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Ba8CoNb6O24 presents a system whose Co2+ ions have an effective spin 1/2 and construct a regular triangular-
lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character.
We exploit this ideal realization to perform a detailed experimental analysis of the S = 1/2 TLAFM, which is
one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no
magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward
zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically
disordered state, which is a candidate quantum spin liquid. We establish the (H,T ) phase diagram, mapping in
detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in
field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and
an ordered regime apparently dominated by the collinear “up-up-down” state. Ba8CoNb6O24, therefore, offers
fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the
S = 1/2 Heisenberg TLAFM.
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I. INTRODUCTION

The challenge of frustrated quantum magnetism now ex-
tends from theory and numerics through experiment to mate-
rials synthesis. This challenge is to characterize and to under-
stand the effects of quantum spin fluctuations in dimensions
greater than 1. In two dimensions, where the S = 1/2 square-
lattice antiferromagnet (SLAFM) with Heisenberg interactions
has clear magnetic order with a suppressed moment (ms �
0.61m0, where m0 is the full moment) and the kagome-lattice
AFM has no order at all, the triangular-lattice antiferromagnet
(TLAFM) lies close to the boundary where the frustration-
driven quantum fluctuations are sufficient to destroy ms . While
this situation has led to a range of exotic proposals for the
ground state of the Heisenberg TLAFM [1–4], detailed studies
have demonstrated that the true ground state does in fact have
a finite semiclassical magnetic order, in a noncollinear 120◦
structure [5,6], with a best estimate for ms of 0.41m0 [7].

Nevertheless, the strong frustration of the TLAFM leads
to an extensive renormalization of physical properties at all
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energy scales. As a consequence, the dynamical and thermo-
dynamic properties of the TLAFM have remained as a long-
standing conundrum due to the inadequacy of theoretical ap-
proximations, the limitations of numerical approaches [includ-
ing small system sizes in exact diagonalization, the minus-sign
problem in quantum Monte Carlo, and the one-dimensional
restriction on density-matrix renormalization-group (DMRG)
methods], and the absence of pure two-dimensional (2D)
systems for experimental investigation. A full understanding
of the TLAFM would also aid the understanding of other exotic
quantum states, most notably spin liquids [8], unconventional
superconductors [9], and systems with complex magnetic order
[10], in all of which geometric frustration has an essential role.

Purely 2D models such as the TLAFM are difficult to realize
in the 3D world, and a further complication to experiment
is that their physics is controlled by the Mermin-Wagner
theorem [11], which describes the dominant effects of ad-
ditional thermal fluctuations in the restricted phase space of
a low-dimensional system. Specifically, the theorem dictates
that in two dimensions a continuous symmetry can be broken,
allowing a finite order parameter, only at exactly zero temper-
ature. In practice, most experimental systems are subject to a
weak 3D coupling that stabilizes their semiclassical order, and
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so examples of “Mermin-Wagner order,” meaning incipient
order as T → 0, are rare.

Among the known compounds approximating the spin-1/2
TLAFM [12,13], the materials Ba3CoSb2O9 and Ba3CoNb2O9

have attracted particular attention. They have perfectly regular
lattices of Co2+ ions and preserve inversion symmetry close
to the plane, so that any Dzyaloshinskii-Moriya interactions
are too weak to break the continuous symmetry [14–18].
The exchange interactions are found to be close to the pure
Heisenberg form, albeit with a weak anisotropy (Jx = Jy �=
Jz). Magnetic order occurs at finite temperatures due to
weak interplane coupling, which releases the stricture of the
2D Mermin-Wagner theorem. The rich variety of competing
magnetically ordered phases at finite applied magnetic fields
[10,17] provides evidence of the expected frustration effects.
Available theoretical approaches [19–23] suggest the pres-
ence of low-lying and weakly dispersive excitations, which
were observed only recently in Ba3CoSb2O9 [24], and whose
effects on the thermodynamic properties of the TLAFM
lie beyond the semiclassical predictions of the nonlinear σ

model [23,25,26].
Here we take an experimental approach to the physical

properties of the spin-1/2 TLAFM close to the Heisenberg
point, which hinges on the remarkable properties of the
dielectric compound Ba8CoNb6O24. This system has regular
triangular layers of effectively low-spin Co2+ ions separated by
a very large interlayer spacing, c � 18.9 Å [27], which ensures
that, from a magnetic point of view, it is ideally 2D. It has
been argued very recently by analyzing bulk thermodynamic
measurements that the magnetic Hamiltonian is that of an
ideal TLAFM with only Heisenberg interactions [28]. Here we
combine magnetization, g-factor, susceptibility, specific-heat,
and 93Nb nuclear quadrupole and magnetic resonance (NQR
and NMR) measurements down to temperatures of 0.028 K, to
show that above 0.1 K Ba8CoNb6O24 provides a nearly ideal
experimental illustration of textbook Mermin-Wagner physics
in a 2D magnetic system. However, below 0.1 K our NQR and
NMR data reveal an anomalous suppression of low-energy
spin fluctuations, breaking the trend toward zero-temperature
magnetic order. Instead they indicate a disordered phase,
possibly a quantum spin liquid (QSL), at zero field, and at
finite fields and temperatures an anomalously broad regime of
apparent collinear “up-up-down” polarization.

The structure of this paper is as follows. In Sec. II we present
the material and experimental methods, with which we first
establish that the system has an effective spin S = 1/2 and
a nearest-neighbor AFM exchange coupling J � 1.66 K. In
Sec. III we show our results for the low-temperature (T >

0.08 K) susceptibility and specific heat, and we illustrate briefly
how these thermodynamic quantities provide a semiquantita-
tive validation of available theoretical (series-expansion and
Schwinger-boson) approaches to the TLAFM. Section IV A
presents our NQR data, which confirm the lack of spontaneous
magnetization down to 0.028 K at zero field, but with a
correlation length that increases steeply upon cooling to 0.1 K,
and then we quantify the departures from Mermin-Wagner
behavior below this temperature. In Sec. IV B we show
our NMR results for the spectrum and spin-lattice relaxation
rate, which we compile as a field-temperature phase diagram.
In Sec. V we discuss the interpretation of these results in

terms of quantum corrections to the classical phase diagram,
accompanied by the appearance of the unexpected candidate
QSL phase at low field and temperature. In Sec. VI we provide
a short summary.

II. MATERIAL AND METHODS

Polycrystalline Ba8CoNb6O24 samples were synthesized by
a solid-state reaction method [27]. For structural characteri-
zation, we performed powder x-ray diffraction measurements
and made a complete Rietveld refinement using the FULLPROF

package. The material crystallizes in the space group P 3̄m1,
illustrated in Fig. 1(a). Co2+ ions in CoO6 octahedra form a
corner-sharing geometry with NbO6 octahedra, constructing
perfect layers of regular triangular lattices [Fig. 1(b)], with
neighboring Co2+ planes separated by eight Ba2+ and six
NbO6 layers. The lattice parameters [27] are a = 5.789 813 Å,
which is almost identical to Ba3CoNb2O9 (a = 5.7737 Å), but
c = 18.893 55 Å, which is approximately three times longer.

