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Propagative selection of tilted array patterns in directional solidification
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We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional solidification
of a binary alloy when a preferred-growth crystal axis is misoriented with respect to the temperature gradient. In
situ experimental observations and phase-field simulations in thin samples reveal the existence of a propagative
source-sink mechanism of array spacing selection that operates on larger space and time scales than the competitive
growth at play during the initial solidification transient. For tilted arrays, tertiary branching at the diverging edge
of the sample acts as a source of new cells with a spacing that can be significantly larger than the initial average
spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields a uniform spacing
everywhere, selected independently of the initial conditions, except in a small region near the converging edge of
the sample, which acts as a sink of cells. We propose a discrete geometrical model that describes the large-scale
evolution of the spatial spacing profile based on the local dependence of the cell drift velocity on the spacing.
We also derive a nonlinear advection equation that predicts the invasion velocity of the large-spacing domain,
and sheds light on the fundamental nature of this process. The models also account for more complex spacing
modulations produced by an irregular dynamics at the source, in good quantitative agreement with both phase-field
simulations and experiments. This basic knowledge provides a theoretical basis to improve the processing of single
crystals or textured polycrystals for advanced materials.
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I. INTRODUCTION

The directional solidification of nonfaceted dilute alloys
leads to the freezing of columnarlike microstructures in the
bulk solid, which are known to largely determine the prop-
erties in use of as-cast materials in metallurgy [1–3]. These
microstructures are formed during growth as a trace left
behind by self-organized solidification front patterns. Their
main morphological features are primarily determined by the
redistribution of chemical species by diffusion in the liquid
and capillary effects at the propagating solid-liquid interface,
which can be considered in local thermodynamic equilibrium
at slow growth rate [4–14].

During directional solidification (DS), melt crystallization
is performed while a sample is pulled with a velocity V in a
uniaxial temperature gradient G [6–13]. When the sample is
pulled from rest, the solute concentration builds up in front
of the recoling planar interface that becomes morphologically
unstable [4,15,16], thereby forming shallow cells that become
progressively deeper. During this initial transient, cells grow
competitively due to solutal interactions between neighbors
and become eliminated. Surviving cells then reach a steady
state, forming a periodic array of fingerlike shapes—“cells”
and “dendrites”—with a primary spacing λ (typically, a few
tens of micrometers), which can vary within a large interval
[8–24]. In particular, phase-field (PF) simulation studies have
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shown that steady-state arrays of deep cells (smooth fingers)
or dendrites (branched fingers) can be stable for a large range
of primary spacings λmin < λ < λmax [19–21]. Moreover, the
largest stable spacing λmax is typically by several fold the
smallest stable spacing λmin in the velocity range where arrays
of deep cells or dendrites form, and V is much larger than the
onset velocity Vc of morphological instability [19–21].

Pattern selection has been studied extensively both theoret-
ically and experimentally in a thin-sample geometry [7–14].
To date, however, those studies have primarily focused on
understanding what spacing is dynamically selected by the
transient growth competition between neighboring cells for
a well-oriented single crystal [15,16,20–22,25]. Competitive
growth continuously increases the average spacing until a
stable spacing is reached. Therefore, it typically selects a
spacing slightly larger than λmin due to the fact that the cell
elimination stops when a stable spacing is reached. In practice,
the spatial λ distribution along the array is rarely uniform and
can be strongly influenced by the orientation of the growing
crystal with respect to the temperature gradient axis both
during, and well after, the initial cell elimination process.
However, the long-time evolution of the array pattern towards
a steady state in a large crystal as a function of its orientation
remains largely unexplored.

The crystal-orientation dependency of DS front patterns
originates from the sensitivity of growth shapes to the surface-
tension anisotropy of the solid-liquid interface, which is well
known to select both the orientation and tip operating state of
freely growing dendrites [26,27]. In a DS setting, however, the
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FIG. 1. Tilted-cell arrays in thin-sample directional solidification
of a misoriented crystal (misorientation angle α0) in a dilute
succinonitrile–d-camphor alloy of concentration c∞. (a)
Experimental observation (c∞ = 0.3 mol%; V = 4 μm s−1; G =
75 K cm−1; α0 ≈ 15.5◦) of a horizontal dimension Ly = 2780 μm.
(b) Phase-field numerical simulation (c∞ = 0.24 wt%; V =
4 μm s−1; G = 12 K cm−1; α0 = 15◦) of Ly = 2490 μm. In
these images, as well as in the following ones, the field of view
covers the entire lateral width of the sample; the temperature gradient
axis x is vertical, and the liquid is located on the top. The arrow in
(a) describes drifting motion of the pattern along the lateral axis y. α

and λ are for a cell-tilt angle and a primary spacing, respectively.

growth orientation is also influenced by the temperature gradi-
ent. As a result, cells/dendrites grow at an angle α with respect
to the temperature gradient axis (x axis), which differs from
the crystal misorientation angle α0 (between the x axis and one
of the principal crystal axes). This difference is illustrated in
Fig. 1, which shows experimental and PF simulation images
of tilted array patterns from the present paper. The relationship
between α and α0 has been extensively studied previously both
experimentally [28,29] and numerically [30–33]. Those studies
have shown that α/α0 is typically a monotonously increasing
function of the dimensionless Péclet number Pe = λ/ld that
is largely insensitive to G, where D is the solute diffusion
coefficient in the liquid and ld = D/V is the solutal diffusion
length. The ratio α/α0 varies from a value much smaller than
unity for Pe � 1, where the growth direction of cells is pri-
marily determined by diffusive interactions with neighboring
cells, to unity in a dendritic regime (Pe � 1) where the growth
direction is primarily determined by crystalline anisotropy.

This current knowledge of tilted finger patterns remains
limited to a steady-state growth regime where λ is spatially
uniform along the array. In this paper, we present an ex-
perimental and numerical study of the large-scale dynamics
of those patterns in the generic case where λ is spatially
nonuniform. Nonuniformity is expected to be generic and its
origin in the setting of the growth of a single misoriented
crystal is illustrated in Fig. 1. Due to the lateral drift, there is
a qualitatively different operating dynamics on the two edges
of the sample, each of them acting as a virtually immobile
grain boundary (GB). Tilted cells travel away from the right
edge in Fig. 1, referred to as the divergent GB, which acts as

a source of new cells with a spacing significantly larger than
λmin, towards the left edge referred to as a convergent GB,
which acts as a sink of cells that are eliminated when their
spacings fall below λmin. To investigate the pattern dynamics
inside the sample resulting from the source and sink at the
edges, we used a model transparent alloy, namely, the well-
characterized succinonitrile–d-camphor (SCN-DC) alloy in a
dilute-concentration range, in semithin samples. In such a
confined three-dimensional (3D) geometry, deep cells with
a 3D shape arrange within a single row. This permits real-
time observation of the evolution of the solid-liquid interface
with a standard optical microscope. Quantitative numerical
simulations using the physical parameters of dilute SCN-DC
alloys were carried out using a well-developed quantitative
PF model of dilute binary alloy DS [23,24,34,35]. Systematic
numerical results were obtained by varying V in a deep-cell
regime, and the misorientation angle α0 between 5 and 20◦.

