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Verification of experimental dynamic strength methods with atomistic ramp-release simulations
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Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using
an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent
Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods.
Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately
predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor
data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that
introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and
relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled
with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed,
leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the
definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported
dynamic strength values.
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I. INTRODUCTION

Material strength is a broadly applied and critically impor-
tant measure, yet its exact definition can depend on whether one
is dealing with brittle or ductile matter, or whether a material
is deformed quickly or slowly. Fundamentally, strength is a
material’s ability to resist permanent deformation. However,
quantifying this physical concept has become increasingly
difficult as experiments delve into ever higher pressures, faster
strain rates, and novel materials, which exhibit unusual failure
and plastic mechanisms.

Dynamic compression is an important tool to reach pres-
sures much higher than can currently be achieved through
quasistatic loading. Understanding the problems of material
response at extreme pressures is important to fields as diverse
as geomorphology [1], armoring [2], advanced materials man-
ufacturing [3,4], and fusion energy [5]. In each, our goal is
to measure and understand the mechanisms that determine
strength in dynamic compression.

At low stress and strain rates, there are many conven-
tional experimental techniques available to determine defor-
mation mechanisms [6–8], strength [9–13], and elastic moduli
[14–17], but as the strain rate increases, the experimental
analysis techniques become very limited. This has led to an
incomplete understanding of the dynamic material response in
these high-pressure regimes. Recent experiments have applied
the theory of high-rate deformation mechanisms [18] to ex-
tract strength. One method uses Rayleigh-Taylor instability
growth as a gauge of strength [19], while other methods
use one-dimensional (1D) wave propagation combined with
either diffraction measurement [20] or known equations of
state (EOS) [21]. Alternatively, in ramp-release experiments
[22–27], properties such as strength, bulk modulus, and shear
modulus are obtained without prior knowledge of the material
EOS. These experiments use velocimetry at specified loca-
tions and a previously established self-consistent Lagrangian

analysis (SCLA) method [28]. Using SCLA, Brown et al. [23]
have recently obtained strength and shear modulus values at
250 GPa for Ta well above those predicted by previous models,
which raised questions about the applicability of SCLA in
this regime. Here, we validate the SCLA methodology using
molecular dynamics (MD) at the same pressure as experiment.

In this paper, we use MD simulations to validate the
dynamic strength and material moduli extracted with SCLA,
and to identify SCLA limitations. We directly test fundamental
wave propagation assumptions necessary for valid strength
extraction. We apply wave scaling arguments to identify
rate-dependent processes, and we use Lagrangian analysis of
atomistic velocity histories to compare dynamic high strain-
rate analysis with the atomistic stress tensor. No assumptions
are made about the deformation mechanisms, which allow this
atomistic-to-continuum wave technique to be extended to a
host of materials, such as metals, ceramics, polymers, and
glasses. Our analysis here is on body-centered-cubic (bcc)
tantalum, which has important applications in the extreme
environments community [29,30]. More broadly, our results
offer much needed confirmation of a key methodology for
measurement of high-pressure dynamic strength. Such con-
firmation and increased understanding will lead to the devel-
opment of improved experimental methodology for strength
extraction—a critical step toward a more complete under-
standing of the physical mechanisms (i.e., plasticity, etc.) in
extreme environments. Here we present one such methodology
for obtaining improved shear moduli and relaxation-adjusted
strength.

II. METHODOLOGY

MD simulations solve the classical equations of motion
for the atoms in the system, and the particle velocities and
stresses can be directly obtained for multiple locations along
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the wave propagation direction, allowing velocimetry analysis
to be applied without the experimental difficulty of window
corrections. In experiments, the back surface measurement is
convoluted by the sample and window impedance mismatch,
requiring additional corrections. The MD simulations of wave
evolution can be scaled and compared to experiments due
to the invariance of the particle velocity, stress, density, and
strain [31]. The MD simulations’ per-atom stress and velocity
information, along with the ability to control the compression
profile, is used to validate and understand the SCLA extracted
material properties.

SCLA is an analysis technique that examines the deviatoric
response from unloading a plastically deformed state and
allows strength and elastic moduli to be extracted at pressures
above the elastic-plastic transition. SCLA methodology is
discussed elsewhere [22,23] and is briefly summarized here.
The analysis requires velocity-time histories from two (or
more) positions within a sample. Assuming isentropic flow
of forward propagating simple waves [32], where X and t

represent Lagrangian space and time, the wavespeed (c) can be
calculated as a function of particle velocity (u) using Eq. (1),

cu = (∂X/∂t)u =
(

�X

�t

)
u

. (1)

Assuming a homogeneous medium with only one-
dimensional uniaxial strain wave propagation, the stress bal-
ance, conservation of mass, and momentum give

σx = P + 4

3
τ, dσx = ρ0c(u)du, dε = du

c(u)
, (2)

where ρ0 is the initial density, ε is the strain, P is the pressure,
τ is the resolved shear stress ( 1

2 [σx − σt ]), σt is the transverse
stress ([σy + σz]/2), and σx is the longitudinal stress.

