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Migration mechanisms of a faceted grain boundary
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We report molecular dynamics simulations and their analysis for a mixed tilt and twist grain boundary vicinal
to the �7 symmetric tilt boundary of the type {1 2 3} in aluminum. When minimized in energy at 0 K, a grain
boundary of this type exhibits nanofacets that contain kinks. We observe that at higher temperatures of migration
simulations, given extended annealing times, it is energetically favorable for these nanofacets to coalesce into a
large terrace-facet structure. Therefore, we initiate the simulations from such a structure and study as a function
of applied driving force and temperature how the boundary migrates. We find the migration of a faceted boundary
can be described in terms of the flow of steps. The migration is dominated at lower driving force by the collective
motion of the steps incorporated in the facet, and at higher driving forces by the step detachment from the
terrace-facet junction and propagation of steps across the terraces. The velocity of steps on terraces is faster than
their velocity when incorporated in the facet, and very much faster than the velocity of the facet profile itself,
which is almost stationary. A simple kinetic Monte Carlo model matches the broad kinematic features revealed by
the molecular dynamics. Since the mechanisms seem likely to be very general on kinked grain-boundary planes,
the step-flow description is a promising approach to more quantitative modeling of general grain boundaries.
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I. INTRODUCTION

Grain boundaries in metals have been shown to form facets
because their free energies are anisotropic with respect to
grain boundary (GB) inclination. GB faceting in metals on
different length scales has been observed, reported, and studied
in various experimental works [1–6] and several theoretical
ones [7–10].

The thermodynamic driving force for facet formation and
coarsening is reduction in the total GB free energy. It has
been argued that GB surface stress acts as an opposing force
to facet coarsening [11], thereby stabilizing facets with finite
lengths. Hamilton et al. [7] challenged this idea by showing
that in metals such as aluminum and for �3 {112} type
facets, these interface stresses are very small and do not inhibit
facet coarsening. Recent molecular dynamics (MD) studies
[9] confirmed his theory and extended the investigation to
GBs of various orientations. The authors of Ref. [9] concluded
that facet coarsening is thermodynamically favorable for many
GB systems, although it can be kinetically sluggish for some
boundaries.

In our previous work, we applied MD to investigate the
atomic-scale processes of migration in GBs with general
plane orientations close to that of a symmetric tilt boundary
[12], so-called vicinal GBs. Prior to migration simulations,
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we ran constant temperature MD simulations for up to 2 ns,
to anneal the boundaries, which is a conventional practice.
In these calculations, the boundaries all relaxed within one
periodic length into nanofaceted structures on the order of
5–6 nm. However, our further analysis showed that over longer
equilibration times, the nanofacets tended to coarsen and
grow in size and formed a large two-facet structure with the
maximum facet size allowed within one periodic length, while
the plane inclination was constrained by the periodic boundary
conditions to remain unchanged. We can anticipate that such
a drastic transition in the equilibrated structure of the GB will
also change its response to the presence of any driving force for
GB migration, both in terms of its structure and its migration
rate.

In the present paper, we study this effect for a particular
GB with constant temperature MD simulations and find that,
indeed, after a transient period, a new steady-state dynamic
structure emerges in response to a constant driving force.
This dynamic structure depends on the driving force and the
temperature. This dependence is interpreted using geometric,
continuum, and stochastic models.

II. SIMULATION METHODS

A. Grain boundary construction

Most of the GBs we studied in Ref. [12] can be described as
kinked boundaries. They had nanofaceted structures, which can
be described as a system of steps, comprising straight segments
joined at kinks, which can migrate over flat areas of the GB
described as terraces, as seen in Fig. 1(a). These structures were
shown to migrate by atomic shuffling at the kink sites, which,
at the smallest scale, leads to the propagation of the kinks and
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FIG. 1. Evolution of facet coarsening with time. (a) The kinked
boundary of Ref. [12] after 2 ns of MD annealing shows 5 nm facets.
(b) Longer simulated annealing proves the interface facets coarsen,
showing a tendency to form a two-facet structure. (c) As the kinetics
is too slow to form large facets, the low-energy faceted structure was
manually set up.