Both experiments and numerical simulations show that,
after a long transient, the cell source at the divergent GB
operates regularly. As a result, the total number of cells in the
sample remains constant and the spacing reaches a steady-state
spatial distribution where λ is uniform and much larger than
λmin in most of the sample, and drops abruptly to a small
value ∼λmin inside a boundary layer near the convergent
GB. This steady-state distribution is established by the lateral
propagation of front separating regions of larger and smaller
spacings from the divergent GB towards the convergent GB.
Importantly, this propagation takes place on a much longer time
scale than the competitive growth transient at the start of an
experiment during which cell elimination establishes the initial
spacing distribution inside the sample with a spacing slightly
larger than λmin [15,16,20–22,25]. Consequently, propagative
spacing selection can be investigated separately from the
establishment of the initial spacing distribution. This initial
distribution is not studied in detail here since, on the long
time scale of the present experiments and simulations, it is
completely “erased” by the propagative source-sink selection
mechanism that establishes an entirely different spatial distri-
bution of larger λ.

We propose a simplified geometrical model that can be
numerically studied to predict the long-time spatiotemporal
evolution of the array spacing. In addition, we derive a
nonlinear advection equation that describes the evolution of
the spacing distribution in a continuum limit and can be
used to predict analytically the invasion velocity of the large
spacing region inside the sample using only the relationship
between local growth orientation and local spacing (α/α0

versus Pe) as input into the theory. Those models yield
predictions in excellent quantitative agreement with numerical
and experimental results. Moreover, they show that the spacing
modulations, which are initially present or possibly provoked
during the course of a long-time DS run by any experimental
imperfection, are advected in the same direction as the cell
drifts at a rate that is noticeably smaller than Vd ≡ V tan α,
and eventually eliminated at the convergent GB.

The numerical and experimental methods are described
in Sec. II A. We propose an overview of the main results
in Sec. III A, and some useful details about the relationship
between the growth orientation of tilted cells and the local
spacing in reference to previous works in Sec. III B. Simple
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TABLE I. Material, control, and numerical parameters. Thermophysical parameters of SCN alloys are taken from Refs. [23,35,41–44,46,47].
For the PF simulations, we used a fixed W/�x = 1.2 and other numerical parameters depend on V .

Parameter Symbol Value Unit

Solute concentration c∞ 0.24 wt% camphor
0.3 ± 0.05a mol% d-camphor

Temperature gradient G 12 K cm−1

75 ± 5a

Misorientation angle α0 5, 10, 15, 20 deg (◦)
15.5 ± 0.5a

Pulling velocity V 4, 12, 20 μm s−1

Diffusion coefficient D 270 μm2s−1

Liquidus slope m −1.365 K wt%−1

Partition coefficient k 0.21
Gibbs-Thomson coefficient � 6.478 × 10−8 K m
Anisotropy strength ε4 0.011
Interface thickness W 47.56, 28.26, 17.23 d0

Grid spacing �x 3.00, 1.78, 1.09 μm
Time step �t 5.00 × 10−3, 1.75 × 10−3, 6.55 × 10−4 s

aExperimental parameters (V = 4 μm s−1); see Sec. III E.

models for analyzing the (primary) spacing evolution are
presented in Sec. III C. Numerical and experimental results
are presented, analyzed, and discussed in Secs. III D and III E.
Conclusions are presented in the last section.

II. METHODS

A. Phase-field model

We used a recent 3D PF model that describes the solidifica-
tion dynamics of a single-phase alloy in a one-sided limit (no
diffusion in the solid) [19,20,32,36–38]. This model includes
the so-called antitrapping current that has been previously
introduced in PF models to quantitatively predict the interface
dynamics during solidification experiments of dilute binary
alloys [37,38]. We also replaced the classical phase field ϕ (ϕ =
+1 in the solid and −1 in the liquid) with the preconditioned
phase field ψ defined by ϕ ≡ tanh (ψ/

√
2), thus permitting

us to enhance the numerical stability of the PF simulations
with large grid spacings [39]. We used a graphic processing
unit architecture to improve the computational performance
[21,23,30,40].

In order to produce a tilted-cell array in the 3D PF model,
the misorientation angle α0 is introduced into the surface
tension anisotropy as described in Refs. [30,40]. Then, the
angles α0 and α (Fig. 1) are measured from the x axis
that is parallel to the temperature gradient G. The detailed
equations for the ψ field including a misorientation angle and
dimensionless solute concentration U can be found elsewhere
[30,40]. We implemented the thermophysical data of a SCN–
0.24 wt% camphor alloy [23,24,35,41–43], which are listed in
Table I along with numerical parameters for the PF model.
This model used a frozen-temperature approximation, and the
temperature gradient was set to G = 12 K cm−1.

We performed PF simulations using three different values
of the solidification velocity, V = 4,12, and 20 μm s−1 for dif-
ferent interface thicknesses W/d0 ≈ 47.56, 28.26, and 17.23,
respectively, where d0 = �/[|m|c∞(1/k − 1)] is the chemical
capillary length with the Gibbs-Thomson coefficient � and the

nominal composition c∞ = 0.24 wt%. Then, the grid spacing
�x and the Euler explicit time step �t are chosen as �x ≈
3.00, 1.78, and 1.09 μm, and �t ≈ 5.00 × 10−3, 1.75 × 10−3,
and 6.55 × 10−4 s in order of increasing V (see Table I).

For a thin-sample geometry, sample sizes were set to Lx ×
Ly × Lz = 1290 × 2490 × 114 μm3 for V = 4 μm s−1,
709 × 2563 × 82 μm3 for V = 12 μm s−1, and 485 × 1998 ×
50 μm3 for V = 20 μm s−1, where Lx,Ly , and Lz correspond
to the domain size along the x, y, and z axes, respectively. In
all situations, the sample width Ly was large enough to form
more than ten cells in a steady state (with the exception of
the periodic-array simulations presented at the beginning of
Sec. III B). Thermal fluctuations were introduced by adding
a random noise with a strength Fψ = 0.01 onto the ψ field
[23,30,32,35,40]. No-flux (or reflection) boundary conditions
were imposed at the lower/upper limits of the simulation
domain (x = 0 and Lx), the immobile GBs (y = 0 and Ly),
and the walls that delimit the sample along the z axis (z = 0
and Lz). We moreover imposed a finite-wetting condition
at the z = 0 and Lz boundaries with a slope dψ/dz|z=0 =
−dψ/dz|z=H = +1 [21,32,40]. The long duration time of the
simulations (20 000 s for V = 4 μm s−1, 2000 s for higher
velocities) allowed us to simulate the dynamics of tilted-cell
arrays over several centimeters. The cell-tip positions within
a single row of cells were measured at the middle of the
sample, i.e., in a x-y plane located at z = H/2, where H = Lz

is the sample thickness, as illustrated in Fig. 2(a). These
measurements in turn were used to calculate the local spacing
λ, the drift velocity Vd , and the cell-tilt angle α.

