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Role of cell deformability in the two-dimensional melting of biological tissues
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The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes,
and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions
these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of
many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus
is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario.
On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo
a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature
the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions
as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength
values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the
epithelial-to-mesenchymal transition could be hexatic type.
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I. INTRODUCTION

Kosterlitz, Thouless, Halperin, Nelson, and Young
(KTHNY) [1–5] suggested the melting transition in two dimen-
sions to occur through a continuous solid-hexatic transition
and a subsequent continuous hexatic-liquid transition induced
by topological defects: the dissociation of bound dislocation
pairs into free dislocations drives the solid into the hexatic
phase, while the unbinding of dislocations into isolated discli-
nations drives the hexatic to liquid transition. Different melting
scenarios are however possible [6–8]. In molecular systems
the melting scenario depends on specific system details, as
the softness and the range of pair potential [9–11], density
[12], energy dissipation [13], shape and symmetry of particles
[14], and so on [15–21]. In the prototypical hard disks system
melting occurs through a continuous solid-hexatic transition
and a subsequent first-order hexatic-liquid transition [22,23],
while in systems of hard regular polygons different melting
scenarios can be observed by tuning the number of edges [14].
While the melting of many systems of particles interacting via
two-body potentials has been investigated, nothing is known
which concerns the features of the two-dimensional melting
transition of extended and deformable polymeric particles,
whose shape and volume is not fixed but rather determined
by the balance between the particle mechanical stiffness and
the applied stresses. Particles with these feature are rather
common, and include biological cells or polymeric particles
such as star polymers [24,25], dendrimers [26], microgels [27],
polyelectrolyte stars [28], and soft granular particles [29,30].

Here we investigate how the deformability of the par-
ticles affects the two-dimensional melting transition in the
Voronoi model of epithelial cell tissues [31–35]. Indeed, the
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melting transition of cell tissues, which occurs in processes
involving the movement of cells such as embryogenesis,
tumor spreading, and wound healing [36], is of particular
interest due to the recent observation of an intermediate
stage in the epithelial (solidlike)-to-mesenchymal (liquidlike)
transition [37–39]. The Voronoi description of cell tissues is
based on an energy functional which has been derived taking
into account the cell incompressibility and the monolayer’s
resistance to high fluctuations, as well as the contractivity
of the subcellular cortex and the membrane tension due to
cell-cell adhesion and cortical tension [31–35,40]. These two
contributions respectively lead to a quadratic dependence of
the elastic energy of a cell E on its area A and on its perimeter
P , so that E = KA(A − A0)2 + KP (P − P0)2. Here A0 and P0

are preferred values of the cell area and of the cell perimeter,
and KA and KP are perimeter elastic constants. In units of
KAA2

0, the energy of the system is

e({�ri}) =
N∑

i=1

[(ai − 1)2 + r−1(pi − p0)2], (1)

where the sum runs over all N cells, ai = Ai/A0, and pi =
Pi/

√
A0. The energy depends on two parameters, the inverse

perimeter modulus r = KAA0/KP , we fix to r = 1 if not
otherwise stated, and the target shape index p0 = P0/

√
A0,

we will vary. To investigate Eq. (1) one needs to determine
the area and the perimeter of each cell. In the Voronoi model
[31–35,40] this is done performing a Voronoi tessellation of
the system, and assuming each cell to have the shape of the
Voronoi cell associated with its center of mass. Thus, in this
model the centers of mass of the particles are the degrees of
freedom of the system.

Investigating the transition as a function of p0 is of interest
as its increase biologically corresponds to a decrease of the cell-
cell adhesion strength. From a physical viewpoint, p0 plays two
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important roles. On the one side, it fixes the preferred shape
of the Voronoi cells. For instance, for regular hexagons and
regular pentagons phex

0 � 3.72 and p
pent
0 � 3.81, respectively.