Our comprehensive experimental analysis of Ba8CoNb6O24

combines magnetization, g-factor, susceptibility, specific-heat,
NQR, and NMR measurements. Magnetization and
susceptibility data were measured in a physical property
measurement system-vibrating sample magnetometer
(PPMS-VSM) for temperatures T > 2 K and in a 3He SQUID
system for 0.6 < T < 1.8 K. The temperature-dependent
g-factors were obtained by field-sweep electron spin
resonance (ESR) at a fixed frequency 9.397 GHz. The
specific heat was measured in a PPMS dilution refrigerator
(DR), which reached temperatures down to 0.08 K. The
93Nb (I = 9/2) NQR signal was detected by the spin-echo
technique in a DR system reaching temperatures down to
0.028 K. Temperatures in both NQR and NMR were read
from a RuO2 thermometer and verified using the 63Cu NMR
echo intensity of the coil, which is inversely proportional to
the temperature. The NMR spin-lattice relaxation rate, 1/93T1,
was determined by the magnetization inversion-recovery
method, with the spin recovery, which showed no stretching
behavior, fitted by the standard I = 9/2 functions m(t) =
m(∞) − a[0.121e−3t/T1 + 0.56e−10t/T1 + 0.297e−21t/T1 +
0.022e−36t/T1 ] for NQR and m(t) = m(∞) − a[0.152e−t/T1 +
0.14e−6t/T1 + 0.153e−15t/T1 + 0.192e−28t/T1 + 0.363e−45t/T1 ]
for the NMR lines [29,30]. Theoretical values for the
thermodynamic quantities χ (T ), Cm(T ), and Sm(T ) were
digitized from the cited literature and scaled appropriately.

It is necessary first to establish the effective spin of the Co2+

ions in Ba8CoNb6O24. Figure 1(c) shows the magnetization,
M , as a function of field at a fixed temperature T = 0.46 K.
M increases rapidly, from exactly zero field and completely
linearly, up to a field Hs = 3.00 ± 0.04 T; at this temperature,
there is no evidence for a feature at 1/3 magnetization, to which
we return in Sec. IV. Beyond Hs , a weak linear increase is also
observable, which can be ascribed to van Vleck paramagnetism
[17]. Hs is the saturation field required to polarize fully the
magnetic moment of Co2+, as also measured for Ba3CoSb2O9

[14–16] and Ba3CoNb2O9 [17,18]. The saturation moment of
the Co2+ ions deduced from Fig. 1(c) is ms = 1.92 ± 0.1μB .
ESR measurements of the g-factor at different temperatures,
shown in the inset of Fig. 1(c), approach a constant value,
g = 4.13 ± 0.1, below 20 K. The effective spin of the Co2+
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FIG. 1. Lattice structure and magnetic properties of Ba8CoNb6O24. (a) The triangular-lattice planes formed from the CoO6 units are separated
by many nonmagnetic units, specifically eight Ba2+ and six NbO6 layers. (b) A plane of CoO6 octahedra, showing their triangular-lattice
configuration and the neighboring, corner-sharing NbO6 octahedra that mediate the antiferromagnetic interactions. (c) Magnetization, M; blue
and green straight lines represent linear fits to the low- and high-field data, whose origins lie, respectively, in the effective-spin and van Vleck
paramagnetic contributions. Inset: g-factor as a function of temperature. (d) dc susceptibility measured under a field of 0.1 T. The solid green line
is a fit to a Curie-Weiss form, χs(T ) = a/(T + θ ), combined with an offset of χVV, the constant van Vleck contribution determined from M . The
fitting parameters for the low-temperature regime are a = 1.7 emu K/mol and θ = 3.5 ± 0.5 K. Inset: low-temperature spin susceptibility; the
blue line shows HTSE results for the Heisenberg TLAFM, adapted from Ref. [25]; the green line shows Monte Carlo results for the Heisenberg
SLAFM, adapted from Ref. [34]. Both curves use the parameters J = 1.66 K and g = 4.13. (e) Specific heat at zero field. The solid line is a fit
to Cp = bT 3. Inset: low-temperature magnetic specific heat, Cm, after subtracting the phonon contribution; the green line is the HTSE result for
the Heisenberg TLAFM, adapted from Ref. [25] with J = 1.66 K. (f) Magnetic entropy, Sm(T ), obtained by integrating the specific-heat data
above 0.08 K. The solid line shows the high-temperature limit, Sm(∞) = R ln(2S + 1) in a spin-S system, for S = 1/2. Inset: low-temperature
magnetic entropy, showing for comparison RSBMF results (see the text) adapted from Ref. [23] with J = 1.66 K. Blue shading represents the
temperature region excluded from our analysis.

ions is therefore ms/gμB � 0.464, which is consistent with
spin-1/2. This is the result expected from the crystal-field
analysis for Co2+ in an octahedral environment with a weak
trigonal distortion [14,31], where the relatively strong spin-
orbit coupling leads to the formation of six nondegenerate
Kramers doublets and hence to an effective spin S = 1/2 with
a large g-factor at low temperatures.

The magnetic exchange coupling can be estimated from
the same data. From the corner-sharing geometry of neigh-
boring CoO6 and NbO6 octahedra, the dominant magnetic
interactions between in-plane Co2+ spins occur by Co-O-O-Co
and Co-O-Nb-O-Co superexchange couplings [17]; the very
long paths make the interaction strength extremely sensitive
to geometrical details and should preclude all but nearest-
neighbor couplings. For the effective S = 1/2 Co2+ ions, one
expects an XXZ spin model of the form H = ∑

〈ij〉 Jx(Sx
i Sx

j +

S
y

i S
y

j ) + JzS
z
i S

z
j , where 〈ij 〉 denotes only nearest-neighbor

spins [14–18]. In Ba3CoSb2O9, the exchange coupling was
stated initially to be nearly isotropic (Heisenberg), with Jx =
Jy ≈ Jz ≈ 18.2 K [14–16], but it has since been found to have
easy-plane character (Jz/Jx � 0.89) [24]. In Ba3CoNb2O9,
double magnetic transitions at 1.36 and 1.10 K in zero field
indicate a weak easy-axis anisotropy, Jz > Jx [17,18,32,33],
with Jx of order 2 K.

Because Ba8CoNb6O24 and Ba3CoNb2O9 have an almost
identical planar structure, very similar exchange couplings
are expected. It is tempting to estimate the exchange directly
from the magnetization [Fig. 1(c)], which by using the result
gμBHs = 4.5J for the Heisenberg TLAFM at T = 0 [10]
yields J = 1.84 ± 0.10 K. However, this procedure has the
weakness that our measurement of M is not made at zero
temperature, which turns out to be a source of significant
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inaccuracy due to the complex low-temperature physics of
Ba8CoNb6O24. We use instead the result from our NMR
measurements at 0.028 K, Hs = 2.7 ± 0.1 T (Sec. IV), which
yields J = 1.66 ± 0.06 K. This result is fully consistent with
the very recent estimate of Ref. [28], which was made on the
basis of comparison with thermodynamic properties (Sec. III).