For calibration purposes, we also carried out PF simulations
of a single cell in a channel with periodic boundary conditions
in the y direction. This was used to measure Vd in a perfectly
ordered array with a fixed spacing λ = Ly . For those simula-
tions, we used an initial guess made of a precalculated axial
cell (α0 = 0◦) with λ = 114, 82, and 50 μm for V = 4, 12, and
20 μm s−1, respectively, in a squared-section simulation box
(i.e., Ly = Lz). Then, we restarted a simulation using the axial
cell by implementing a finite misorientation angle α0. The λ
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FIG. 2. Numerical simulation of a tilted-cell array in a SCN–0.24 wt% camphor alloy (α0 = 15◦; V = 4 μm s−1; G = 12 K cm−1).
(a) Simplified spatiotemporal diagram: Cell tip positions (circles) at regular time intervals (≈63 s) from t0 to the end of the simulation at
tmax = 20 000 s. Dashed horizontal lines and numbers are related to the solidified length V (t − t0). Bottom: Profile of the cross-section of the
solid-liquid interface in the median plane of the sample (z = H/2) at time t0. (b) Tilted-cell arrays at times t = 2072, 6032, and 10 043 s
(bottom to top) of the same simulation as in (a). (c) Spatial distribution of the primary spacing λ(y) for nine successive times corresponded to
different symbols. Dotted lines are guides to the eye.

value was changed by adding (or subtracting) a grid-spacing
unit �x to the width Ly of the sample, and using a bilinear
interpolation from the previous steady-state simulation.

B. Experiments

A SCN–0.3 ± 0.05 mol% DC alloy was prepared with pu-
rified SCN (distillation) and DC (sublimation). Alloy samples
were enclosed in thin containers made of two flat glass plates
glued to each other, and separated by polymer spacers of
thickness H = 100 μm. The sample length (along the x axis)
was of about 64 mm, and the width Ly (along the y axis)
was of 2.8 ± 0.2 mm (this typically corresponds to 20 cells).
Solidification experiments were carried out over a total length
of 30 to 40 mm, beyond which substantial macrosegregation
effects were observed. Previous to DS, the samples were filled
by capillarity with the melted alloy under a low-pressure
argon atmosphere, and then rapidly cooled down to room

temperature. During this process, multiple nucleation sites
were activated, thus resulting in the formation of a polycrystal.

The DS apparatus was made of two temperature-regulated
copper blocks, separated from each other by a distance of
5 mm (for details, see Ref. [44] and references therein). A fixed
temperature gradient G = 75 ± 5 K cm−1 was established by
heat conduction in the sample along the x axis. Solidification
was performed by translating the sample along the x axis at
a velocity V = 4 μm s−1 with a dc motor. The whole setup
was installed on the stage of a standard optical microscope.
The solid-liquid interface was visualized (transmitted light) in
real time over the entire width of the sample with a numerical
camera connected to a PC for image storage and analysis.

At the beginning of the experiment, the alloy was partially
melted directionally down to a crystal selector placed on the
cold end of the sample [45]. A single, randomly oriented crystal
was then grown and expanded along a funnel-shaped region
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until it occupied the whole width of the sample. The orientation
of the crystal was measured, within a 1◦ error margin, by
growing fully developed dendrites at a large velocity (V >

200 μm s−1). The operation was repeated until an “in-plane”
crystal such that a [100] axis (the preferred dendrite growth
axis in SCN-based alloys at low growth rate) belonged to the
sample x-y plane was selected.

III. RESULTS AND DISCUSSION

A. Overview

In both PF simulations and experiments, regular solidifica-
tion runs were started (time t = 0 s) after a planar solid-liquid
interface was equilibrated at rest (V = 0 μm s−1). Small cells
were observed to appear during the initial solute-redistribution
transient after the velocity of the planar interface becomes
larger than the threshold velocity Vc [4,15,16]. Their spacing
was systematically and substantially smaller than the lower
stability limit of steady periodic cells at the imposed velocity.
This entailed an initial coarsening dynamics by progressive
elimination of a large proportion (about one out of two) of the
initial cells, which lasted until a one-row pattern of confined
3D cells with a stable average spacing was formed. Three key
features must be noted at this stage.

(i) After the very last cell elimination event in the middle of
the sample, the cellular pattern presented a nonuniform spatial
spacing distribution λ(y).

(ii) Tilted cells drift away from the divergent GB, which thus
acts as a source of new cells via a tertiary branching process.

(iii) Cells are eliminated in the vicinity of the convergent
GB.

The aim of the present paper is to characterize and model the
long-time behavior of tilted-cell patterns by taking those three
elements—nonuniform initial spacing distribution, cell source
at the divergent GB, and cell sink at the convergent GB—into
account.

Let us go into more quantitative details. Simulations were
run for a time t ranging from t = 0 at which the sample starts to
be pulled at constant velocity to t = tmax. We denote by t0 the
time at which the initial cell elimination coarsening process
was completed (this time has no need to be defined with a
better accuracy than, say, ±λ/2V ). In typical PF simulations,
we measured t0 ≈ 4040 s for α0 = 5◦ (but 2040 s for higher α0

values) at V = 4 μm s−1, 900 s for V = 12 μm s−1, and 220 s
for V = 20 μm s−1. This represents a long-duration process as
compared to the reference diffusion time τd = D/V 2. Values
of tmax for the different simulations were tmax = 20 000 s
(tmax/t0 ≈ 5 and 10) for V = 4 μm s−1 and tmax = 2000 s
for both V = 12 μm s−1 (tmax/t0 ≈ 2) and V = 20 μm s−1

(tmax/t0 ≈ 9). In comparison, tmax was close to 2t0 in the
experiments. Therefore, the long-time dynamics after t0 was
fully disconnected from both the initial solute redistribution
transient and cell-spacing rearrangement processes.

In the simplified spatiotemporal diagram of Fig. 2(a) (PF
simulation), the drifting motion of the cells (circles) is made
clearly visible. Symbols of different colors correspond to
different cells. Horizontal rows are isochrones. While the
cells grow (the main solidification axis x is vertical), they
drift laterally from the divergent GB (on the right-hand side)

TABLE II. Control parameters (pulling velocity V and misorien-
tation angle α0) of PF simulations using periodic tilted-cell arrays.
λlow (λmax): Lower (upper) limit of the spacing interval. f and g:
Fitting parameters in Eq. (3). The fitting curves are shown in Fig. 3
as black lines.