hence to the propagation of the steps or nanofacets. We have
chosen such a kinked GB as an initial structure for our further
study reported here. We use an orthorhombic supercell, which
defines Cartesian (X,Y,Z) axes, with the Z axis normal to the
GB. We refer to the GB plane as the mean boundary plane
(MBP). This plane is constrained by the periodic boundary
conditions and does not deviate from its original orientation,
whatever facets and steps it may display. The Miller indices
of the MBP with reference to the lower grain are as follows:
boundary normal lies along [−7 16 29] in the Z direction and
[−22 23 −18] and [5 4 −1] form the in-plane X-Y directions.
(Capital X,Y,Z is used throughout the paper for the supercell
coordinate system.) The GB plane is a mixed tilt-twist, one
deviated by a small angle, θ = 5.87◦, from the symmetric tilt
boundary plane, (−1 2 3).

The molecular statics and dynamics simulations with this
initial structure were done using the Zope-Mishin interatomic
potential for Al [13] in the parallel MD code LAMMPS [14].
Details of the GB creation and energy minimization steps are
explained in Ref. [12]. In our previous work, we performed
simulated annealing for up to 2 ns in an isothermal-isobaric en-
semble (NPT ) prior to running migration simulations. Further
investigation showed how an increase in the annealing time up
to 10 ns results in two fully formed single terraces as shown in
Fig. 1(b). Annealing simulations were performed at 400 K. In
this figure and all other upcoming snapshots of GBs, bulk atoms
are removed and only GB atoms are depicted, characterized
by an order parameter ξ ord

i that varies from 0 in the perfect
crystal environment of the lower grain to 1 for atoms in the
perfect crystal environment of the upper grain, where i labels an
atom. The facet-coarsening process is associated with a small
reduction in GB energy from 495 to 490 mJ/m2 at T = 0 K.
Facet coarsening was verified on a number of other kinked GBs
vicinal to the same symmetric �7 tilt boundary. Additionally,
the same GB structure of Fig. 1(a) was also annealed using a Cu
interatomic potential [15], which revealed similar coarsening
behavior.

The time for full thermodynamic equilibration to the large
two-facet structure, which we refer to henceforth as a terrace-

facet structure, can extend to tens or hundreds of nanoseconds.
Therefore, we manually set up a terrace-facet structure as seen
in Fig. 1(c), such that the terrace corresponds to the terrace
{1 2 3} plane of the nanofacets and the facet to the {0 1 4}
plane, which is topologically equivalent to a pileup of the steps
that migrate across the terrace plane. As these planes are all
coincident site lattice (CSL) planes, a triangle relationship of
the following form holds:

7 ∗ (−1 2 3) + 2 ∗ (0 1 4) = (−7 16 29). (1)

Accordingly, the terrace plus facet GB was constructed with
a ratio of 7:2 repeat units on the corresponding planes. We
note that an integer multiple of the same relative combination
would produce the same MBP, with a corresponding scaling of
the area of the supercell on this plane. The total energy of the
system was then minimized by a sequence of rigid grain trans-
lations along y and the removal of atoms with anomalously
short nearest-neighbour distances—in this case 30% of the
lattice parameter—followed by static relaxation of the atomic
positions. As a final preparation step, the structure, depicted in
Fig. 1(c), was annealed for 2 ns at 400 K. This structure was
further used as an initial structure for migration simulations.

B. Migration simulations

We ran migration simulations using a local driving force
based on an artificial external potential proportional to the
orientational order parameter ξ ord

i [16], which resembles phys-
ical driving forces such as magnetic field anisotropy [17]
or elastic anisotropy [18], at a number of temperatures and
driving forces. All MD simulations were performed within an
NPT ensemble. The Nosé-Hoover thermostat [19,20] and the
Parrinello-Rahman barostat [21] with the pressure set to 0 were
used for controlling temperature and pressure, respectively.
Snapshots of migration were recorded every 5 ps and were
relaxed. The GB velocity was obtained from the mean GB
position, which was extracted from the recorded snapshots
using the relationship

Zt =
∑

i Ziξ
ord
i∑

i ξ ord
i

, (2)

where Zi is the normal component of a GB atom, the nonbulk
atoms selected via LAMMPS centrosymmetry parameter, and
ξ ord
i is the aforementioned order parameter, which is 0 for one

grain, 1 for the other, and ranges between 0 and 1 for the
boundary atoms. The mean velocity vn is then determined by
fitting a straight line to Zt versus time.