III. THERMODYNAMIC PROPERTIES

The dc susceptibility, χ (T ), of the sample, measured under
a field of 0.1 T, is shown in Fig. 1(d). χ (T ) increases
monotonically on cooling down to 1 K and can be sep-
arated into two contributions, χ (T ) = χVV + χs(T ), where
χVV � 0.019μB /Co/T, or 0.0106 emu/mol, is the van Vleck
paramagnetic contribution determined from the magnetiza-
tion [Fig. 1(c)]. χs(T ) follows an approximate Curie-Weiss
(CW) form, χs(T ) = a/(T + θ ), which represents the av-
erage contribution of the coupled Co2+ spins. In the low-
temperature regime (T < 30 K), we obtain a Weiss constant
θ = 3.5 ± 0.5 K. From the constant of proportionality, a =
1.7 emu K/mol, we deduce an effective moment μeff =
3.69(10)μB , which is fully consistent with our determination
of the saturation moment, ms (Sec. II), because of the value
of the g-factor. These results are also consistent with those
of Ref. [28], as well as with the results of Ref. [17] for
Ba3CoNb2O9. At low temperatures, T � J , χs(T ) is expected
to fall below the CW form as the spins become correlated, giv-
ing the characteristic broad maximum revealed by numerical
approaches to the S = 1/2 TLAFM. In the inset of Fig. 1(d),
we compare our data with the results for χs(T ) obtained by
the high-temperature series-expansion (HTSE) method applied
to the Heisenberg TLAFM, adapted from Ref. [25] using the
parameters J = 1.66 K and g = 4.13. The HTSE result and
the experimental measurements are in quantitative agreement.

We stress that this comparison is not a fit, because with J

and g fixed there are no free parameters. While a best fit to the
peak position would return a smaller J value, as noted above
we rely on our measurement of the low-T saturation field to
determine J . The errors in the measured susceptibility arise
from the sample mass (3%), the determination of the g-factor
(3%), and the accuracy of the SQUID data from the VSM (5%).
In this context, the fact that our data and HTSE agree within
2.5% at all temperatures constitutes full agreement.

We draw attention to the generic property of the TLAFM
that the peak in χs(T ) occurs at the anomalously low tem-
perature T ≈ 0.4J ; this direct consequence of frustration can
be contrasted with the behavior of the unfrustrated SLAFM,
adapted from Ref. [34] and also shown in the inset of Fig. 1(d),
where the peak appears at T ≈ J . HTSE is by nature an
approach from high temperatures, which reaches its limits
at the unusually low temperatures of the χs peak in the
TLAFM, and its use requires careful choice of representative
Padé approximants. Thus this degree of consistency offers a
benchmark both for the capabilities of HTSE and for the degree
to which Ba8CoNb6O24 offers an ideal 2D S = 1/2 Heisenberg
TFAFM.

Further valuable thermodynamic information is provided
by the specific heat, Cp(T ), shown in Fig. 1(e). The absence of
any sharp peak or cusp in Cp suggests that magnetic ordering
is absent to the lowest temperature (80 mK) we can access in

this measurement. Because Cp falls rapidly with decreasing
temperature from 20 to 7.5 K, following an exact T 3 behavior,
we use this to subtract the presumed phonon contribution and
isolate the magnetic specific heat, Cm(T ). This procedure can
be followed with a high degree of confidence because the
characteristic energy scales of the phonons are manifestly very
high compared to the magnon contributions in this system,
which peak at 1 K. However, we caution that even very small
residual uncertainties may be important in the entropy analysis
below, and contribute to the error bars we display. Cm(T ),
shown in the inset of Fig. 1(e), confirms the absence of ordering
features, is dominated by a broad peak at T ≈ 1.0 K, and
below 0.3 K falls rapidly toward Cm = 0. While its shape over
the available data range shows no evidence for an activated
form, a detailed inspection at the lowest temperatures sets an
upper limit of approximately 0.05 K on any possible spin gap.
Once again we compare our data with the HTSE result [25] for
the Heisenberg TLAFM with J = 1.66 K, finding near-perfect
quantitative agreement over the available range of the HTSE
data (0.3 � T � 2.5 K). As for the susceptibility, the peak
in Cm(T ) lies at a value anomalously low compared with the
energy scale of the SLAFM, as deduced from QMC [34] and
HTSE methods [35,36]; again this result reflects directly the
effects of frustration in suppressing the overall energy scale of
the magnetic excitations [26].

The magnetic entropy, Sm(T ) = ∫
Cm/T dT , which we

calculate from our Cm(T ) data by integrating above 0.08 K, is
shown in Fig. 1(f). At 7.5 K, we estimate that Sm(T ) saturates
90 ± 10% of its total value, Sm(∞) = R ln 2 for a spin-1/2
system. If the system were to order at the lowest temperatures
(T < 0.08 K), one might expect some of the entropy to remain
unaccounted for. However, because of the errors accumulated
in the integration, including those from the phonon subtraction,
we cannot draw any meaningful conclusions about possible
missing entropy from this result, other than that it is small. If,
on the other hand, the ground state were to have a spin gap,
again our entropy results are consistent with a value below
0.05 K [Fig. 1(f)].

What we find at our lowest temperatures is that Sm(T )
has a very rapid initial increase from T = 0.08 K, with 33%
of Sm(∞) recovered by T = 0.3J [inset, Fig. 1(f)]. Here
we compare our data to the reconstructed Schwinger-boson
mean-field (RSBMF) approach [23], a modified Schwinger-
boson technique that accounts correctly for the number of
physical spin states and thus is designed to capture the key
properties of the TLAFM in the low-temperature regime. By
comparison with our data, the RSBMF formalism provides
semiquantitative accuracy over the temperature range illus-
trated (which matches the authors’ claim for the validity of the
method). However, the form of Sm(T ) at lower temperatures
is not well described, a result on which we comment briefly
below. Nevertheless, we note for perspective that the type
of nonlinear-σ -model approach so effective for the SLAFM
recovers only 5% of the total entropy at T = 0.3J in the
TLAFM [25,37] and therefore appears incapable of providing
a suitable account of frustrated systems.

We conclude that, over the full range of temperatures
covered by our thermodynamic measurements, Ba8CoNb6O24

behaves as a model 2D S = 1/2 TLAFM. Concerning the
Hamiltonian governing the behavior of the effective S = 1/2
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spins, we deduce on the basis of the HTSE analysis of Ref. [28]
that our χs(T ) and Cm(T ) data contain no evidence for an
XXZ anisotropy, of Ising or XY type. Thus within the error
bars of our thermodynamic measurements, the effective model
realized by the material is a Heisenberg TLAFM. At a more
microscopic level, an effective Heisenberg interaction implies
that the trigonal distortion of the CoO6 octahedra, denoted by δ

in Refs. [14,31], should vanish. In the structural refinement per-
formed on the basis of our powder x-ray diffraction measure-
ments, we indeed obtain an excellent account of our data with-
out any trigonal distortion, and thus we find no evidence for a
finite δ parameter within the error bars of the fitting process.