V (μm s−1) α0 (◦) λlow (μm) λmax (μm) f g

4 5 22.5 301.5 0.433 2.118
10 22.5 313.5 0.416 2.114
15 22.5 322.5 0.389 2.108
20 22.5 337.5 0.356 2.101

12 15 16.9 220.2 0.165 2.226
20 15 10.3 190.8 0.094 2.557

towards the convergent GB (on the left-hand side). Symbols
of different colors therefore alternate at the boundaries, which
corresponds to the appearance of new cells by tertiary branch-
ing at the divergent GB [this is illustrated in Fig. 2(b)], and cell
elimination at the convergent GB. Most of the time, this process
operates quite regularly, as shown in Fig. 2(a). A similar
sink-and-source dynamics is observed in the experiments.

We measured the spacing distribution λ(y) at different time
steps [Fig. 2(c)]. In the middle of the initial pattern at t0, the
spacing was slightly modulated about an average value of,
here, about 130 μm and exhibited a steep variation close to the
convergent and divergent GBs. During the solidification run,
the spacing value λM delivered from the source propagated
across the sample. At the end of the process, the spacing
distribution reached a steady state characterized by a large
plateau, signaling the extension of a periodic pattern from the
divergent GB over the major part of the sample width, and a
steep drop in a region close to the convergent GB. The value
of λM was larger than the average spacing at time t0. The latter
feature was systematically observed in our PF simulations. It is
also compatible with previous reports of a progressive increase
of the average primary spacing over long time scales during
DS experiments [14,48–52].

This qualitative description of the tilted-cell pattern dynam-
ics opens to further questions, among which is that of the
rate of the advection (versus smoothing out) of incipient (or
accidental) modulations.

B. Dependence of the cell-tilt angle on the local spacing
in modulated patterns

For reference purposes, we measured the dependence of
the cell-tilt angle α on the Péclet number in periodic arrays
for the SCN-DC alloy under consideration. We performed PF
simulations with periodic boundary conditions, for various
values of V (= 4,12, and 20 μm s−1), α0 (= 5,10,15, and
20◦), and Ly (= λ). We let λ increase to the upper limit λmax at
which a tertiary branching instability occurs [20], and decrease
to the lower limit λlow (Table II). Below the lower limit of
a spacing, a cell has a planar interface perpendicular to the
temperature gradient axis like a two-dimensional (2D) ribbon
shape [19].
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When a cell traveled laterally, its drift velocity Vd was
calculated as

Vd =
∣∣∣∣dyt

dt

∣∣∣∣, (1)

where yt was the position of the cell tip along the y axis, and
t was the time. Then, the tilt angle α was calculated by using
the geometrical relation

tan α = Vd/V . (2)

The α/α0 data are shown as red full squares in the graphs of
Fig. 3 and can be used to define the function α = α0F (Pe) in
Eq. (3), which is related to the misorientation angle α0 and the
local adimensionalized spacing Pe = λV/D.

We also measured local Vd and λ values in the modulated
tilted-cell patterns observed during large-scale PF simulations.
Each data set cumulates measurements performed approxi-
mately every 63, 8, and 3 s for V = 4,12, and 20 μm s−1,
respectively, starting from the above-defined time t0 to the
end of the simulations tmax. We systematically discarded the
sidebranching and sinking cells located close to the GBs. The
obtained α/α0 data are reported as blue empty circles in the
graphs of Fig. 3 along with the periodic-array measurements.
The two kinds of data are obviously close to each other.
The modulated-pattern data exhibit a substantial dispersion,
but it is worth noting that the most departing points were
measured in regions with steep λ(y) variations near the
GBs.

We finally recall that the following law,

α

α0
≡ F (Pe) = 1 − 1

1 + f Peg
, (3)

where f and g are alloy-dependent constants, has been pre-
viously proposed for a general yet empirical description of
the F (Pe) function [28–33]. Best-fit adjustments of that law
with our periodic-array data points are shown in the graphs of
Figs. 3(a)–3(f). The corresponding constants f and g are listed
in Table II. Two comments are in order. First, the parameters
f and g at a fixed α0 (see the data for α0 = 15◦ in Table II)
vary when V is changed. In other words, PF simulations of
confined 3D patterns show that the parameters can change
when V > 15Vc, where the critical velocity Vc = DG/�T0

with �T0 = mc∞(1/k − 1), as observed in the 2D patterns
[33]. On the other hand, the α/α0 = F (Pe) function exhibits
the same “universality” for 2D arrays at V < 15Vc [28].
Second, the best-fitting curves agree relatively well with the
PF simulations, but not perfectly. Considering that not only
the F (Pe) function but also the derivative of that function will
be used later on in this paper for a quantitative analysis of the
spatiotemporal dynamics of tilted-cell arrays, we think that
using the (interpolated) results of the PF simulations in the
models presented in the next section is more reliable than using
the approximate law of Eq. (3).

C. Theoretical models of propagative spacing selection

We insert here the definition of the two models that we
use for the analysis of our numerical and experimental data
presented in the next section.

1. Geometrical model

We propose a simple “geometrical” model based on a
discrete treatment of the lateral motion of individual cells to
describe the spatiotemporal evolution of the spacing of tilted-
cell patterns. We make the reasonable assumption that the
growth orientation of a tilted cell within an array with a slowly
varying spatial modulation of spacing is described locally by
the α/α0 = F (Pe) function determined for a periodic array
(red squares in Fig. 3). This assumption yields the evolution
equation

dyi

dt
= −Vd = −V tan

[
α0F

(
yi − yi+1

D/V

)]
, (4)

for the lateral coordinate yi of the tip of the ith cell shown
schematically in Fig. 4, where the local spacing between two
cell tips is taken equal to yi − yi+1 (with the positive y axis
pointing to the right and the cell index i increasing from
right to left). We note that, in the framework of this simple
phenomenological model, the local spacing influencing the
growth orientation of the ith cell could be chosen as well as
yi−1 − yi or any weighted sum p(yi − yi+1) + (1 − p)(yi−1 −
yi), with p varying from zero to one, of the spacings defined
with the two neighboring cell tips. We investigated different
values of p and empirically found that p = 1 gave the best
predictions. This finding suggests, as previously announced
by Deschamps [54], that the lateral velocity of a cell in the
array is more strongly influenced by the spacing with its front
neighbor, towards which it is traveling, than that with its rear
neighbor. This assertion is moreover supported by the finding
in Ref. [33] that the asymmetry of the shape of a tilted cell is
typically strong on the side of the preceding neighbor cell (here,
cell i + 1), whereas it is much less pronounced on the side of
the following cell (here, cell i − 1). In all numerical solutions
of the geometrical model presented here, we will therefore
use the value p = 1. This geometrical model quantitatively
predicts the spacing evolution of tilted cells away from the
convergent and divergent GBs observed in experiments [54].