More generally, the increase of p0 favors less compact shapes,
and thus a reduction in the number of sides of the Voronoi
cells. On the other hand, p0 also influences the single particle
shear modulus, which in the affine approximation decreases
linearly with p0, μ = μ0r

−1(p∗
0 − p0) (see [41]), due to the

quadratic dependence of the energy on p0. μ0 and p∗
0 are

constants depending on the shape of the particle. Thus, larger
values of p0 correspond to softer particles. We remark that
this definition of softness concerns the shear modulus of
a single macroscopic particle; it is thus different from the
softness investigated in atomistic models, e.g., Ref. [9], where
softness measures the contact stiffness of two-body interaction
potentials.

Our results show that the value of p0 affects the melting
scenario, as on heating melting occurs via a first-order tran-
sition, at small p0 values, or via a continuous solid-hexatic
and a subsequent discontinuous hexatic-liquid transition, at
larger p0 values. To connect to the epithelial-to-mesenchymal
transition of cell tissues [37–39], for which thermal motion
is negligible, we have also investigated the p0 dependence
of the zero temperature stable state of the system, and
found that the increase of p0 drives a continuous solid-
hexatic transition and a subsequent continuous hexatic-liquid
transition, as in the KTHNY scenario. This result suggests
that the hexatic phase could be of unexpected biological
relevance.

II. METHODS

A. Numerical simulations

We have performed extensive molecular dynamics simula-
tions of systems of N particles, placed in a rectangular box
with aspect ratio L1 : L2 = 2 :

√
3 and area N , under periodic

boundary conditions. We employ an in-house massive parallel
program to tackle the high computational cost associated with
the need of performing O(N ) Voronoi tessellations at each in-
tegration step, to evaluate the forces acting on the particles. The
results presented in the main text, if not otherwise mentioned,
refer to N = 8100, but we have considered other values of N

(up to 16 384 for finite temperature and up to 102 400 for zero
temperature) to show that finite-size effects are negligible. We
have investigated the melting transition in the NVT ensemble,
integrating the equations of motion via the Verlet algorithm,
and fixing the temperature using a Langevin thermostat [42].
The initial state is prepared relaxing at fixed temperature
configurations prepared by heating/cooling the system. We
check for the convergence of the heating/cooling curves (see
Fig. S6 [41]), an indication of the proper thermalization of
the system. Energy minimization have been carried out using
the conjugate-gradient algorithm as implemented in the GNU
scientific library [43]. Voronoi tessellations are computed using
the Boost C++ Voronoi library [44]. We remark that the
high precision and numerical stability of this library resulted
instrumentally to correctly minimize the energy of the system,
in particular at high p0 values where the Voronoi tessellations
develop degenerate vertexes.

B. Identification of the different phases

The solid, hexatic, and liquid phases have different spatial
symmetries one could reveal investigating the correlation
functions of the translational and of the rotational order
parameters. The positional or translational order parameter is
ψT (�rj ) = ei �G·�rj , where �G is the first peak reciprocal lattice
vector of the triangular crystal, and �rj is the position of particle
j . The rotational or bond-orientational order parameter is
ψ6(�rj ) = 1

n

∑n
m=1 exp(i6θ

j
m), n being the number of nearest

neighbors of particle j and θ
j
m being the angle between

(�rm − �rj ) and a fixed arbitrary axis. In the liquid phase, both
the translational and the bond-orientational order are short
ranged, while in the solid phase both of them are extended,
although there is no long-range translational order in two
dimensions [45]. In the intermediate hexatic phase, if any, the
translational order is short ranged, while the bond-orientational
one is quasi-long-ranged. The bond-orientational correlation
function is calculated as g6(r) = 〈ψ6(�ri)ψ∗

6 (�rj )〉 with r =
|�ri − �rj |. The translational correlation function is calculated
as the cut of the two-dimensional pair correlation function
g(�x,�y) along the direction (�x,0) of global orientation of
the bond-orientational order parameter [22], so that the averag-
ing over different configurations is possible. Another sensitive
characterization [46] of the ordering properties is provided
by the size scaling analysis of the order parameters averaged

over regions of linear size lb, �T (lb) = 1
Nlb

∑Nlb

j=1 ψT (�rj ) and

�6(lb) = 1
Nlb

∑Nlb

j=1 ψ6(�rj ), where Nlb is the number of parti-
cles in the considered region. Indeed, according to KTHNY
�2

T (lb)/�2
T (l) = (lb/ l)−x and �2

6 (lb)/�2
6 (l) = (lb/ l)−y , with

x < 1/3 and y < 1/4 in the solid phase, x > 1/3 and y <

1/4 in the hexatic phase, and x > 1/3 and y > 1/4 in the
liquid phase. This analysis does not distinguish the coexistence
region from the liquid phase, we discriminate investigating the
equation of state.