IV. NQR AND NMR MEASUREMENTS

A. NQR and candidate QSL

To probe both static and low-energy magnetic properties,
we begin at zero field by presenting low-temperature 93Nb
NQR data. Here we report only the signal with the shortest
spin-lattice relaxation time, 93T1, which is over three orders of
magnitude lower than the other times present and arises in all
probability from the Nb sites closest to the Co2+ layers (i.e.,
with strong hyperfine coupling to the Co2+ moments). The
93Nb NQR spectra for excitations between Iz = ±9/2 and 7/2
are shown in the inset of Fig. 2(a) for temperatures from 0.8 K
down to 0.028 K and with their intensity, I0, corrected for the
Zeeman factor, 1/T . At T = 0.028 K, the spectrum is well
fitted by a Gaussian function (red line), and this fit can be
applied also to the spectra at 0.2, 0.4, and 0.8 K. Clearly the
spectra at all temperatures are centered on one maximum, at
the resonance frequency f = 4.212 MHz (4νq), and all have
the same echo intensity. The absence of any signal loss or NQR
frequency shift excludes completely the onset of any magnetic
order down to 0.028 K. Because the 93Nb nucleus is located
directly above the center of one triangle composed of three
Co2+ ions [Fig. 1(b)], the static hyperfine field at each 93Nb
site should, if the Co2+ moments order with the 120◦ coplanar
pattern [10], have an appreciable component normal to the
TLAFM plane. Thus it is highly unlikely that magnetic order
could be missed in the NQR spectra.

The NQR spin-lattice relaxation rate shown in Fig. 2(a)
probes the low-energy spin fluctuations. In general, 1/T1T =∑

q Ahf (q) Imχ±(q,ω)/ω|ω→0, where Ahf is the hyperfine
coupling constant and χ±(q,ω) is the transverse dynamic
susceptibility. The fact that 1/93T1 is of order 10 s−1 indicates
rather strong hyperfine coupling between the 93Nb nucleus and
the Co2+ spins. 1/93T1 also contains no evidence for long-range
order, but its upturn below 0.2 K indicates an increasing
correlation length, precisely as would be expected if the system
approaches the zero-temperature magnetic order anticipated by
the Mermin-Wagner theorem [11]. To our knowledge, such a
direct observation of incipient “Mermin-Wagner order” in a
purely 2D magnetic system has not hitherto been obtained.

However, this textbook-quality Mermin-Wagner divergence
is cut off quite abruptly at 0.1 K, as Fig. 2(a) shows clearly.
Instead of continuing to diverge as the temperature decreases,
the 1/93T1 signal shows a sharp peak and a rapid drop
to very low values. We stress again that the temperature-
normalized spectra are almost identical for all temperatures

FIG. 2. NQR measurements on Ba8CoNb6O24. (a) Spin-lattice
relaxation rate, 1/93T1, measured at zero field as a function of
temperature. The upturn below 0.2 K indicates a progressive increase
of the correlation length upon cooling, which is cut off abruptly
below 0.1 K. Inset: zero-field 93Nb NQR spectra for temperatures
from 0.8 to 0.028 K, with the measured intensity multiplied by T .
Red lines represent the Gaussian fit to the spectrum at 0.028 K
overlaid on all four datasets. (b) 1/93T1 data on logarithmic axes.
The straight-line fit (blue) indicates an approximate power-law form,
1/93T1 ∝ T α with α = 1.51 ± 0.06. (c) 1/93T1 data on semilog axes
as a function of inverse temperature. The straight-line fit (blue)
indicates an approximate activated form with an energy gap 	 =
0.070 ± 0.003 K.

[inset, Fig. 2(a)], and that all of the magnetization recovery
curves we measure contain no sign of a stretched exponential
form. As noted above, these results provide no evidence for
splitting or broadening of the peak, as would occur in a finite-T
ordered phase. Similarly, they contain no evidence for any
spin-freezing, or other types of spin-glass behavior, at such
a low temperature, ruling out an inhomogeneous origin for
the drop in 1/93T1. Despite the normalized echo intensities
remaining constant for all temperatures, a weak signal loss is
observed close to 100 mK, which reinforces the evidence for
very strong low-energy spin fluctuations coinciding with the
peak in 1/93T1. Thus these features appear to be clear evidence
for a transition or abrupt crossover to a zero-temperature
magnetically disordered phase, which is a candidate for an
intrinsic QSL.

At the experimental level, a QSL is typically analyzed by
considering the temperature dependence of the spin-lattice
relaxation rate. An algebraic form indicates a gapless QSL
while an exponential (activated) form indicates a gapped QSL.
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Figure 2(b) shows the data of Fig. 2(a) on logarithmic axes,
which suggest a functional form 1/93T1 ∝ T α , i.e., a gapless
QSL with α = 1.51 ± 0.06. By contrast, Fig. 2(c) shows the
same data in the activated form, which returns at least as good a
fit to a gapped QSL with 	 = 0.070 ± 0.003 K. We comment
that the quoted errors are only statistical, and do not include
systematic errors. The only conclusion one may draw is that
it is impossible to make any meaningful deductions from a
fit to five data points covering half a decade in temperature.
However, the very low temperature scales involved make it
impossible to broaden the fitting window. Under the gapless
scenario, such a small and half-integer exponent would have to
be the consequence of spin fractionalization. Under the gapped
scenario, such a small gap (of order J/25) would have few
consequences at all conventional experimental temperatures
(and is very difficult to probe). The only unambiguous con-
clusion from our NQR results is that new physics sets in at an
interaction energy scale of order 0.1 K. We defer a discussion
of possible theoretical scenarios to Sec. V.

B. NMR and (H,T ) phase diagram

To investigate the situation in more detail, we expand our
studies of the TLAFM to finite magnetic fields by perform-
ing NMR measurements at applied fields up to and beyond
saturation. Figure 3(a) shows 93Nb NMR spectra taken over
the full range of field values, all of which have a dominant
feature centered close to the frequency f0 =93 γH , where
93γ = 10.421 MHz/T is the gyromagnetic ratio of 93Nb,
accompanied by a number of other features spanning a broad
frequency range. We stress that the entire spectrum is the
contribution of one single type of 93Nb site, due to the I = 9/2
nuclear spin and the powder sample, as we discuss next.

For the powder sample we have available, the NMR spectra
show very strong broadening due to the combination of
quadrupolar corrections [38], anisotropic field effects, and the
anisotropy of the hyperfine coupling in the TLAFM [39]. While
this makes a full assignment of the different resonance frequen-
cies to different field-orientation distributions an impossible
task, we begin our interpretation of the NMR data at high
fields, H > Hs . The spectrum at 2.99 T has a peak around
f − f0 = 0.7 MHz, whose position [marked by the arrows in
Fig. 3(a)] changes more rapidly with decreasing field than any
other feature. This indicates a strong hyperfine field with one
specific orientation. Although it is not possible to verify, this
peak is consistent with an NMR center line for field orientation
H‖ab for three reasons: (i) it is close to f − f0 = 0; (ii) for
layered compounds, H‖ab is the most probable orientation
in a powder sample; (iii) the hyperfine coupling is highly
anisotropic from H‖ab to H‖c, as observed for the Ba(2) sites
in Ba3CoSb2O9 [39], which ensures a significant separation
of contributions due to different crystallite orientations. On
this basis, the broad feature with frequencies from 0.2 to
1.2 MHz at 2.99 T can be ascribed to the combination of
a distribution of hyperfine fields (which vary linearly with
the Larmor frequency, νL) and a distribution of second-order
quadrupolar corrections (which vary as ν2

q/νL [38]), both due
to crystallites with orientations close to H‖ab. By contrast,
the broad peak from −0.4 to 0 MHz may be associated with
field orientations close to H‖c, where the hyperfine fields are