Equation (2) can be rearranged to obtain the change in
longitudinal stress as a function of wavespeed and strain from
the conservation equations and substituted into the stress bal-
ance equation differentiated with respect to strain to obtain the

Lagrangian bulk velocity cB =
√

1
ρ0

( dP
dε

), which represents the

wavespeed in completely plastic regions, and the longitudinal

unloading wavespeed cL =
√

1
ρ0

( dP
dε

+ 4
3

dτ
dε

), which represents

the wavespeed in the elastic and quasielastic regions. The
wavespeed velocities can then be used to extract the bulk
modulus (K) and shear modulus (G) at the maximum particle
velocity (umax) directly from their definitions,

K = ρ0(1 − εmax)c2
B(umax), (3)

G = ρ0(1 − εmax)

√
3

4

[
c2
L(umax) − c2

B(umax)
]
. (4)

We note that this type of shear modulus extraction assumes
purely elastic behavior immediately after maximum particle
velocity (equivalently maximum pressure). Moving beyond
just examination of the peak wavespeeds, Eq. (2) can be
integrated between the regions of cL and cB to determine the
change in shear stress over this elastic to plastic transition,

τ (u1) − τ (u2) = 3

4
ρ0

∫ u1

u2

[
c2
L(u) − c2

B(u)
] du

c(u)
. (5)

The change in shear stress from Eq. (5) during unloading is
often related to the flow strength [25–27]. For our discussion,
here we will equate YSCLA = �τ = τ (u1) − τ (u2), which is
valid for either the von Mises or Tresca yield criterion under
simple uniaxial strain. Attenuation correction factors are ap-
plied to G and YSCLA when necessary [22,23].

We used the classical MD code, LAMMPS [33], with the
embedded-atom method potential Ta1 by Ravelo et al. [34].
Nanocrystalline systems were constructed by Voronoi tessel-
lation, then annealed to relax grain junctions. Details have
been previously published [31]. The system unit cell was
19.73 nm × 19.73 nm × 131.4 nm with 3 million atoms, had
grain sizes ranging from 1.4 to 13.5 nm with 6 nm average,
and a density of 16.58 g/cm3. The system was equilibrated
in an isothermal-isobaric (NPT ) ensemble to relax surfaces
and system volume followed by a microcanonical (NV E)
ensemble with a Langevin thermostat. The integration time
step was 0.2 fs and the system was equilibrated at 300 K and
0 GPa.

Quasistatic simulations of homogeneous deformation were
performed as a reference against which to compare the dynamic
bulk and shear moduli results. Quasistatic simulations at
nonzero temperature and pressure were achieved by deforming
the preequilibrated system in an NV E ensemble, and the
statistical average change in the stress tensor is examined,
allowing the elastic constants to be calculated [35].

Propagating ramp compression waves were imposed with a
moving infinite-mass momentum mirror piston. The periodic
polycrystal was replicated in the direction of the wave propaga-
tion, resulting in simulations between 12 and 45 million atoms.
To apply SCLA to the ramp wave history, atoms were mapped
to material points (MP) and tracked throughout the course of
the simulation. Figure 1 depicts the motion and tracking of
MPs as the compression wave propagates though the system,
visualized using OVITO [36]. MPs were placed every 25 nm
along the propagation direction. The MP thickness of 0.4 nm
was chosen to be large enough to give a good statistical repre-
sentation of the atoms in different grain orientations, but small
enough to capture the wave features. The average velocity and
per-atom stresses in the MPs were calculated at each time step.
High-temperature liquid simulations were performed to verify
that MP diffusion did not influence analysis.

The MD simulations were performed with two distinct
loading profiles to investigate wave effects on the extracted
dynamic properties: ramp-release and ramp-hold-release. A
cubic polynomial was used to specify the load and unload
piston velocity profiles as in Lane et al. [31] to suppress shock-
up. The ramp-release profile is similar to traditional experimen-
tal profiles, where the compression ramp-up is immediately
followed by a ramp-down, as shown in Fig. 1. The ramp-hold-
release profile was performed with the same ramp and release
rates, but with a 5 ps hold at the maximum particle velocity.
This delays wave attenuation by separating compression and
rarefaction waves. 5 ps is sufficient to observe relaxation in
our nanocrystalline Ta (see below). The piston loading and
unloading time was set to 80 and 30 ps, respectively, resulting
in a 5 × 109/1.33 × 1010 s−1 average loading/unloading rate.