III. RESULTS

A. Finite temperature

Figures 1(a) and 1(b) illustrate the temperature dependence
of the exponents x and y resulting from the subblock scaling
analysis (see Sec. II and Fig. S2 [41]) of the translational and
of the bond-orientational order parameters, for two values of
the target shape index. The values of these exponents allow us
to identify the different phases, as we discussed in Sec. II.
Specifically, Fig. 1(a) shows that for p0 = 3.0 the melting
transition occurs at T = 0.12 without hexatic phase. Con-
versely, Fig. 1(b) shows that for p0 = 3.5 there is a temperature
rangeT = 0.054–0.056 of apparent hexatic order. This result is
consistent with the direct investigation of the translational cor-
relation function g(�x,0) and of the correlation function of the
bond-orientational order parameter g6(r). Indeed, we observe
that in the hexatic phase g(�x,0) decays exponentially, while
the bond-orientational order is quasi-long-range. In the solid
state, g(�x,0) decays algebraically with an exponent −1/3,
and g6(r) shows almost no decay, following the KTHNY
theory. The temperature at which g6(r) ∼ r−1/4 is consistent
with the solid-liquid transition temperature, for p0 = 3.0, and
with the hexatic-liquid transition temperature, for p0 = 3.5.
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FIG. 1. Temperature dependence of the exponents x and y of the
subblock analysis of the translational and bond-orientational order
parameters (see text), translational correlation function g(�x,0), and
bond-orientational correlation function g6(r), for p0 = 3.0 [(a), (c),
and (e)] and p0 = 3.5 [(b), (d), and (f)]. The values of the scaling
exponents, the decays of g(�x,0) and of g6(r), and the investigation
of the equation of state (Fig. 2) allow us to unambiguously identify
the different phases. Depending on the temperature and on p0, states
are identified as solid (S), hexatic (H), liquid-solid coexistence (LS),
liquid-hexatic coexistence (LH), and liquid (L), as summarized in the
bottom legend.

We have evaluated the translational length scale in hexatic
and in liquid phases, and the bond-orientational length scale
in the liquid phase, by fitting the corresponding correlation
functions with an exponential decay e−r/ξ . The largest length
scale we measured is ∼20 (see Fig. S9 [41]), a small fraction
of the box size (L2∼84), which indicates that the finite size
effects may not be strong, possibly because of the soft nature
of the system [47]. We further support the absence of finite-size
effects in Fig. S7 [41], where we compare the subblock plots
and the two correlation functions for p0 = 3.0 and p0 = 3.5 for
the N = 8100 system, illustrated in Fig. 1, with those obtained
for a N = 16 384 system.

Since the translational and the bond-orientational order are
lost at the same temperature in the absence of the hexatic phase,
and at different temperatures when this phase is present, we
consistently observe in Fig. S1 [41] the associated suscepti-
bilities to peak at the same or at different temperatures. In
Fig. S5 [41] we also show that the phase identification from
the subblock analysis are not affected by the thermally induced
shift of the position of the first peak of the lattice, as this shift is
small with respect to the width of the peak (see Fig. S4 [41]). A
similar result has been observed in hard polygons [14], while
the shift is relevant in systems of hard disks [22].