Figure 2 depicts two snapshots of migration at 400 K, driven
by a force of 3 meV/atom, at two different simulation times.
In this figure, a periodic image of the supercell has been added
for clarity. Evidently, new steps have detached from the lower
edge of the facet and are migrating along the terrace. The
equilibrated terrace-facet structure is seen to be unstable in
the presence of an applied force of this magnitude. These
steps will go on to cross the terrace and join to the next
facet. Depending on the temperature and applied driving force,
the structure evolves differently; specifically, the number of
detached steps and their spacing varies. Hence it was necessary
to develop a step-detection method to describe the evolution of
the terrace-facet structure in terms of its propagating steps. We
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(a) 500 ps 

(b) 700 ps 
 

FIG. 2. A driving force of 3 meV was applied to the equilibrated
grain boundary at 400 K. (a) A snapshot of migration after 500 ps
and (b) after 700 ps. For clarity of visualization, a periodic image has
been added to these snapshots.

can then see how, under a sufficiently high-driving force, the
boundary evolves from the fully faceted state to a quasisteady
state, characterised by a train of migrating steps on the terrace.

C. Step detection

To identify the step structure, it is convenient to rotate the
Cartesian coordinate frame about the Y axis, taking the {X,Y }
plane from the MBP to the plane of the terraces, as depicted
in Fig. 3(a) by the red Cartesian axes. We refer to this choice
of axes as the terrace frame. As the steps all have the same
height h, they can be located and categorized in the terrace
frame. The line traces are determined from binning the atomic
positions in each step category [Fig. 3(b)] in the y direction
and recording the position of atoms with the lowest x as seen
in Fig. 3(c).

By recording individual step traces in the {x,y} plane as
a function of time, we have all the data we need to monitor
and reconstruct the entire migration history of the GB in three
dimensions. It is worth noting that, in addition to their height,
these steps are characterized by a small Burgers vector of the
displacement shift lattice that was identified using a defect
analysis method [22] to be of the type: 1/10 〈1 1 1〉. Thus the

step regarded as a line defect is more precisely a disconnection
[23,24] of which we only consider here the part played by the
step component. The role, if any, of the small Burgers vector
in migration of the steps, is a subject of ongoing investigation.

For each step line trace, the average along the y direction
is recorded at regular time intervals, and this average is what
we refer to as the position of the step. Figures 4(a), 4(b) and
4(c) show the position of an individual step, marked by a thick
line, as the simulation advances. The position of this individual
step as a function of time is plotted in Fig. 4(d). At the end of
a run when the position of all steps are plotted, a characteristic
step/time graph is produced as shown in Fig. 4(e). This final
graph provides us with an overview of the evolution of the step
distribution projected onto the x axis during the course of a
simulation.

III. RESULTS AND DISCUSSIONS

A. General observations

The simulations all started from the periodically repeated
system of a single terrace plane (−1 2 3). This terrace is
terminated at each end by a facet of orientation (0 1 4) ‖ (2 2 3),
which is formed of eight closely packed steps on the terrace
plane. The total number of steps in the supercell is fixed
at eight by the orientation and supercell size. At any given
time, a vertical line drawn on Fig. 4(e) crosses all eight steps.
Figure 4(d) identifies different stages of the motion of each
step, in which the step begins to detach from the bottom of
the facet with a frequency fd , migrate across the terrace at a
velocity we shall refer to as v1, and as it arrives at the top of a
facet, its velocity decelerates to v2, and at this slower velocity
it moves down through the facet.

The history of all the steps is similar and can be followed
in the step/time graph of Fig. 4(e). The average values of
all step properties can be obtained from this graph. fd is
determined from the average number of detached steps per
unit time and the two characteristic velocities of v1 and v2 are
loosely defined by the two sets of slopes of the corresponding
lines on the step/time graph at stages (2) and (3) of the step
motion, respectively. There are, of course, local fluctuations in
these velocities.
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FIG. 3. (a) depicts a migration snapshot of the faceted structure. The coordinate system of the terrace plane (red) is shown in relation to
that of the supercell (black). The color code of the atoms is based on the orientation-based order parameter, defined within the synthetic force
scheme. (b) shows how, by applying the step-detection algorithm in the system, the steps in (a) are identified by their height and (c) are traced
in y direction. In (b) and (c), the color code represents different terrace heights.
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(d) 