In order to account for the source-sink dynamics at the
two GBs, we create a new cell with a spacing λM when the
distance of the tip of the rightmost cell closest to the divergent
GB (right edge of the sample) exceeds λM (source), and we
remove the leftmost cell when its distance to the convergent GB
(left edge of the sample) becomes smaller than λe. Equation
(4) defines a set of coupled ordinary different equations for
the time evolution of cell tips that are solved using an Euler
explicit time-stepping scheme with a time step �t = 0.1 s for
the experiments and simulations. The above conditions for cell
creation and removal are checked at each time step.

2. Nonlinear advection equation

To complement the discrete geometrical model, we derive
an equation for the slow spatiotemporal evolution of λ treated
as a continuous function of the lateral position y. This equation
can be readily obtained from the conservation of the total
number of cells in the array away from the edges where cells
can be created or eliminated. For this, we define the cell density
(number of cells per unit length of the array) ρ ≡ λ−1. The cell
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FIG. 3. Ratio α/α0 between the cell-tilt angle and the misorientation angle as a function of the Péclet number Pe, measured from PF
simulations for different α0 and V values. Red full squares and black solid lines: Periodic arrays and best-fitting curves using Eq. (3) (also see
Table II), respectively. Blue empty circles: Modulated arrays (see text).

density obeys the continuity equation

∂tρ − ∂y[Vdρ] = 0. (5)

This equation is simply the statement that, in the absence of cell
creation or elimination, the change of the total number cells in
a segment of the array away from the sample edges (Fig. 4),
which is much larger than the cell spacing but much smaller
than the characteristic scale of variation of λ, must be equal to
the difference of flux of cells entering or leaving through the
left and right boundaries of this segment. Note that the minus
sign of the second term in the continuity equation originates
from the fact that the local drift velocity of cells towards the left
is defined positively (Vd � 0) while the positive y axis points
towards the right. Substituting ρ = 1/λ in Eq. (5), we obtain

IncomingOutgoing

Vd

yiyi+1 yi+2 yi-1 

FIG. 4. Schematic tilted-cell array far away from any GB. λ:
Primary spacing. Vd : Lateral drift velocity. Red circles: Cell tips.
Within such a region of the pattern, the cell density is conserved.

the advection equation for λ,

∂tλ = Vλ∂yλ, (6)

where we have defined

Vλ ≡ Vd − λ
dVd

dλ
. (7)

This equation is nonlinear because, as before, Vd is a nonlin-
ear function of λ defined by Vd = V tan α = V tan[α0F (Pe)]
where the local growth orientation α = α0F (Pe) and hence
the drift velocity Vd is assumed to be a function of the local
spacing. Even though the group velocity in Eq. (7) can become
negative for small enough spacing, the critical spacing below
which the group velocity becomes negative is very close to
the smallest stable spacing. As a result, dynamically selected
spacings in the present simulations and experiments fall in
a range of spacing for which the group velocity is positive.
Note that, using the standard relations between a frequency
ω ≡ Vdkω and a wave number kω = 2π/λ of traveling waves,
Vλ defined by Eq. (7) can also be written in the form of a group
velocity Vλ = dω/dkω.

Equation (6) is reminiscent of Burgers’ equation [53], which
is well known to form shocks. In contrast, in the simulations
shown in Fig. 2(c), the front separating regions of larger
and smaller spacing propagates at a nearly constant velocity
without becoming steeper, as would be expected if shock
formation was present. The shockless behavior can be related
to the fact that the drift velocity is predominantly a linear
function of λ in the front region. Hence, the drift velocity can
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FIG. 5. Spatiotemporal evolution of the primary spacing λ and spacing-propagation dynamics for α0 = 5◦ (first row), 10◦ (second row),
15◦ (third row), and 20◦ (fourth row) at V = 4 μm s−1 (PF simulations). In the graphs of (a), we reported the spacing profiles measured from
the simulations (symbols), and calculated (solid lines) using the geometrical model (Sec. III C 1), with the PF distribution at time t0 as an initial
condition. Different symbols are corresponded to different times. Right (left) gray shaded areas: Location of the source (sink) in the model.
Arrows are used to schematically trace the position yp of the median spacing λp . In the graphs of (b), we reported the abscissa yp corresponding
to λ = λp in the corresponding graphs of (a) as a function of time t − t0, using, for convenience, Y = |yp − y0| = 0 for t = t0 (circles). Slopes
of the straight lines correspond to Vλ (solid lines) and Vd (dashed lines). See text for definitions.

be expanded in the form

Vd (λ) = Vd (λp) +
[
dVd

dλ

]
λ=λp

(λ − λp) + . . . (8)

up to small O[(λ − λp)2] corrections, where λp is defined as
the “median spacing,” which is the characteristic value of λ

in the propagating front region. It is arbitrarily defined here
as the value of λ that is half way between the smaller and
larger values of λ in regions ahead of and behind the front,
respectively, where λ is spatially uniform. Indeed, values of
α (blue circles in Fig. 3), and hence the drift velocity Vd =
V tan α ≈ V α for small α, are to a good approximation of a
linear function using the dimensionless spacing. Substituting
the approximation Eq. (8) into Eq. (7) yields the prediction

Vλ ≈ Vd (λp) −
[
dVd

dλ

]
λ=λp

λp. (9)

There are two implications of this result. First, the advection
velocity is approximately constant in the entire front separating
large and small spacings regions, such that the front simply
propagates in a shape-preserving manner with a velocity Vλ

without forming shocks. Second, since the slope of the drift
velocity-spacing relation is positive ([dVd/dλ]λ=λp

> 0), the
front propagation velocity Vλ is typically several fold smaller
than the local drift velocity Vd (λp) in the front region. In fact Vλ

defined by Eq. (9) is the λ = 0 intercept of a straight line fit of
the Vd (λ) curve and this intercept must always be smaller than
Vd (λp). We use Eq. (9) to predict the front propagation velocity
in simulations and experiments. For the simulations, we
compute Vd and its slope using the growth orientation versus
spacing relation α/α0 = F (Pe) determined from simulations
with periodic arrays of different spacing (red full squares in
Fig. 3) and λp extracted from simulations. We have also com-
puted Vλ as the λ = 0 intercept of a straight line fit of the α/α0

versus Pe values measured on the propagating front during
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simulations (blue empty circles in Fig. 3), and found that the
two methods predict values of Vλ within 15% of each other.
We only report in this paper values of Vλ computed with the
first method for the simulations. For the experiments, the
slope dVd/dλ is estimated by a best-fit line of Eq. (3) that is
fit to the experimental measurements [empty blue diamonds
in Fig. 10(b)], then we compute Vλ at λp. The λ = 0 intercept
of a straight line fit of the α/α0 versus Pe values measured on
the propagating front during experiments is also close to the
computed Vλ.