We identify the coexistence region investigating the equa-
tion of state, which we have determined computing the pressure
via perturbation techniques [48,49], due to the many-body
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0

π

α

FIG. 2. p0 dependence of the pressure at (a) T = 0.12 and
(b) T = 0.05. Different symbols identify different phases, as in the
legends. Lines are to guide the eye. For T = 0.05, snapshots of the
system in the different phases are in the insets of (b). Each cell
i is colored [12,22] according to the angle α between its bond-
orientational order parameter ψ6(�ri) and the global bond-orientational
order parameter �6 = 1

N

∑N

i=1 ψ6(�ri).

nature of the interaction. Figure 2 illustrates the pressure
dependence on p0, for two values of the temperature. We
first notice that the pressure is negative, which indicates that
the system is under tension. This is in agreement with our
daily experience, as we know that the two margins of a skin
cut separate. However, this is an unusual feature as systems
with negative pressure are generally unstable towards the
formation of cavities. The Voronoi and related models are
however stable at negative pressure as the formation of cavities
is hindered as particles are forced to tessellate the space. The
equation of state shown in Fig. 2 illustrates the presence of
Mayer-Wood loops [50], which characterize first-order phase
transitions [51]. Given the phases observed on the two sides of
the coexistence curve (see also Fig. S3 [41]), we understand
that at T = 0.12 the liquid and solid phases coexist at p0 ≈ 3.0,
while at T = 0.05 the liquid and the hexatic phase coexist at
p0 ≈ 3.55. On the other hand, there is no pressure loop at
the solid-hexatic transition for T = 0.05, which is therefore
continuous.

As an additional check of the identified phases we have
also visualized the system by coloring each cell according to
its properties. For instance, the bond-orientational ordering is
visualized by associating with each particle i a color related to
the angle α between the local ψ6(�ri) and the global �6 order
parameters. Examples are in the insets of Fig. 2(b), which
shows that the identified phases are consistent with their real
space observation. The phase coexistence is also visualized by
investigating the spatial distribution of other quantities, such as
the average local perimeter-to-area ratio �, the average local
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0 π/2 π

(a)

α:
3.77 3.78 3.79 3.80 3.81

(b)

Ω- :

0.97 0.98 0.09 1.00 1.01 1.02

(c)

A- :
0.97 0.98 0.09 1.00 1.01 1.02

(d)

ρ- :

FIG. 3. Liquid-solid coexistence at T = 0.12 and p0 = 3.0. The
coexistence is seen by coloring the particles according to (a) the angle
α between ψ6(�ri) and �6, (b) the local perimeter-to-area ratio, (c) the
local area, and (d) the local number density.

area A, and the average local number density ρ. Here we define
these quantities by averaging over a circular region of radius
rc = 10 [14]. Interestingly, cells exhibiting solidlike behavior
[red-colored regions in Fig. 3(a)] have low perimeter-to-area
ratio [Fig. 3(b)], high local area [Fig. 3(c)], and low number
density [Fig. 3(d)]. That is, the solid is less dense than the
liquid. This unusual feature also occurs in liquids with density
anomalies, such as water, and in systems with a reentrant
melting transition [52].

The upper part of Fig. 4 illustrates the melting phase dia-
gram resulting from this investigation. At small p0 values the
system melts through a first-order transition, while a two-step
melting with a continuous solid-hexatic and a consecutive first-
order hexatic-liquid transition appears for p0 � 3.4. While the
identification of this crossover value of p0 is difficult, we have
carefully verified the absence of the hexatic phase at small p0

values by checking the phases observed at the boundaries of
the coexistence curve, which we determine through a Maxwell
construction (see Fig. S8). The absence of a hexatic phase
is also consistent with the fact that susceptibilities associ-
ated with the positional order and to the bond-orientational
peak at the same temperature at small values of p0 [see
Figs. S1(b), S1(d), and S1(f)]. The lowest temperature at which
we were able to equilibrate the system in the hexatic phase
is T = 0.0002, at p0 = 3.84. Extrapolating the solid/hexatic
transition line to zero temperature we find the two-step melting
scenario to extend up to p0 � p

pent
0 . For p

pent
0 � p0 < phl

0 the
zero temperature state appears to be of hexatic type, and we
therefore only observe a first-order hexatic-liquid transition.