(e) 

(1) 

(2) 

(3) 

(a) (b) (c) 

FIG. 4. The average position of each step, x, as a function of time
shows how the steps go through three stages of motion. These three
stages are labeled in (d) for the step indicated by a thick black line in
(a), (b), and (c). As the graph in (d) represents, stage (1) involves
the detachment of the step from the bottom of a facet. Stage (2)
corresponds to its fast progress on the terrace plane, and stage (3)
corresponds to its motion when it has arrived at the facet in front. The
graph in (e), which depicts the average position vs time for all of the
steps during the course of the simulation, is referred to in the text as
a characteristic step/time graph. This particular simulation was done
at 400 K, using a driving force of 3 meV/atom.

At any given temperature and driving force, after a short
transient period the system reaches an approximate steady
state, in which the number of steps migrating across the terrace
and the number remaining in the facet is, on average, un-
changed. One extreme in behavior was observed at the lowest

FIG. 5. (a) is the MD step/time graph at 400 K and 0.5 meV/atom
and (b) is the equivalent kMC one. Note that no step-detachment event
was observed in (a) whereas (b) predicts in the same time interval
several detachment events.

applied driving force of 0.5 meV at 400 K, at which no step
detachment occurred in a simulation time of 15 ns, as illustrated
in Fig. 5(a). At higher temperatures (and driving forces), the
number of dissociated steps on the terraces increases with a
consequent reduction in the width of the facet [see Figs. 7(a)
and 7(b)].

B. A geometrical model

In this section, we make the above qualitative description of
the processes more quantitative. Most importantly, we relate
the step and facet migration rates to the steady-state migration
rate of the GB plane, vn, which is the time-averaged normal
velocity of the MBP.

As the steps move laterally, the MBP progresses upward.
The schematic Fig. 6 shows the relationship between the
three stages of the step motion and their corresponding rates
extracted from the terrace frame in relation to the average
velocity of the MBP as a single step progresses. A full period of
motion for each single step of the height h includes detachment
with the frequency of fd , followed by a propagation with the
velocity v1 to reach the upper terrace-facet corner, and then a
collective progression with a velocity of v2 once the steps are
on the facet until they reach a full period of length: L cos θ , in

(1)

(2)

h
h

v1

v2

fdh

θ β

vn

L

x 

z 

FIG. 6. The profile of a faceted grain boundary when one single
step with the height h has detached from the bottom of a facet and
progressed on the terrace plane to the top of the next facet. When the
step reaches the terrace-facet corner, the boundary moves upward by
fdh

′ sin β, depicted by contribution (1) to vn. Additionally, when the
steps in the facet have a velocity v2, there is an extra contribution,
shown by (2), to vn. The dashed lines on the corner show the final
progress of the boundary profile, given it follows that the facet velocity
vf = 0.
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FIG. 7. The characteristic step/time graphs at 3 meV: (a) T =
400 K, (b) T = 550 K. The dashed lines mark the position of the top
of the facet, which is almost stationary compared to the steps that
are running through it, implying the condition that the facet velocity
vf = 0.

the terrace frame. The height of the step shown in Fig. 6 has
been magnified for clarity.

It is clearly visible at all simulation temperatures and driving
forces that v1 > v2. From the fluctuation-dissipation theorem,
which has been successfully applied to mean GB profiles
[25,26], we expect that in the absence of a driving force the
mean-squared displacement of a position variable over some
time—in this case, the position of a step—will be proportional
to its mobility when driven. A step that is within a facet is
restricted in its displacements by the proximity of its close
neighbours, so it is to be expected that its velocity in response
to a driving force will be less than that of a free step on
a terrace. Indeed, we can study a GB consisting only of a
facet orientation, in this case (0 1 4) ‖ (2 2 3), to calculate v2

in isolation. We have done such a calculation and our results
confirm this notion.

Relative to the velocities v1 and v2, the facet itself always
appears to migrate much more slowly. The facet velocity, which
we will refer to as vf , indicated by the slope of the dashed lines
in Fig. 7, remains almost zero in the terrace frame. This implies
that the facet during the course of migration is almost stationary
in the MBP frame as well because the difference in the facet
velocity in the two frames is proportional to sin (θ ) and in our
case is very small.