FIG. 3. NMR response of Ba8CoNb6O24 over a range of ap-
plied fields. (a) 93Nb field-sweep spectra displayed as a function
of frequency, f − f0, at a fixed temperature T = 30 mK. The
reference frequency f0 = 93γH is defined for each spectrum from
the measurement field, H , given in the legend. The spectra are
offset vertically for clarity. Arrows mark the spectral peak where the
spin-lattice relaxation rate, 1/93T1, is measured. (b) 1/93T1 shown as
a function of temperature for selected low fields. (c) 1/93T1(T ) for
selected high fields. Blue arrows mark the positions of the peaks we
take to indicate the magnetic transition. Red arrows for certain field
values in panel (b) mark a lower characteristic feature (discussed in
the text).

weaker [39]; however, these assumptions should be verified
by single-crystal NMR studies when possible. Finally, the
resonances visible in the spectra at |f − f0| � 1 MHz are due
to satellite transitions, which in an I = 9/2 system are shifted
from the center line by ±νq , ±2νq , ±3νq , and ±4νq [38].

To compare the spectra in a consistent manner, we focus
only on the prominent center peak of each one, which is marked
by the arrows in Fig. 3(a). As the applied field is increased,
the peak position shifts to a higher frequency, which indicates
an increase of the local hyperfine field. However, although
the shift f − f0 is caused primarily by the hyperfine-field
contribution at applied fields above 1 T, it is contaminated
strongly by the quadrupolar corrections at low fields [38].

Here we make two comments of relevance to the discussion
below. First, an integral feature of the finite-field phase diagram
of the TLAFM is the “up-up-down” state, of two field-aligned
spins and one antialigned spin per triangle. Our estimate of the
line shift resulting from an up-up-down phase of field-induced
order in Ba8CoNb6O24 is approximately 230 kHz. This value is
1/3 of the shift observed in the fully polarized state (H > Hs)
and is the same at all Nb sites, with the result that there is
no splitting. However, the presence of such a shift is not well
established in our data, due not least to the growing quadrupolar
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corrections at lower fields. Second, our NMR spectra contain
no evidence for the mixing of Co and Nb sites, i.e., for an
extrinsic source of disorder. While one may postulate that
nonmagnetic Nb impurities in the Co TLAFM, and magnetic
off-plane Co impurities, may have a significant effect on
the properties of Ba8CoNb6O24, we are unable to identify
any inequivalent Nb sites. In the closely related material
Ba3CoNb2O9, two very sharp magnetic ordering transitions
are observed [17], which serves again to underline how weak
such disorder effects appear to be in the Co-Nb system. Further,
the magnetization recovery [I (t)] we measure at all fields and
temperatures fits very well to the standard function (Sec. II),
which again reinforces the message of excellent sample quality.

In Figs. 3(b) and 3(c) we show as functions of temperature
the NMR spin-lattice relaxation rates, also denoted 1/93T1,
measured at the frequency of the spectral peak. A sharp
maximum is clearly visible at every applied field. The general
trend is that the peak value of 1/93T1 increases strongly with
field up to μ0H ≈ 0.5 T, before decreasing more slowly up to
fields beyond Hs . We have verified (data not shown) that such
a relaxation peak is also present when measured at different
frequencies in all spectra, which indicates very strongly that
this form of behavior is intrinsic. The temperature at which
the peak appears, marked by the arrows in Figs. 3(b) and 3(c),
varies systematically with the field, increasing to Tm ≈ 0.35 K
at μ0H = 1.20 T before falling monotonically to zero at
H = Hs .

A pure Heisenberg model in an applied magnetic field
retains a rotational symmetry about the field axis. However,
the Ba8CoNb6O24 system has crystalline anisotropies and
spin-orbit coupling in addition to possible experimental mis-
alignments, as a result of which it is realistic to take the field as
an explicit breaking of the continuous spin symmetry. In this
event, the Mermin-Wagner theorem is no longer applicable and
a real magnetic order is induced, even in two dimensions, until
it is suppressed by thermal fluctuations. Thus we ascribe the
peak in the NMR 1/93T1 to a real magnetic ordering transi-
tion occurring at temperature Tm, below which the ordered
phases have an anisotropy gap. The magnetic transition in
Ba3CoSb2O9 was also reported on the basis of the peak in 1/T1

[39], although in this material the order sets in at 3.8 K at zero
field due to interlayer (3D) coupling. At H = 0.52 T, we find
a curious double-peak structure, which by the same reasoning
should be associated with a second characteristic temperature
scale. At H = 0.88 T, the lower temperature appears not as a
peak but as a second sharp drop, occurring around T = 0.06 K
at the lower end of a plateau in the relaxation rate. As one of
these forms evolves into the other, our ascription of a second
temperature scale, Tx , to a weak feature in the μ0H = 0.66 T
data is very tentative. At 1.01 T, the feature and hence Tx has
clearly vanished.

In Fig. 4, we gather the Tm and Tx values determined from
1/93T1 in the form of an (H,T ) phase diagram. Tm demarcates
a regime of field-induced magnetic order below Hs � 2.7 T
and a maximum temperature of 0.35 K, while Tx may be the
upper limit in field of the anomalous disordered region we find
by NQR (Fig. 2, marked by the shaded region in Fig. 4). As
a guide to interpreting our results, we have annotated Fig. 4
with a number of other lines. Green dashed lines show the
phase boundaries obtained by Monte Carlo studies of classical

FIG. 4. Field-temperature phase diagram of Ba8CoNb6O24.
(H,T ) phase diagram constructed from the spin-lattice relaxation rate.
Solid blue squares represent the temperature of the peak in 1/93T1,
taken from Figs. 3(b) and 3(c), and open gray circles mark the lower
temperature scale found in 1/93T1 at low fields [Fig. 3(b)] (discussed
in the text). The shaded region demarcates the candidate quantum
spin liquid phase. The solid line is a fit of the upper transition to the
functional form Tc(H ) = c(Hs − H )0.5. Green arrow symbols and
dashed lines represent the phases and phase boundaries established
by Monte Carlo simulations of the classical TLAFM, adapted from
Refs. [40] and [41] and scaled to J = 1.66 K. Red ticks on the field
axis at T = 0 mark the boundaries of the up-up-down phase for the
S = 1/2 Heisenberg TLAFM, established by many authors and taken
in this case from Ref. [42]. Red dashed lines mark schematic finite-
temperature phase boundaries anticipated for the up-up-down phase
in the S = 1/2 system, where it is favored by quantum fluctuations.
Inset: field dependence of 1/93T1 shown at fixed temperatures of 50,
100, and 150 mK. The presence of only two peaks suggests that the
entire intermediate regime accessible in experiment may have only
one type of field-induced order.