FIG. 4. Phase diagram as a function of temperature T and target
shape index p0. The lines interpolate the estimated boundaries
between the different phases. The lowest temperature at which we
are able to equilibrate the system depends on p0, and varies from
T � 10−2 at small p0 values, to T � 10−4 at large p0 values.
The bottom part of the figure illustrates the properties of the zero
temperature stable state as a function of p0. The insets illustrate typical
configurations in the two phases.

Due to the narrowing of the coexistence region, we do not
exclude the presence of a continuous hexatic-liquid transition
at p0 values very close to phl

0 .

B. Zero temperature

The phase diagram of Fig. 4 suggests the existence of a
range of p0 values where the hexatic state is the stable state
at zero temperature. This is an interesting result, as so far the
hexatic phase has only been observed at finite temperature.
In addition, this suggests that cell tissues, which are not
thermal systems, might actually have a stable hexatic phase.
We further investigate this matter evaluating the properties of
zero-temperature configurations generated by minimizing the
energy of the system using the conjugate gradient protocol
(see Sec. II). As in the thermal case, we identify the phase of
these configurations performing the subblock scaling analysis
(see Sec. II) of the order parameters. We have considered
minimization starting from different initial conditions: perfect
hexagonal lattice, deformed solid, hexatic, liquid, random
configuration, and square lattice. Here by a deformed solid we
indicate a configuration with the symmetries of the hexagonal
lattice, in which the cells are not perfect hexagons, alike a finite
temperature hexagonal lattice configuration [see Fig. 6(a)].
The minimization terminates when the average energy per cell
changes by less than 10−7 between consecutive minimization
steps, which is our criterion for convergence, or after 104 steps.
When the initial state is of deformed solid type, the mini-
mization algorithm converges if p0 is not in the [phex

0 ,p
pent
0 ]

range corresponding to the deformed solid configuration. We
remark, however, that even when convergence is not achieved
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FIG. 5. p0 dependence of the average energy per cell after
performing the energy minimization algorithm. Different curves refer
to minimization carried out starting from initial states with different
symmetries and system sizes, as in the legend.

the geometrical features of the system appear to be clear as
particles move by minute distances. However, this may not be
the case for the mechanical properties of the model [53].

We show in Fig. 5 the p0 dependence of the average energy
per cell of the final state reached by our minimization proce-
dure. The energy curve obtained minimizing the energy of the
perfect hexagonal lattice has a nonmonotonic dependence, as
it vanishes at p0 = phex

0 . For smaller values of p0, the zero
temperature stable state is the hexagonal lattice, which is the
final state reached when minimizing the energy starting from
hexagonal, deformed solid, or hexatic configurations (e.g., see
Fig. 6). We also observe that the deformed solid has the lowest
energy in the p0 range phex

0 < p0 < p
pent
0 , while the hexatic

has the lowest energy in the p0 range p
pent
0 < p0 < phl

0 � 3.88.
Both the deformed solid and hexatic configurations transform
into liquidlike configurations if the energy is minimized with
p0 � phl

0 . For this large value of p0, all of the energy curves
converge except for the one obtained from the perfect hexago-
nal lattice, clearly indicating that the stable state is in the liquid
phase and that the hexagonal phase is metastable. We notice
that in the vertex model, where the tesselation is not forced to be
of Voronoi type, the transition from a perfect hexagonal lattice
to a disordered soft lattice atp0 = phex

0 has also been previously
rationalized [32]. We also remark that at p0 = 4 the energy
of the system vanishes for a square lattice configuration. We
have checked that energy minimizations starting from perfect
or slightly distorted square lattices do not lead to states with
energy smaller than the one we obtain minimizing the energy
starting from a deformed solid configuration, unless p0 is very
close to 4 (approximately, |p0 − 4| < 0.05). Thus, there is a
small p0 interval around p0 = 4 where the zero temperature
stable phase has the square symmetry.