As it can be seen in Fig. 6, there are two distinct geometrical
contributions to the upward movement of the boundary. The
terrace is moving upward with every passing step at a velocity
of fdh

′ sin(β) where

h′ = h

sin(θ + β)
. (3)

It is worth noting that the propagation velocity of the steps
on the terrace v1 does not play a role in the average upward
velocity of the GB. The second contribution comes from the
facet that is moving due to the motion of the steps at v2 within
it. Figure 6 should make clear, if v2 were vanishingly small,
the facet would be moving backward along the terrace plane
at a velocity fdW , due to the steps detaching from its bottom
corner and reattaching at its top corner, where W is the width
of one single step in the mean boundary coordinate system:

W = h′ cos β. (4)

FIG. 8. Mean boundary velocity vn extracted from MD snapshots
at different temperatures and driving forces from Eq. (2) and the
geometric prediction of Eq. (6). At 3 and 5 meV, the velocity
only depends on the detachment frequency fd of steps from the
terrace-facet junction, the step height h, and the angle θ . At 0.5 meV,
on the other hand, fd = 0 and the collective motion of the steps
with the velocity v2 results in the motion upward. The connecting
lines between data points are only guides to the eye and not fitted
lines.

On the other hand, if fd were vanishingly small, the facet
would be moving forward at velocity v2 cos θ . An expression
for the horizontal component of facet velocity in the MBP can
therefore be written as follows:

vf = v2 cos θ − fdW. (5)

Most of our MD observations have shown vf ≈ 0, implying
that fdW and v2 are of similar magnitude. The normal velocity
of the MBP can be expressed as

vn = fdh
′ sin β + v2 sin θ. (6)

If the facet is, on average, stationary on the MBP, vf ≈ 0, this
expression simplifies to

vn = fdh/ cos θ. (7)

On the other hand, if it is exactly stationary on the terrace
plane, the corresponding result is vn = fdh cos θ , differing
from Eq. (7) by only 1.05%, which is within the error of our
estimates.

Figure 8 verifies the agreement between the MD velocities
extracted directly from the simulations using Eq. (2) and
the geometric prediction from Eq. (6). At the low driving
force of 0.5 meV/atom depicted in Fig. 5(a), we observed a
limiting behavior, i.e., no step detachment has occurred in our
simulation time of 15 ns, hence fd ≈ 0. Then the collective
motion of the steps in the facet with the velocity v2 entirely
determines vn. For higher applied forces, vn can be obtained
from the simplified Eq. (7). The physical reason why the facet
velocities in these cases are so small in magnitude, i.e., why fd

and v2 are balanced, even at different temperatures and driving
forces, is unclear, and will require an explicit dynamic model
of the interacting steps in future studies.
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FIG. 9. A schematic representation of the profile of the grain
boundary structure at (a) the starting time of the migration simulation
and (b) the time when a step detaches from the terrace-facet junction
and progresses on the facet. (c) and (d) show a one dimensional
set-up for an equivalent kMC lattice at starting time in (c) and at
detachment time in (d). Each step is represented by an occupied
lattice site. The step pileup represents the facet. The dashed lines
and steps in lighter colors are aids to clarify the periodic boundary
conditions.

The step detachment rate fd , which was the rate-
determining factor in the majority of our MD cases, had not
been anticipated in our previous work due to the incomplete
thermal equilibration. Our observation shows that the overall
migration rates of our terrace-facet structure drops by at least
a factor of 5 at higher driving forces of 3 and 5 meV and by
about 2 orders of magnitude for the smallest driving force of
0.5 meV.

Figure 8 implies a deviation from the Arrhenius be-
havior for the terrace-facet structure as opposed to our
previous nanofaceted boundary. We would need a denser
temperature/driving-force mesh to characterize the source of
this deviation. To run long simulations to ensure that the steady
state has been reached for a dense set of temperatures and
driving forces would be computationally too costly.

In the following section, we illustrate the above formulas
within a scenario in which the three variables are stochastic.