The SCLA method was applied to two MD velocity histo-
ries, resulting in the Lagrangian wavespeed as a function of
particle velocity; an example is shown in Fig. 2. The dynamic
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FIG. 1. Snapshots of nanocrystalline Ta compression at two points in time. The atoms are colored by crystal orientation, with darker intensity
indicating low-confidence regions (i.e., grain boundaries and defects). Arrows depict Lagrangian material point (MP) movement.

strength, bulk modulus, and shear modulus can then be ex-
tracted from the atomistic simulations using the same methods,
described by Eqs. (3)–(5), as in experiments. The ramp-release
and ramp-hold-release profiles show nearly identical loading
wavespeeds for particle velocities below 2.3 km/s, but they
show marked differences near the peak particle velocities.
The ramp-release profile has a significantly larger unloading
wavespeed cL(umax), while the ramp-hold-release profile has a
dip in Lagrangian wavespeed below the linear loading fit.

Propagating the peak wavespeeds through Eqs. (3) and (4)
results in SCLA estimates of the bulk and shear moduli. These
estimates are not local properties, but are averaged between
the MPs used. By repetition across several MP ranges (from 0
to 100 nm), the mean and standard deviation of the bulk and
shear moduli can be obtained.

III. RESULTS AND DISCUSSION

We test the accuracy of the dynamic SCLA bulk and
shear moduli by comparing against the quasistatic MD values
at 250 GPa, shown in Table I. The quasistatic simulations
were performed at 1200 K to match the dynamic simulation’s
temperature just before unloading. Excellent agreement be-
tween the SCLA and quasistatic moduli is obtained for all

FIG. 2. MD Lagrangian wavespeed vs particle velocity obtained
using SCLA on the 0–100 nm MPs comparing the ramp-hold-release
vs ramp-release simulations. Relaxation, strength, and important
wavespeed definitions are illustrated.

simulations, except the shear modulus in the ramp-release case.
By varying the hold time in the ramp-hold-release runs, we are
able to show shear modulus convergence.

Given the precision of the bulk modulus calculation, the
source of error in the SCLA shear modulus is the error in
cL(umax). As shown in Fig. 2, this velocity is significantly
higher in the ramp-release analysis. Past experiments have
reported high cL(umax) values, and attributed these to wave
attenuation effects [26,27]. However, because the variation in
the SCLA shear modulus across the different MPs (and thus dif-
ferent levels of attenuation) cannot explain the observed errors,
attenuation alone is not a sufficient explanation. To examine
the role of rate dependence near peak particle velocities, and
its possible effect on the errors in peak wavespeed, a second
set of simulations were conducted with double the loading
and unloading rates. These simulations were scaled as in [31],
and they are compared to the original lower rate simulations
in Fig. 3, where we focus on the regions near the peak particle
velocity, to which this SCLA method is particularly sensitive.
There is insignificant rate dependence where the scaled profiles
overlay. As illustrated, the ramp-release simulations exhibit
significant rate dependence at the peak velocity, while the
ramp-hold-release simulations do not. We conclude that the
artificially high cL(umax) is due to a combination of rate
dependencies and wave attenuation effects.

We test the accuracy of the dynamic SCLA strength by
comparing it to the atomistic stress tensor. Integrating the
wavespeed profiles with Eq. (5) (represented by the shaded
regions in Fig. 2) results in the SCLA extracted strength
(YSCLA) for both MD simulations. These results are com-
pared directly to the true MD strength (�τ ) extracted from

TABLE I. Comparison of bulk and shear moduli at 250 GPa and
1200 K for the quasistatic MD and SCLA extracted values.