The vertical dashed lines in Fig. 5 summarize the emerging
zero-temperature phase diagram. We also illustrate this
zero-temperature diagram in the lower part of Fig. 4, to stress
that this is consistent with the zero temperature extrapolation

of the finite temperature phase diagram. While the location
of the different phase boundaries might be protocol dependent,
the results appear to be robust as the system is able to change
phase during the minimization. Specifically, we observe the
following transitions in the relevant p0 ranges during the
minimization process: hexatic → deformed solid; deformed
solid → hexatic; deformed solid and hexatic → liquid;
deformed solid and hexatic → perfect hexagonal lattice (see
Fig. 6). In Figs. 5 and 7 we also reports results obtained for a
larger system size, to stress that these zero temperature results
do not suffer from finite-size effects.

At zero temperature, we have found no evidence of phase
coexistence, indicating that the melting transition driven by
an increase of p0 occurs through two consecutive continuous
transitions, as in the prototypical KTHNY scenario. According
to this scenario, the two transitions are mediated by topo-
logical defects, the solid-hexatic transition corresponding to
the dissociation of bound dislocation pairs into free disloca-
tions, and the hexatic-liquid corresponding to the unbinding
of dislocations into isolated disclinations. We confirm this
topological interpretation in Fig. 6 which illustrates the defects
characterizing the different phases. In the perfect hexagonal
lattice, there are no defects. In the deformed solid phase, defects
are mainly bounded dislocation pairs (5-7-5-7 quartets). In the
hexatic phase, there are isolated dislocation (5-7 pairs) and no
isolated disinclination (fivefold or sevenfold defects). Finally,
in the liquid phases defects are both isolated disclinations and
isolated dislocations.

We have validated this topological interpretation investi-
gating the p0 dependence of the fraction ρ of dislocations
(both isolated and clustered) and of the fraction of disclinations
of the local energy minima generated from deformed solid
configurations. Figure 7 illustrates the results that do not
depend on the system size. As expected, we find no defects
in the perfect hexagonal lattice. The fraction of cells in dislo-
cations starts increasing at p0 � p

pent
0 , above which the zero

temperature phase changes from deformed solid to hexatic.
For p

pent
0 < p0 < phl

0 , where the zero temperature phase is
hexatic, the fraction of particles in dislocations sensibly grows,
while the fraction of particles in disclinations remains low. At
p0 > phl

0 , where the system enters the liquid phase, both the
fraction of cells in dislocations and that in disclinations grow.

We have also investigated the zero-temperature phase dia-
gram for a different value of the inverse perimeter modulus r =
100, and found it at most weakly dependent on r . An analogous
result has been reported in the investigation of the vertex
model [33], where p

pent
0 marks the location of a rigidity transi-

tion regardless of the value of r . We remark that the most inter-
esting aspect of the zero-temperature phase diagram is the pres-
ence of a range of p0 values in which the minimal energy state
is the hexatic one, a feature that to our knowledge has never
been observed before. This hexatic phase could be possibly
associated with the intermediate stage of the epithelial to mes-
enchymal transition, which occurs at similar values of p0 [54].

IV. DISCUSSION

We rationalize the temperature dependence of the transition
lines of the thermal phase diagram considering that p0 affects
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FIG. 6. The energy minimization process of a configuration in the deformed solid state (a) can end-up in configurations belonging to
different phases, depending on the value of p0. The hollow circles represent particles with six nearest neighbors, i.e., the hexagon-shaped cells.
Red filled circles are fivefold defects and green filled circles are sevenfold defects. Isolated dislocations are marked by smaller black dots and
isolated disclinations are illustrated with smaller blue dots. The snapshots illustrate only a small part of our investigated system.

the shear modulus of the particles, and hence that of the
system. Indeed, as the single particle shear modulus [41],
the macroscopic shear modulus decreases as p0 increases,
the two being roughly proportional [33]. Considering that
according to the Lindemann criterion the melting transition
occurs at a temperature Tm � μλ2, with λ a microscopic
distance, e.g., a fraction of the interparticle separation, this
explains the approximately linear dependence of the transition

FIG. 7. p0 dependence of the fraction of dislocations and discli-
nations of the zero-temperature states of the model with the smallest
energy.