(large-S) Heisenberg TLAFM [40,41], which obtain the four
finite-H phases represented by the green arrows, namely
distorted triangular, up-up-down, canted, and fully polarized.
The red bars on the field axis (T = 0) represent the boundaries
of the up-up-down plateau of the fully quantum S = 1/2
Heisenberg TLAFM, obtained by a number of methods and
taken here from Ref. [42]. We stress two features of the
S = 1/2 results, first that the same four phases obtained in the
classical model are present in the quantum case and second
that, in contrast to the classical case, the up-up-down plateau
has a finite width at T = 0 as a result of its stabilization by
quantum fluctuations, which have a generic preference for
antiparallel spin configurations. Based on this expectation, the
red dashed lines sketch the possible phase boundaries of the
quantum up-up-down plateau at finite T . We stress that these
lines rank as little more than guides to the eye. There is as yet
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no theoretical or numerical method that is capable of drawing
the (H,T ) phase diagram of the S = 1/2 TLAFM, which is a
major reason why experimental results for an almost-perfect
TLAFM material such as Ba8CoNb6O24 are so important.
The downward curvature of the lower boundary and upward
curvature of the upper one are based on the expectation that
thermal fluctuations will favor the collinear-spin up-up-down
phase over the noncollinear distorted triangular and canted
phases (but the extent of this curvature is in essence unknown).
A very recent experiment has investigated the spin excitations
of the up-up-down state in Ba3CoSb2O9 [43], i.e., in the
presence of finite 3D coupling and easy-plane anisotropy.

Because our measurements are performed on powder sam-
ples, it is very difficult to determine the magnetic structure. In
particular, the difference between collinear and noncollinear
ordered phases becomes even more difficult to discern. In the
inset of Fig. 4 is shown 1/93T1 as a function of field at the
fixed temperatures T = 50, 100, and 150 mK. By the same
criterion as in Figs. 3(b) and 3(c), these curves suggest that
there are only two significant phase transitions as the field is
increased, and thus that the entire magnetically ordered phase
may be of only one type, rather than the anticipated three. We
stress for clarity that, despite the presence of the anomalous
candidate QSL regime at low T and H (shaded in Fig. 4), one
would still expect to recover the behavior of the conventional
S = 1/2 TLAFM for T > 0.1 K (where thermal fluctuations
overwhelm the additional low energy scale) and for H > 1 T
(where, empirically, the field suppresses quantum fluctuations
to a sufficient degree).

The possible origin of the candidate QSL is discussed in
Sec. V C. Outside this regime, we can use our experimental
measurements on Ba8CoNb6O24 to benchmark the quantum
phase diagram of the spin-1/2, 2D Heisenberg TLAFM in a
manner that has not been possible before. We identify four
ways in which quantum fluctuations act to revise the classical
phase diagram. (i) The field, Hmax, at which the maximum
value of Tm occurs is 80% higher in the S = 1/2 system
than in the classical case. (ii) In the classical Monte Carlo
simulations, there are one or possibly two finite-temperature
phase transitions at very weak fields, but in the S = 1/2
system this regime is entirely paramagnetic and the lower
bound on the ordered regime has a finite slope. (iii) In the
classical model, the phase boundary to the fully polarized
state approaches Hs linearly, whereas in the S = 1/2 system
the phase boundary is fitted rather well, over approximately
one decade of data in temperature, by the form Tm(H ) ∝
(Hs − H )1/2. (iv) In the classical model, one expects three
different ordered phases under the dome of Tm(H ), whereas
in the experimental measurements there is no evidence for a
change of phase at finite temperatures. We discuss these four
points in detail in Sec. V B.

V. DISCUSSION

A. Zero-field quantum physics: Mermin-Wagner theorem

The physics of a 2D quantum magnet with continuous
symmetry is controlled by the Mermin-Wagner theorem. While
thermal fluctuations can act to reinforce quantum fluctuations
in gapped systems, their effect on candidate ordered phases
is a systematic suppression. Thus in experiment one may

observe only an incipient order, which is best characterized by a
correlation length, ξ , or time, τ , that increases with decreasing
temperature toward a divergence at T = 0. This is exactly
the behavior we observe in the NQR spin-lattice relaxation
rate, shown in Fig. 2(a), where the diverging trend becomes
clear below 0.2 K. However, the presence of the anomalous
disordered state at the lowest temperatures (T < 0.1 K) spoils
a more systematic characterization of this divergence.

The TLAFM is a keystone model in quantum magnetism
because it offers one of the basic realizations of a geometry
that is frustrated for AFM interactions. At zero field, where
one may wish to investigate the consequences of frustration
for thermodynamic quantities, correlation functions, and the
dynamical response, its primary effect is the suppression of
characteristic energy scales. For a deeper understanding of the
anomalous low-energy scale observed in the thermodynamic
quantities of Fig. 1, the most sophisticated methods available
for the Heisenberg TLAFM are HTSE [19,26], the theself-
consistent spin-wave [20,21], and the RSBMF treatments
[23]. These indicate that the one-triplet excitation band is
both extremely flat and unusually low-lying, with most of its
weight concentrated around E ≈ 0.6J , similar to the recent
observation in Ba3CoSb2O9 [24]. This is a direct consequence
of the band being driven downward by the low-lying two-triplet
excitation continuum, which shows strong triplet interactions
at all wave vectors due to the high frustration. This behavior
stands in sharp contrast to the SLAFM, where the bands dis-
perse uniformly up to energies E ≈ 2J [44]. The frustration-
renormalized energy scale is completely consistent with the
temperature dependence we benchmark in the peak features of
χ (T ) and Cm(T ). The unusual low-energy excitations of the
TLAFM have been variously described as “roton-like” or as
evidence of fermion deconfinement [19,20].

Ba8CoNb6O24 allows a direct comparison between theory
and a real 2D material for the S = 1/2 Heisenberg TLAFM.
If one takes seriously the small but finite quantitative discrep-
ancies between the HTSE results [25] and our data for Cm(T )
[Fig. 1(e)] and χ (T ) [Fig. 1(d)], one requires an explanation for
possible additional contributions on the low side of the peaks
in both quantities. The specific heat contains contributions
from all types of excitation, and it appears to show unexpected
weight around 0.5 K. The susceptibility is sensitive only to
finite-spin excitations, primarily triplets (S = 1), and the peak
in this quantity appears to lie at a temperature 10–15% lower
than HTSE would forecast. Thus it is possible that this method
is not quite capturing the full extent of the suppression of
the one-triplet band due to the frustration of the TLAFM.
Experimental uncertainties notwithstanding, the RSBMF ap-
proach appears to underestimate the low-temperature entropy
[Fig. 1(f)] and may not be capturing the correct temperature
dependence. One possible exotic explanation for this result
[45] might be the incomplete binding of spinon degrees of
freedom contained within the slave bosons.