C. A one-dimensional stochastic model

We employ a one-dimensional (1D) kinetic Monte Carlo
(kMC) algorithm to simulate the possible steady-state condi-
tions numerically. Figure 9 demonstrates schematically how
forward-moving walkers on a 1D periodic lattice can be
represented to model the motion of a terrace-facet structure.
In this 1D picture, when the site at position x is occupied,
denoted by σx = 1, a step is present, and when the site is
empty, σx = 0, there is no step. Figure 9 shows how this 1D
construction maps to the motion and pileup of steps in our
terrace-facet structure. Similar discrete lattice models, with
explicit rules for movement in one dimension, have been used
in the simulations of traffic flow [27].

A discrete step forward is represented by

{σx = 1,σx+1 = 0} → {σx = 0,σx+1 = 1}. (8)

Details of the rules and the kMC algorithm are given in
the Appendix. We have used the step/time graphs from our
MD results at a driving force of 3 meV/atom to estimate the
transition rates ri for fd and v1 using:

ri = Ai exp(−Ei/kT )ε , (9)

FIG. 10. Step/time graphs from kMC results, at 3 meV and
400 K, showing the possible steady-state conditions. (a) When fd

is vanishingly small, the facet moves forward in the cell at a velocity
v2, (b) when v2 = fdW , and vf = 0, the facet remains stationary,
and (c) when v2 is vanishingly small, the facet moves backward. The
white arrows mark v2 and the black dashed lines mark the position of
terrace-facet corner.

which is linear in the applied driving force ε; Ai is the
prefactor, and Ei is an effective energy barrier. This model
assumes that the energy barrier and prefactor for the two
rates are independent of the driving force. Our fitted expres-
sions, although a rough estimate, suffice to demonstrate the
theoretical steady-state conditions of Sec. III B. Alternative
models of step flow could be constructed based on interactions
between the steps, cellular automata, or hydrodynamics. With
this model, we have simulated the steady-state behavior under
the described conditions in Sec. III B. The motion of steps was
recorded and plotted as step/time graphs as we used previously
to represent the MD results. The results are shown in Fig. 10
at 3 meV/atom driving force and T = 400 K. Figures 10(a)
and 10(c) represent the limiting conditions in which fd and v2

are vanishingly small, respectively. The direction of motion of
the facet is seen to be as predicted by the previous geometric
considerations. Figure 10(b), in which the steps move at a
velocity of v2 = fdW , marked by the white arrow, while the
facet remains stationary, marked by dashed lines, is the closest
to the observation in our MD results. Note that in the 1D
lattice, the v2 cos (θ ) that was used in the geometric model
to refer to the velocity of the collective motion steps is reduced
to v2.

With the parameters appropriate to a stationary facet, we
then ran the kMC model to generate step/time graphs at the
low driving-force limit of 0.5 meV at 400 K. It is worth
noting that in the kMC model, if we fix the temperature,
the only effect of varying the driving force is to scale the
absolute rates of the events, not their relative rates, as the
rates are all linear in driving force according to Eq. (9). Thus
Figs. 5(b) and 10(b) are essentially the same model, apart
from the stochastic variations, with different time scaling.
Figure 5 shows a comparison between MD results and the kMC
prediction. The kMC results in Figs. 10(b) and 5(b) are in broad
agreement with the two corresponding MD simulations, but the
interesting physics lies in their differences.

The stochastic variation in the detachments seen in the MD
is much less than that in the kMC, suggestive of a correlation
between the arrival event of a step at the lower corner of the
facet with the detachment event there. On the other hand, in
the MD, there is variation in the individual velocities of steps
within a facet v2, neglected in the kMC model, and evidence
of variations on a longer timescale than represented in the
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kMC. We can speculate that these features are related to the
complexity of the migration process in the MD. Complexities
such as the dynamics of kink propagation along steps and the
interactions between steps, which are not captured in the more
simple geometric and kMC models—although the mentioned
models have captured the essential physics.

Unlike its MD counterpart, the kMC simulation in Fig. 5(b)
predicts detachment events for steps, which is an indication that
the energy barriers for the detachment process at low driving
force are higher than predicted by our assumption of linear
extrapolation.