temperatures on p0. We also note that, since in the affine
approximation the single particle shear modulus is proportional
to r−1, the transition temperatures are expected to also scale
as r−1. Whereas the melted solid in the hexatic or the liquid
phase depends on the free energy difference between these two
phases, which is �f (p0,T ) = udis(p0) − T sdis, where udis(p0)
is the energy required to unbind the dislocations, and sdis is
the corresponding entropy gain. �f (p0,Th) = 0 identifies the
limit of stability of the hexatic phase that occurs as long as
udis(p0) > T sdis. As p0 increases the hexatic phase becomes
unstable as the unbinding energy decreases. In particular, since
the range of p0 values in which the hexatic phase is stable at
zero temperature extends up to p0 = phl

0 , we understand that
udis < 0 for p0 > phl

0 . The entropic contribution to �f (p0,T )
drives the hexatic to liquid transition on increasing the temper-
ature.

A qualitative understanding of the features of the zero
temperature phase diagram is obtained considering that p0

controls the degree of frustration of the system. Specifically,
given that for the hexagonal crystal p0 = phex

0 , |p0 − phex
0 |

qualitatively acts as a degree of frustration of the hexagonal
crystalline state, as also clear from Fig. 5. The increase of the
degree of frustration of a system generally makes disordered
the stable state. Accordingly, it is surprising that for p0 < phex

0
the hexagonal lattice remains the zero temperature phase, as
if frustration was absent. Conversely, for p0 > phex

0 different
phases are observed, as expected. We rationalize these obser-
vations considering that for p0 < phex

0 , the hexagonal crystal
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FIG. 8. p0 dependence of the probability distribution of the
lengths of the Voronoi edges of the zero-temperature states of the
model with the smallest energy.

is frustrated as the particles should be more compact than the
hexagons, a feature generally associated with polygons with
many sides. However, since the system tessellates the space,
states with an average number of sides per cell larger than six
cannot exist because of Euler’s theorem for planar graphs. We
therefore understand that the model has a topological constraint
that effectively prevents frustration to play its usual role for
p0 < phex

0 . The same argument does not apply for p0 > phex
0 ,

where cells should be less compact than the hexagonal ones,
and thus with an average number of sides smaller than six.
Thus, for p0 > phex

0 frustration plays its usual role. Indeed,
the deformed solid region can be seen as a region of small
frustration, which is not able to sensibly affect the zero
temperature phase. Further increases of p0, conversely, makes
the zero temperature phase first of hexatic and then of liquid
type. This scenario is consistent with the features of the distri-
bution lengths of the Voronoi edges P (l), illustrated in Fig. 8.
In the crystalline phase, as expected, P (l) = δ(l − phex

0 /6),
regardless of the value of p0. The distribution broadens and

develops a bimodal shape in the deformed solid phase and in the
hexatic one. Finally, in the liquid phase P (l) develops a delta
peak in zero, consistently with the emergence of a growing
number of degenerate vertices.

Recent experimental studies have shown the existence
of an intermediate phase in the epithelial to mesenchymal
transition [37–39], which occurs at a measured value of p0

consistent with those found in the Voronoi model [54]. This
suggests that the observed intermediate phase could be of
hexatic type. In this respect, it also worth noticing that a
moderate polydispersity, which is expected to occur in actual
tissues, does not affect the melting scenario [55]. We hope
our results will stimulate relevant experimental work to test
the nature of the intermediate epithelial-mesenchymal phase.
Our results also suggests the possibility of using a Voronoi
model with a different energy functional to investigate dif-
ferent systems of soft deformable particles at high density.
Soft polymeric particles such as microgels, for instance,
shrink and deform when compressed [56,57], which might
help their crystallization [58]. In particular, neutral or large
enough particles that do not undergo a counterion induced
deswelling [58,59], might tessellate the space at large enough
densities. This line of research might offer a novel approach
to rationalize some unusual features of these systems, such as
their high diffusivity [60] in a region of very high density, where
particles are highly deformed. Finally, we remark that this
model is shown to exhibit a hexatic phase at zero temperature
in this work. Possibly, the investigation of the zero temperature
melting transition could help rationalizing previous results that
have found many parameters to affect the melting scenario in
different systems [9–17,21,22].
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