
measure of transition network quality, the expected residence
time. In future work, we will further develop the approach
presented here to specifically address the issue of converging
more targeted quantities such as superbasin escape times.

VIII. CONCLUSIONS

In this paper we have introduced a method to generate
large networks of transition rates from atomistic simulations,
sampling the energy landscape with a form of self-optimizing
temperature-accelerated dynamics. Bayesian estimators were
developed that quantify sampling incompleteness in the form
of an absorbing unknown rate for each system state. Due
to sampling incompleteness, trajectories in the observed rate
network have a finite lifetime before absorption. The presented
method, TAMMBER, determines the optimal allocation of
computational resources “on the fly” in order to find new
states and transition pathways, with the goal of maximize the
expected time in the known transition network before absorp-
tion, conditional on a user-specified initial condition. After
validation on exactly known transition networks TAMMBER
was applied to the capture of interstitials by C15 clusters in
an EAM model of iron, reaching expected absorption times of
more than 80 s at 300 K. It was found that sampling com-
pleteness could be considerably improved by consolidating
symmetrically equivalent states; incorporation of symmetry
considerations into the TAMMBER allocation scheme is an
immediate topic for future work.

The transition network was then used to explore superbasin
escape times, with expressions derived for the average escape
rate in terms of the absorbing rates. The uncertainty quantifi-
cation indicated that while converged results can be produced
when the predicted escape time is less than the network
residence time, building statistical confidence on long-time,
low-temperature behavior proves extremely challenging, as
results can be strongly affected by the degree of sampling
completeness, an observation which is likely to be widely
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applicable across many coarse-grained modeling approaches.
The further development of optimal strategies such as this one
to reduce the often surprisingly large uncertainty sensitivity is
therefore urgently needed.
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APPENDIX A: MOMENTS OF THE POSTERIOR
DISTRIBUTION

For N seen transitions, we define aj ≡ kobs
i − kobs

i;j , j ∈
[0,Ni − 1]. As kobs

i;0 = 0 (no observed rate before the first
event), Eq. (17) for the posterior distribution can then be written

π (kun) = e−kunτi

N−1∏
j=1

(kun + aj ) (A1)

= e−kunτi

N−2∑
r=0

(kun)rAr, (A2)

where Ar is the sum of all N−2Cr possible combinations of r

elements from {aj }N−1
1 . By considering the change in Ar when

expanding the number of terms in the product, the Ar can be
evaluated by a simple recursion. Using the integral relation∫ ∞

0 kne−ktdk = n!t−(n+1) we can thus write

〈(
kun
i

)n〉 =
∑N−2

r=0 (r + n)!Arτ
−r
i

τ n
i

∑N−2
r=0 r!Arτ

−r
i

. (A3)

APPENDIX B: DERIVATIVE OF AN INVERSE MATRIX
ELEMENT

Consider the known derivative ∂lAij of an element of a
matrix A. To calculate the derivative of the inverse matrix
element ∂l(A−1)ij , we apply the chain rule to the trivial result
∂l(A · A−1) ≡ 0 then premultiply by A−1 to obtain

∂lA−1 = −A−1 · ∂lA · A−1. (B1)

Note the nontrivial ordering of the matrix product. From the
structure of the known rate matrix QK we have

∂

∂kun
l

[QK]ij = −δij δil . (B2)

This gives the inverse derivative as

∂

∂kun
l

[
Q−1

K
]
ij

= [
Q−1

K
]
il

[
Q−1

K
]
lj
. (B3)
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