The nonlinear advection equation, i.e., Eq. (6), neglects the
effect of “phase diffusion,” which generically relaxes spatially
modulated nonequilibrium patterns towards a spatially uniform
spacing [55]. This effect could be incorporated by the addition
of a diffusion term Dλ∂

2λ/∂y2 on the right-hand side of Eq. (6).
While phase diffusion has been shown to strongly influence the
stability of lamellar eutectic growth patterns [56,57], its effect
on array patterns of deep cells and dendrites in the presence
of crystalline anisotropy turns out to be much weaker. We
explicitly computed Dλ by PF simulations of well-oriented
(α0 = 0◦) arrays in which we analyzed the decay of slowly
varying spatial modulations of the spacing and found Dλ to
have a very small value (Dλ ≈ 20.1 μm2 s−1), which would
have a negligible effect on front propagation in the present PF
simulations and experiments. The details to estimate Dλ are
shown in the Appendix.

D. Comparison of phase-field simulations
with theoretical models

We performed systematic PF simulations of confined 3D
arrays of tilted cells by varying the misorientation angle α0 and
the solidification velocity V (also see Sec. III A and Fig. 2).
Let us first focus on the effect of the misorientation angle.
We considered four different α0 values, namely, 5, 10, 15, and
20◦, and kept the velocity V = 4 μm s−1. The spatiotemporal
evolution of the corresponding DS patterns is shown in the
graphs of Fig. 5(a). In each of those graphs, the measured
λ(y) (symbols) are plotted at successive simulation times from
t0 to tmax. For all considered α0 values, the propagation of
the spacing λM delivered from the source towards the inner-
grain region is clearly visible. In the simulations, the selected
spacings at the divergent GB are typically λM ≈ 180, 192,
201, and 218 μm for α0 = 5, 10, 15, and 20◦, respectively. As
mentioned above, λM was systematically larger than the initial
average spacing at t0. Note that most simulations reached a
steady-state regime, with a uniform λM plateau and a steep
drop near the sink, except for the smaller misorientation angle
α0 = 5◦, that is obviously for a very slow lateral drift velocity.

We implemented the geometrical model (Sec. III C 1) by
using, for each pair of V and α0 data, the spacing profile at
t0 as an initial condition (red continuous line). We let cells
move with an instantaneous local velocity Vd (Pe) that was
linearly interpolated from the ordered array simulations of
Fig. 3. We used the steady-state values of λM for the cell
branching criterion close to the divergent GB, and manually
set the cell elimination limit to λe = 54 μm at the convergent
GB for the V = 4 μm s−1 simulations [gray shaded area on the
right and left side, respectively, in the graphs of Fig. 5(a)]. The
calculated spacing profiles are shown in the form of continuous

TABLE III. Calculated Vd and Vλ at the median spacings λp in
confined-3D array simulations.

V (μm s−1) α0 (◦) λp(μm) Vd (μm s−1) Vλ(μm s−1)

4 5 145 0.2339 0.0955
10 145 0.4641 0.1828
15 165 0.7419 0.2958
20 165 0.9691 0.3466

12 15 105 2.6261 1.5786
20 15 85 4.8155 3.3664

15 105 5.0832 3.9957

lines in Fig. 5(a). They superimpose remarkably well with
the simulation results, in consideration of the simplicity of
the geometrical model, and bring a clear evidence to the
general dynamical scheme that can be summarized as follows:
advection and elimination of the initial modulations, formation
of a propagation front of a λ = λM plateau, and convergence
towards a steady-state profile.

There are slight discrepancies between the geometrical
model and the PF simulations, which can be essentially
classified according to two separate features. First, the shape
of the steep-drop region close to the convergent GB is not
fully reproduced. This is in agreement with our observation
(Sec. III B) that the local cell-drift dynamics may severely
depart from the Vd (Pe) law of an ordered array if the spacing
gradients are large. Second, the prediction by the geometrical
model is apparently less reliable for α0 = 5◦. We can advance
that a phase-diffusion process can predominate for a vanishing
misorientation and induce spreading of the propagation front
that cannot be fairly reproduced by the geometrical model.

We tested the prediction using a group velocity, i.e., Vλ in
Eq. (7) (see Sec. III C 2). For each PF simulation, we defined
a median spacing λp between the initial average spacing at
t0 (close to the lower plateau of a λ distribution) and λM

(Table III). The position of the spacing λp propagates from
an initial position y0 at t0 towards the sink, as schematically
indicated by the black arrows in Fig. 5(a). We followed this
propagation as a function of time by linearly interpolating
the positions yp that correspond to λp in the λ(y) profiles
at different times. We reported the quantity Y = |yp − y0|
as a function of t − t0 in the graphs of Fig. 5(b). It appears
clearly that the propagation is essentially linear, and that the
spacing propagation velocity, i.e., the slope of a linear fit of
the Y (t − t0) data (black empty circles), compares well with
the group velocity Vλ calculated with Eq. (7), i.e., the slope of
the red continuous lines. It can also be seen that Vd (the slope
of the blue dashed lines) is much larger than both Vλ and the
Y (t − t0) slope. The calculated Vd and Vλ at a given spacing
λp for α0 are listed in Table III. It is worth mentioning that the
calculated Vλ in Table III is always close to the intercept of a
linearized Vd (λ) (Sec. III C 2).

We also performed PF simulations at higher V (12 and
20 μm s−1), and kept α0 = 15◦ as a constant [Fig. 6(a)]. As
in the above cases, λM is substantially larger than the initial
average spacing, and it propagates from the source. In addition,
a steady-state spacing profile is reached with a large uniform
λM plateau. The region of the spacing drop near the sink is
narrower as V increases. The quantitative agreement between
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the geometrical model and the PF simulations also seems all
the better as V increases.

We again measured the position of the median spacing λp

[105 μm for V = 12 μm s−1, 85 μm for V = 20 μm s−1; see
black arrows in Fig. 6(a)] as a function of time. The results
are shown in Fig. 6(b). Here as well, the spacing propagation
is well predicted by the group velocity Vλ—and not by Vd

(Table III).
In practice, the value of Vλ (for the chosen λp values) and

the ratio Vλ/Vd increases as V increases (Fig. 7). If one refers
to the relation F (Pe) for α0 = 15◦ (Fig. 3), it should be noticed
that α ≈ α0 is reached for lower Pe values when V increases.
Then, the derivative term in Eq. (7) becomes negligible (be-
cause dVd/dλ ∼ dα/dλ vanishes), which leads to Vλ → Vd .
Accordingly, it is indeed expected that the propagation rate of
the spacing approaches Vd (Vλ/Vd → 1) when V increases.