More generally, both results may be explained if the “roton
gap,” the effective bandwidth, the weight in the two-triplet
sector, or any other features affecting the density of states in
the spin spectrum, all of which require a correct accounting
for quantum fluctuation effects, are not reproduced perfectly
by the theoretical or numerical approaches applied. However,
we caution that the small mismatch between our data and

044403-8



MERMIN-WAGNER PHYSICS, (H,T ) PHASE DIAGRAM, … PHYSICAL REVIEW MATERIALS 2, 044403 (2018)

the theoretical results shown in Fig. 1 cannot be interpreted
unambiguously as evidence for shortcomings in the theories,
as it may be a consequence of experimental uncertainties,
particularly in the entropy, or of small additional terms in the
magnetic Hamiltonian. While it is clear from the appearance of
the candidate QSL phase (Sec. V C) that such terms are indeed
present, we comment that the energy scale for the QSL regime
does not match the temperatures at which the discrepancies
in χ (T ) and Cm(T ) appear, although it could indeed be
relevant for the interpretation of Sm(T ). A notable candidate
for such a term would be a weakly non-Heisenberg anisotropy
in the exchange couplings, which is already documented in
Ba3CoNb2O9, although we are unable to obtain any evidence
for this in our measurements. We defer a further analysis of
this point until single crystals become available.

B. Quantum fluctuation corrections

Here we discuss the differences between the classical
and measured (“quantum”) phase diagrams shown in Fig. 4,
retaining the numbering scheme of Sec. IV B.

(i) The field at which the maximum of Tm appears in the
classical case, Hmax ≈ 2J in dimensionless units, coincides
with the center of the most stable of the ordered phases, which
is the up-up-down phase. The very significant (approximately
80%) rise of this optimum field in the quantum system appears
to reflect the much greater stability of the up-up-down phase
due to the strong quantum fluctuations of the S = 1/2 system.
In fact, our choice of the position of the upper red dashed line
in Fig. 4 was made on the basis of an approximate symmetry
criterion with respect to Hmax.

(ii) In the classical Monte Carlo simulations, there is a
problem at zero field in that order is precluded by the Mermin-
Wagner theorem but is present at a finite temperature at any
finite field. In the quantum case, the lower bound on the ordered
regime has a finite slope, which has a clear interpretation in
terms of the competition between the disordering effects of
thermal fluctuations and the ordering effects of a rising field.
The slope of this line, which is approximately linear if the
QSL regime is ignored, would be one topic for a more detailed
analysis. We comment that the shaded region in the classical
Monte Carlo phase diagram denotes an uncertainty over the
nature of the thermal transition(s) that is reflected in a contrast
between the results of Refs. [40] and [41], but that this appears
to be a moot point in the quantum system.

(iii) The contrasting functional forms of the magnetic phase
boundary near saturation, Tm(H ) ∝ (Hs − H )a with a = 1 in
the classical system and a = 0.5 in the quantum one, can
be taken as a direct expression of the qualitative differences
resulting from quantum fluctuations. In this case, their effect
is to confer extra stability on the field-induced ordered phase,
possibly changing its nature [point (iv) below], and to alter the
way in which this order is lost as thermal fluctuations increase.

(iv) More mysterious is the nature of the field-induced
ordered phase. As noted in Sec. IV B, three different ordered
phases are expected between H = 0 and H = Hs in the
classical model, and in the quantum model at T = 0. Our ex-
periments offer no evidence for a change of phase. Taking this
result at face value, it is possible that the thermal destabilization
of the noncollinear phases (distorted triangular and canted) in

favor of the collinear up-up-down phase is truly a strong effect,
which is complete below 50 mK in Ba8CoNb6O24. However,
as also discussed above, it is difficult to exclude the possibility
that the three ordered phases are simply indistinguishable in
the present powder experiments.

C. Quantum disordered phase

The most surprising feature of our results is the appearance
of the magnetically disordered phase at low temperature and
low fields. Such a phase is not expected in any studies of the
S = 1/2 TLAFM at zero field or zero temperature. Clearly the
most basic question to address is whether this phase is a conse-
quence of intrinsic quantum physics, due to a weak additional
term in the magnetic Hamiltonian, or whether it could arise
from an extrinsic factor, such as sample disorder. While it is
difficult to make a definitive statement about this eventuality,
the most obvious type of randomness in Ba8CoNb6O24 would
be “antisite” disorder, namely nonmagnetic Nb ions in the
Co planes and magnetic Co ions on some of the Nb sites.
Nonmagnetic sites (vacancies) in an ordered 2D S = 1/2
magnet are found in theoretical studies [46] to cause a weak
reinforcement of order, at least if virtual electronic hopping to
the site is also prohibited. In the Ba8CoNb6O24 geometry, a
Co ion off the plane might be expected to form a net singlet
state with the three spins of the neighboring in-plane triangle,
creating an effective three-site vacancy, and for the same reason
this should not lead to a magnetically disordered phase. In
experiment, all types of disorder have rather clear fingerprints
in the NMR spectra, and as noted in Sec. IV B, we are not able
to detect any spectral features corresponding to Nb ions with
a different type of environment.

Another extrinsic factor would be the coupling of the
electronic spins to the nuclear-spin subsystem. In ordered
magnetic materials, this coupling can give rise to a shift,
or “pulling” [47], of the NMR frequency, and a significant
literature has built up concerning the measurement and quanti-
tative description of this effect, particularly in Mn-ion systems
[48]. To estimate whether the interaction with nuclear spins
could be responsible for our observations, we first consider the
magnitude of the hyperfine coupling. The transferred hyperfine
coupling from the Co electronic spins to the Nb nuclear
spins, which is the pathway by which we probe the TLAFM
in Ba8CoNb6O24, has an interaction constant Ahf = 0.04 T
per μB . The associated energy scale is calculated as Ehf =
γAhfIS, where S = 1.9μB is the magnetic moment per Co
electronic spin and I = 9/2 is the Nb nuclear spin, from which
Ehf = 0.14 mK, a value much too small to be relevant to our
observations. However, there is also a direct hyperfine coupling
of the Co electronic to the Co nuclear spins (I = 7/2), which is
approximately A′

hf = 5 T per μB in systems with local Co-ion
coordination similar to that in Ba8CoNb6O24 [49], and the
resulting energy scale can be estimated as E′

hf = 0.016 K.
Once again, this channel appears too small to be responsible
for effects setting in at 0.1 K, as we observe in Figs. 2, 3,
and 4.

Qualitatively, it is in any case not clear how the hyperfine
interaction would affect the electronic spin state in a thermally
disordered magnetic phase, of the type relevant here down to
0.1 K. Pulling requires a finite ordered moment to produce
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the observed frequency shift [50]. In the Ising magnet LiHoF4

[51], coupling to the nuclear spins acts to extend the regime
of magnetic order of the electronic spin system, which is
the opposite of the physics we observe. On general grounds,
a coupling of the electronic spin system to the very high
density of low-energy excitations introduced by the nuclear-
spin system does not seem likely to establish a situation
in which the density of low-energy spin excitations appears
to vanish toward zero energy. In one study of nuclear-spin
coupling to a disordered electronic spin system [52], the
magnetic spectrum of the composite system remains gapless
for systems with no nontrivial topological term, which should
be the relevant one in two dimensions, and does not appear
to lose low-energy weight. Although the coupled Hamiltonian
belongs to the general class of Kondo-type models, it is difficult
to conceive of Kondo-type physics (local singlet formation)
for localized electrons interacting with I = 7/2 nuclear spins.
Thus, within the scope of the present study, we conclude that
nuclear-spin coupling cannot present a candidate origin for
our observations. We recall that, in an intrinsic state of the
electronic spins alone, the mutual interaction energy scale
(J = 1.66 K) is two orders of magnitude higher than the
hyperfine coupling scale.