Bulk mod. Shear mod.
(GPa) (GPa)

Quasistatic MD 951.5 128.0
Ramp-hold(5 ps)-release 953.8 ± 0.7 129.4 ± 2.4
Ramp-hold(4 ps)-release 954.0 ± 1.8 132.5 ± 9.0
Ramp-hold(3 ps)-release 954.9 ± 1.7 150.9 ± 19.0
Ramp-hold(2 ps)-release 953.4 ± 1.3 180.2 ± 22.1
Ramp-release 948.3 ± 1.4 251.3 ± 30.3

053601-3



MOORE, BROWN, LIM, AND LANE PHYSICAL REVIEW MATERIALS 2, 053601 (2018)

( )

(
)

FIG. 3. Two particle velocity histories from 75 nm (red) and
150 nm (blue) Lagrangian MPs with the faster and original load-
ing/unloading rates, respectively, scaled and overlaid, for both the
ramp-release (solid) and ramp-hold-release (dashed) simulations.
Rate-dependent regions are where the profiles do not overlay.

the per-atom stress tensor versus pressure path in Fig. 4.
We find that the SCLA definition of strength is equal to
the average total change in shear stress τ from the peak
pressure to the minimum τ during unloading. The average
here is over the space through which the wave has propagated.
The calculated SCLA strength (represented by the magnitude
of the vertical lines in Fig. 4) differs between the ramp-
hold-release and the ramp-release by exactly the shear stress
relaxation at peak pressure observed in the ramp-hold-release
simulations. This indicates that SCLA strength is sensitive
to the compression profile, particularly near peak pressure.
This is a clear indication of path dependence. The sensitivity
to compression profiles provides a plausible explanation for
the experimental variations in reported strength. Note that
in both cases the SCLA extracted strength is consistent
with the MD stress tensor value—a further validation of the
method.

To further explore relaxation and how it contributes to
path-dependent extracted strength, we compare MP stress
histories for the two different compression profiles in Fig. 5.

( )

(
)

FIG. 4. The average shear stress (τ ) between 0 and 100 nm MPs
vs pressure, illustrating the average unloading �τ equating to the
SCLA extracted strengths.

FIG. 5. Normal stress components and shear stress (τ ) vs time for
the ramp-release and ramp-hold-release 50 nm Lagrangian MP. The
�τ that contributes to SCLA strength is illustrated.

The rapid change in strain rate between the ramp and hold
in the ramp-hold-release case leads to a lowering of the
yield shear stress, which causes τ to relax over time before
unloading. Conversely, in the ramp-release case, the immediate
reversal of the applied loading does not give the material an
opportunity to relax before unloading. This causes the change
in shear stress from relaxation to be incorporated into the
ramp-release SCLA extracted strength as depicted in Fig. 5.
These histories illustrate how relaxation affects the SCLA
strength by demonstrating the �τ that contributes to SCLA
strength.

Materials with rate-dependent deformation exhibit relax-
ation [37], whose rate is governed by its relaxation mech-
anisms. In our nanocrystalline simulations, the majority of
relaxation is due to shear stress migration to grain bound-
aries followed by grain boundary relaxation occurring over
picosecond time scales. Relaxation in polycrystalline metals
is likely dominated by dislocation motion [38], which has
slower relaxation times causing relaxation to be present in
slower strain rate ramp-release paths, as shown by previous
stress relaxation tests [39,40] and shock rise times [38,41].
The resulting relaxation times in ramp-hold-release ex-
periments presents a method for deciphering relaxation
mechanisms.

Our work can be generalized to experiments, even to
those with different relaxation mechanisms and much longer
relaxation times than we can explore with molecular simu-
lations. We have shown that the reliability of SCLA mea-
surements can be significantly improved when an extended
flat-top hold separates the ramp from the release wave. In
experiments, where a perfect flat-top hold can be challenging
to implement, an approximate hold (i.e., significantly reduced
ramp-rate region) should be sufficient to delay interaction
between ramp and release response, and thereby reduce wave
attenuation. By comparing the SCLA results in experiments
with and without holds, one can test for and eliminate the
effects of decreased shear stress due to strain-rate-induced
relaxation and obtain a new relaxation-adjusted strength
measurement.
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IV. CONCLUSIONS

In conclusion, we have directly validated self-consistent
Lagrangian analysis methods by application to fully atom-
istic propagating ramp waves combined with an atomistic
Lagrangian analysis technique. Our validation of the dynamic
strength extraction will likely prompt significant investigation
into new high pressure strength models, which are needed to
reconcile the observed increase in strength over previously
accepted models. The SCLA extracted strength agrees with the
change in shear stress τ determined from the MD stress tensor.
Moreover, we show where limitations exist when significant
rate-dependent effects and wave attenuation are present. We
show that these limitations can be avoided by incorporating
sufficient hold times at peak pressure. We observe that strength
is influenced by the loading profile, and we argue that careful

control of the profile and hold duration could be used to obtain a
relaxation-adjusted strength measurement. Rate effects at peak
pressure were found to explain the artificially high cL(umax)
values that cause the large discrepancies in shear modulus at
high pressures. Our results indicate the importance of shaping
the compression profiles in experimental applications of SCLA
for shear modulus and strength.
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