In most PF simulations of tilted-cell patterns, a long-lived
steady state was observed after the λM plateau had formed.
Overall, their main features were negligibly sensitive to the
small-scale dynamics of the tertiary branching (amplifica-
tion of and competition between sidebranches). However, an
anomalous event at the source can entail a marked modification
of the tilted-cell pattern on a large scale. In Fig. 8(a), one
can see the growth and the propagation of two cells with
a spacing significantly smaller than λM . The initial pattern

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 4  6  8  10  12  14  16  18  20

V
λ/

V
d

V (μm/s)

FIG. 7. Value of the ratio Vλ/Vd as a function of V .

[bottom of Fig. 8(a)] was in a steady-state situation (similar
to that corresponding to the final time in the graph of Fig. 6(a)
for α0 = 15◦ and V = 20 μm s−1). The simultaneous growth
of two incipient sidebranches close to the divergent GB and
their transformation into two individual small-spacing cells are
clearly seen [Fig. 8(a)]. This induces a persistent depression in
the spacing profile, which both travels laterally and smoothes
out [Fig. 8(b)]. This anomalous event did not occur additionally
during the simulation, and a steady-state configuration was
recovered. Again, the geometrical model predicts this complex
behavior quite well as illustrated in Fig. 8(b). We also followed
the propagation of the depression in the spacing profile (with
λp = 105 μm). As shown in Fig. 8(c), the corresponding Y

data from t1 = 1358 s closely align with the linear law of slope
Vλ (see Table III). In the PF simulations, this complex behavior
only occurred at this condition, i.e., relatively large α0 and V .

E. Comparison of theoretical models and experiment

Figure 9(a) shows a time series of snapshots of a tilted-cell
array (α0 = 15.5 ± 0.5◦) during a DS experiment of the SCN–
0.3 mol% DC alloy. The image at t0 ≈ 4000 s is taken just after
the last event of a series of cell eliminations [horizontal red
line on the bottom of the spatiotemporal diagram of Fig. 9(b)],
which occurred during the early stages of the experiment. On
average, the primary spacing λ evolved from about 130 μm
(before cell eliminations) to 180 μm (plateau region). The
cell-tilt angle was falling between about 8 and 12◦, and was
thus substantially lower than α0, as expected. Figure 9(b)
shows a simplified spatiotemporal diagram corresponding to
this experiment (such an image is built by recording a line
normal to the growth direction at a fixed position behind the
cell tips at regular time intervals, and piled up along an axis
representing the time). It reveals that the cellular array is
entirely “replaced” by cells created near the source more than
twice over the solidification time. As in the PF simulations,
new cells are regularly created by tertiary branching [see, e.g.,
the images at times t5 and t6 in Fig. 9(a)] at the divergent GB
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with the slope Vλ (Vd ).

source, and eliminated at the convergent GB sink—one can
note some occurrences of a surface dendrite along the sample
edge at the convergent GB.

The evolution of the spacing profile from time t0 to t6 is
shown in Fig. 10(a). At t0, the λ distribution exhibits steep
modulations, which are a trace of the cell eliminations during
the initial transient. At this stage, the average spacing was
relatively close to the value λM delivered at the source—
this feature contrasts with PF simulations, but is of minor
importance as concerns the rest of the dynamics. As in the
simulations, the initial modulations of the spacing profile
simultaneously smooth out, and are advected laterally towards
the convergent GB. Moreover, in the end of the experiment,

x

yt0 

t1 

t2 

t3 

t4 

t5 

t6 

tim
e 

FIG. 9. Tilted-cell array during a directional-solidification exper-
iment in a 100 μm thick sample of a SCN–0.3 mol% DC alloy (V =
4 μm s−1; G = 75 ± 5 K cm−1). (a) Snapshots at times t0 ≈ 4000 s,
t1 = t0 + 600 s, t2 = t0 + 1350 s, t3 = t0 + 2100 s, t4 = t0 + 2850 s,
t5 = t0 + 3600 s, and t6 = t0 + 4500 s. (b) Simplified spatiotemporal
diagram. Same horizontal dimension as in the snapshots of (a).
Vertical dimension:≈6300 s (25.2 mm) of solidification time (length).
Horizontal line: Time t0.

the spacing profile presents a wide plateau with an essentially
uniform spacing λM , starting from the source and extending
over the major part of the sample, and a narrow region close
to the sink, within which the spacing drops.

For further analysis, we measured the dependence of F (Pe)
in Eq. (3), as it could be extracted from the modulated patterns
during the experiment of Fig. 9. If one refers to the PF
simulations (Fig. 3), those data can be expected to be quite
close to a F (Pe) law that would characterize perfectly periodic
patterns, in spite of their large dispersion (note that producing
periodic tilted-cell arrays with various, controlled values of λ is
out of reach experimentally). We then used a best-fit procedure
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for adjusting F (Pe) in Eq. (3) with D/V = 67.5 μm to the
experimental data. We obtained f = 0.558 and g = 1.17.
The red fitting curve with these parameters in Fig. 10(b) can
describe the experimental measurements (blue diamonds).

We followed the same procedure as above for implementing
the geometrical model. We used the spacing profile at t0
[Fig. 10(a)] as an initial condition, and set λM = 175 μm and
λe = 54 μm. The agreement between the experimental data
and the geometrical model is good, in spite of the significantly
large uncertainties on the F (Pe) law, and the large amplitude
of the initial λ modulations. The profile at the end of the
experiment (green diamonds) is quite faithfully reproduced
by the geometrical model. We also analyzed the spacing
propagation by following the abscissaY corresponding toλp =
163 μm [the black arrow in Fig. 10(a)]. The results are shown
in Fig. 10(c). Here again, the measured Y (t − t0) data (black
diamonds) essentially follow a linear variation. In the present
case, the slope of this variation is essentially close to the group

velocity Vλ = 0.3568 μm s−1 (the slope of the red continuous
line), within experimental accuracy. It is much lower than
Vd = 0.6664 μm s−1 (the slope of the blue dashed line), as
it could be expected from the analysis of the PF simulations.

IV. CONCLUSIONS

We have used thin-sample phase-field simulations and
experiments to investigate the effect of a finite crystal misorien-
tation on the selection of finger-shaped cellular/dendritic array
patterns that form during directional solidification of binary
alloys. Previous studies have characterized the relationship
between the tilt angle α of the pattern and the spacing λ

in a situation where λ is spatially uniform [28–33]. The
present paper focused on the more general situation where
the array spacing is spatially nonuniform. For a misoriented
monocrystal, nonuniformity originates from the creation or
elimination of cells at the two lateral edges of the sample and
can give rise to different spatial nonuniformities of spacing
depending on whether tertiary branching at the divergent
boundary is regular or irregular. Our main finding is that
the spatial modulation of spacing propagates laterally at a
velocity that is generally slower than the lateral drift velocity
Vd = V tan α of cell/dendrite tips when λ is spatially uniform.