Turning to a possible intrinsic origin, we begin by reviewing
other candidate terms in the magnetic Hamiltonian. A 3D
coupling is not expected on an energy scale of 0.1 K in a system
as 2D as Ba8CoNb6O24, and in any case this would promote
finite-temperature order. Motivated by the material Cs2CuCl4

[12], which shows QSL behavior in a spatially anisotropic
TLAFM, systems in which every triangle has one strong and
two weak bonds have been of enduring interest [53]. However,
there is no evidence in the NMR spectra for the onset of a
low-temperature lattice distortion, which would also be most
unexpected at such low energy scales.

Spin-orbit coupling has been studied intensively in insulat-
ing magnets as the possible origin of chiral QSL states and
Kitaev spin liquids. In conventional local-moment systems,
spin-orbit coupling is manifest in the Dzyaloshinskii-Moriya
interaction on chemical bonds lacking inversion symmetry and
in exchange anisotropies on inversion-symmetric bonds. For
the Co2+ ions in Ba8CoNb6O24, the spin-orbit energy scale,
λ ≈ 250 K, is strong and the lowest Kramers doublet of the
crystal-field manifold defines the effective S = 1/2 degree
of freedom, along with a possible exchange anisotropy in
the event of a finite trigonal distortion [14,31]. Within this
effective model, the possibility of effective Dzyaloshinskii-
Moriya interactions is excluded by the fact that the bonds of
the Ba8CoNb6O24 lattice [Figs. 1(a) and 1(b)] are inversion-
symmetric (unless sample disorder were to produce such
terms around an impurity). Although an effective exchange
anisotropy is the strongest candidate for an additional term
in the spin Hamiltonian, we stress that XXZ physics has
been found to produce no abrupt or significant changes to the
zero-temperature phase diagram [54], and thus that such a term
would not be capable of creating a disordered magnetic state.
Indeed, the fact that this term breaks the continuous symme-
try, in whole or in part, thereby lifting the Mermin-Wagner
constraint, would seem more likely to promote magnetic order
than to suppress it. While anisotropy of the single-ion type is
not relevant for S = 1/2 systems, the situation for the effective

S = 1/2 entities in Co2+ is more complex. In this context it
is worth noting that a temperature-driven effective-low-spin to
high-spin crossover appears to occur in Ba3CoNb2O9 between
100 and 200 K [17], i.e., on the energy scale of λ, but it remains
difficult to invoke such behavior (which is governed by d-level
crystal-field splittings on 100 meV energy scales) at 0.1 K.

Of the limited selection of remaining candidate mecha-
nisms, a next-neighbor coupling, J2, has been shown [55–
58] to produce a QSL in the narrow range of interaction
strengths 0.06 � J2/J � 0.17. While all of the recent studies
agree rather closely on the boundaries of this regime, they
are completely divided on the nature of the QSL, with vari-
ational Monte Carlo (VMC) methods suggesting a gapless
state [56], also supported by the use of more sophisticated
quantum-number projection [59] and ground-state refinement
methods [60], DMRG suggesting a gapped one [58,61], and
the coupled-cluster method being unable to comment [57].
Because studies of the QSL ground state of the kagome lattice
indicate that VMC has a generic preference for gapless phases
and DMRG for gapped ones, there is little to learn from these
results. The problem with this interpretation in Ba8CoNb6O24

is that a J2 interaction requires a Co-O-(Nb-)O-O-(Nb-)O-Co
path, whose shortest realization passes through one NbO6

octahedron below the plane and one above it, via another
in-plane CoO6 octahedron [Fig. 1(b)]. An alternative path with
both intermediate NbO6 octahedra on the same side of the
Co plane is expected to be very similar in strength to the
third-neighbor interaction. However, it appears quite unlikely
on quantum-chemistry grounds that such bonds could have
a strength only one order of magnitude below that of the
near-neighbor (J ) bond.

VI. SUMMARY

We have performed experimental measurements of the
thermodynamic, NQR, and NMR response of a purely 2D
S = 1/2 TLAFM. This model system is realized to high
accuracy in the compound Ba8CoNb6O24, where the very large
separation of magnetic layers precludes any 3D coupling. With
such an ideal material, it is possible to illustrate clearly the
Mermin-Wagner theorem for a 2D system with continuous
spin symmetry by the absence of magnetic ordering at any
temperature and an incipient zero-temperature order reflected
in the increase of the spin-lattice relaxation rate below 0.2 K.

Another feature illustrated by our ideal material is that
the thermodynamic energy scales are anomalously low by
comparison with the characteristic energy scale (J ) and with
unfrustrated systems. While this “anomaly” is in fact well
understood in terms of the flattening and suppression of the
one-triplet excitation bands due to frustration, our measure-
ments benchmark very precisely the efficacy of advanced
theoretical and numerical approaches in reproducing these
properties of the TLAFM.

We have measured the complete (H,T ) phase diagram of
Ba8CoNb6O24, which presents a quantum-corrected version
of the classical phase diagram known from Monte Carlo
simulations. It has simply not been possible to measure this on
a TLAFM before now, because no properly 2D system, of any
spin S, was known. Further, no analytical or numerical method
is able to compute the quantum phase diagram. We have found
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four qualitative corrections, namely the upward shift in the
field, Hmax, at which the maximum transition temperature,
Tm, occurs, the line of finite slope separating the field-induced
ordered phase from the thermally disordered regime at low H

and T , the square-root approach of Tm to zero at saturation, and
the possibility that the only ordered phase is a version of the
up-up-down configuration. All of these changes can be related
to the strong preference of quantum fluctuations for collinear
spin states, and the consequent stabilization of the up-up-down
phase.

Finally, our results contain one major exception to the rules
of the S = 1/2 Heisenberg TLAFM, namely the magnetically
disordered phase appearing at low T and H . In the absence of
any evidence for sample disorder, and of convincing qualitative
and quantitative arguments in favor of a composite spin
state arising due to nuclear-spin coupling, there is a strong
possibility that this phase is intrinsic. We believe on the basis
of TLAFM studies to date that this state is not a fifth and most
significant quantum correction to the pure model, but is driven
by an additional term in the spin Hamiltonian, on an energy
scale of 0.1 K. The Ba8CoNb6O24 system is sufficiently ideal
that most of the potential candidate anisotropies are excluded.

Thus the search for the origin of this term requires a more
detailed analysis than is possible here, and we can state only
that next-neighbor Heisenberg interactions are not ruled out.

In conclusion, Ba8CoNb6O24 constitutes a model material
for characterizing the interplay of geometrical frustration,
quantum, and thermal fluctuations in the S = 1/2 TLAFM,
over a broad range of applied fields and temperatures down to
T � J/20. In addition, it contains a surprise at the lowest tem-
peratures, in the form of a possible gapped or gapless quantum
spin liquid, whose origin provides a further challenge to theory.
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