We have shown that this nontrivial behavior follows from
the requirement that cells must move so as to conserve their
total number away from boundaries. This conservation law
yields a continuity equation for the linear density of cells along
the array, which transforms into a nonlinear advection equation
for the spacing with an advection velocity Vd − λ dVd/dλ. The
latter is generally less than Vd since the tilt angles, and hence
Vd , are monotonously increasing functions of λ. The difference
between the two velocities is more pronounced for cells with
strong diffusive interactions (Pe = λV/D of order unity) than
for well-developed dendrites (Pe � 1) since the slope dVd/dλ

is a decreasing function of Pe.
We have further found that, to a good approximation, Vd

depends linearly on λ over the limited range of variation
of λ when the spacing is nonuniform. This implies that the
advection velocity is nearly uniform even when the spacing is
nonuniform, and thus that the spatial modulation of spacing
is advected in a shape-preserving manner without forming
shocks, which generically form when the advection velocity
is a strongly varying function of the underlying field as in
Burgers’ equation [53]. This is best exemplified by the propa-
gation of a front separating regions of large and small uniform
spacings when tertiary branching at the divergent boundary
is regular. The front propagation thus selects a spacing that
is closer to the largest stable spacing λmax, independently of
the initial conditions. The selected spacing is generally signif-
icantly larger than the initial spacing selected by the transient
growth competition between neighboring cells, which falls
closer to the smallest stable spacing λmin [15,16,20–22,25].

Front propagation is a relatively slow process, especially for
small misorientation since V tan α0 is an upper bound of the
advection velocity. In the present simulations and experiments
the time to establish a larger uniform spacing propagatively
is at least an order of magnitude larger than the duration of
the cell elimination transient leading to the establishment of
the initial nonuniform spacing. Therefore, in the light of the
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present results, the spacing distribution is expected to strongly
depend on the duration of the experiment even in the simplest
case where tertiary branching at the divergent boundary creates
cells with a constant spacing. When tertiary branching at
the divergent boundary is irregular so as to create cells with
highly variable spacings, the spacing variation can become
undulatory. Undulations are advected towards the convergent
boundary but also sporadically created at the divergent bound-
ary, such that a steady-state uniform distribution of spacing
may never be reached even at arbitrarily large time.

While the present paper focused on a misoriented
monocrystal, we expect the insights to be relevant for interpret-
ing experimental observations in polycrystals with multiple
grains terminated by divergent or convergent grain boundaries.
Similarly to the sample edges, those boundaries can act as
sources and sinks of cells, respectively. While tertiary branch-
ing has been found to depend in a nontrivial way on grain-
boundary bicrystallography [30,40], propagation of spacing
nonuniformities inside each grain should be governed by the
same geometrical model and advection equation developed
here for a misoriented monocrystal. The extension of those
models to spatially extended three-dimensional patterns is an
interesting future prospect.
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APPENDIX: PHASE DIFFUSION

We performed an independent PF simulation using a
well-oriented grain [the upper image of Fig. 11(a)] in order
to obtain an estimate of the phase diffusion coefficient
Dλ, independently of any drifting motion of the cells. For
this simulation, we used the same material and numerical
parameters as above for a directional-solidification run
of a SCN–0.24 wt% camphor alloy at V = 4 μm s−1 and
G = 19 K cm−1 (see Table I). For this purpose, we needed
to create a modulated axial-cell array as an initial condition.
We carried out a PF simulation with α0 = 10◦, and stopped
it at time t = 8000 s at which [see Fig. 5(a)] the tilted-cell
array was modulated on (twice) the scale of the simulation
box. We then abruptly changed the crystal angle to α0 = 0◦,
and the cells all recovered a well-oriented shape within a
time lapse of approximately 2000 s. We measured the spacing
distribution starting from this new t = 0 s time [upper image
of Fig. 11(a)] over the whole simulation time. At the final
time [t = 8000 s, see lower image of Fig. 11(a)], the pattern
was not fully uniform, but the spacing was clearly relaxing
towards uniformity with the number of cells and hence the
mean spacing λm remaining constant in time.

Figure 11(b) shows the spacing distribution at t = 0 s (blue
squares) and t = 8000 s (red circles). Except close to the
edges, that is, for a system size L = 2200 μm comprised
between y0 = 100 μm and y1 = 2300 μm (meaning that the
gray regions in Fig. 11(b) are excluded from the analysis), the
spacing distribution can be well fitted by a cosine function of
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FIG. 11. Relaxation of a nonuniform spacing array. We performed
a PF simulation at V = 4 μm s−1 and G = 19 K cm−1 using a well-
oriented grain [the upper image in (a)] to estimate a phase diffusivity
Dλ. Initial λ relax slowly towards the mean spacing λm = 155 μm
over 8000 s [the lower image in (a)]. The simulation measurements
[symbols in (b)] show a cosine distribution Eq. (A1) (continuous lines)
away from the boundaries [gray regions in (b)]. We measure the time-
dependent spacing amplitude Aλ(t) every 1000 s [black circles in
(a)], and the fitting curve [red line in (c)] of Eq. (A3) with Dλ =
20.1 μm2 s−1 agrees well with the simulation measurements.

the form

λ(y,t) = Aλ(t) cos

(
π (y − y0)

L
+ φ0

)
+ λm, (A1)

where Aλ(t) is a time-dependent spacing amplitude, while
λm, y0, and a phase shift φ0 remain fixed over time. We
estimated λm = 155 μm and φ0 = 3.4. This being defined, we
computed Aλ(t) every 1000 s from t = 0 to 8000 s [black
circles in Fig. 11(c)].

Considering a linear-response regime, the relaxation of
a smoothly modulated, well-oriented cellular pattern can be
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described by a diffusionlike equation:

∂tλ = Dλ∂yyλ. (A2)

Our fitting procedure above consists of solving this equation
considering the lowest Fourier mode with a wave vector π/L.
Accordingly, the time-dependent amplitude Aλ(t) is given by

Aλ(t) = A0
λ exp

(
−π2Dλ

L2
t

)
, (A3)

where A0
λ = 40.9 μm is the amplitude at t = 0 s. Then, Dλ can

be estimated using a best-fit adjustment to the Aλ(t) data [black

circles in Fig. 11(c)]. This yields here Dλ = 20.1 μm2 s−1. The
effective diffusion time L2/Dλ = 310 000 s (L = 2.5 mm) is
then at least one order of magnitude larger than the values of
the time L/Vλ over which a spacing modulation is transported
from one edge to the other in tilted-cell patterns, even for small
misorientation angles (see Table III). It may be noted that the
phase diffusion coefficient in a tilted-cell array may differ from
the present value of Dλ, however a quantitative difference
is not expected to be large enough to question substantially
our conclusion. In brief, we bring a clear evidence that phase
diffusion is essentially negligible as far as the propagative
dynamics of tilted-cell patterns is concerned.
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