IV. CONCLUSIONS

We have investigated how an asymmetric GB of mixed
tilt and twist character equilibrates its structure and migrates
in response to an external driving force. Molecular static
simulations show that the initially kinked GB is relatively
high in energy. It could achieve a lower potential energy by
forming nanofacets that would coarsen with time. Since this
process proceeds very slowly to completion on the timescale of
MD, we have manually set up the final structure, comprising
a single terrace plus facet within a large periodic supercell
with the specified mean tilt-twist inclination. Starting from
this structure, we have performed MD simulations over a
range of temperatures and with various external driving forces
for migration. In the presence of a driving force, the fully
faceted structure is observed to move by releasing steps from
the terrace-facet junction and/or by the collective motion of
steps on its facet. To trace the motion of the steps, we have
developed an automatic step-detection method. This method
proved useful for describing the migration mechanisms of the
GB solely on the length scale of its steps, without having
to reproduce the atomistic level of detail. By this means, we
showed how the steps are conserved as they move from free
motion on the terrace to flowing more slowly as a collective
bunch of steps on the facet.

By constructing graphs of step position versus time, we
could identify three stages of the GB step flow, namely
detachment of the steps, their propagation on the terrace and
their collective motion within a facet. At higher driving forces,
above 0.5 meV/atom, the rate-controlling mechanism appears
to be the step detachment from the facet junction. At lower
driving forces, our MD results suggest that the relative barrier
to step detachment increases and the boundary moves only by
the collective motion of the steps on the facet.

We used a geometrical model to show the relationship
between the characteristics of lateral step flow and the forward
motion of the MBP. We introduced, in addition, a 1D kMC
model, which reproduces the steady-state conditions of motion
exhibited by MD. A detailed comparison of these models with
the MD simulations reveals that the step-flow parameters,
that is, the step-detachment frequency and the velocity of
the steps in the facet, are highly correlated. This correlation
indicates that the motion of a step is affected by step-step
interactions.

On the limited timescale of a MD run, initial GB structures
do not fully equilibrate to enable us to simulate real processes
at GBs. The mechanisms of migration we have described here
could only have been discovered by initially preparing the

boundary in a structure close to being equilibrated, in which
just two inclinations, namely the terrace and the facet, occupy
the supercell. As shown in a previous study [12], when starting
from the same orientation but with a structure comprising only
well-separated steps, without any bunched together to form
a facet, we could identify only the propagation stage of the
free steps on the terrace, which occurs via the atomic shuffling
around the kink sites with a migration barrier of 0.1 eV. For the
fully faceted and energetically more stable initial structure of
this work, the steps need to detach from the facet they represent
before they can propagate on the terrace. As a consequence,
the effective energy barrier to boundary migration increases.
Indeed, at the lowest driving forces, where, in the present
study, the fully faceted boundary is seen to move only via the
collective motion of steps on the facet, the barrier to migration
might even be higher. Thus, to explore with MD the migration
processes likely to be important in a real GB, having decided
upon a mean inclination for the boundary, we had to take care
to set up an initial structure close to the equilibrium one before
running the long MD simulations.

Faceted GBs are ubiquitous in metals, and the step-flow
processes described in this paper are likely to be very general.
Our modeling and analysis of the migration of a mixed tilt
and twist GB has demonstrated quantitatively the importance
of step release from facets and the propagation of steps along
terraces. The insights gained from this work suggest that a
dynamic model for the mobility of steps can be developed
further to include an explicit interaction between them. We
hope this will be the basis of a versatile and quantitative
tool for simulating the migration of a wide range of general
GBs.
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APPENDIX

As the first configuration, we choose M steps (occupied
sites) on L lattice sites such that the ratio M/L matches that
of our MD simulation cell, depicted in Fig. 9(a). We then
assume that three types of events can occur independently
at each simulation time step. The steps can detach, or prop-
agate on the terrace, or move collectively in the facet. The
following rules describe the possible configurations in our
1D cell:

(1) If N � M/2 + 1, where N is the number of contiguous
steps, these N steps are defined as a facet and are moved
collectively with a probability corresponding to the velocity
v2.

(2) The rightmost step of a facet can detach with a proba-
bility corresponding to the rate fd .
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(3) If N � M/2 + 1, these steps are considered as free
and they are moved with a probability corresponding to the
velocity v1.

At each time step, all the possible events and their corre-
sponding transition rates ri are enumerated, and a cumulative
rate function R = ∑n

i=1 ri is constructed, where n is the current
total number of possible events.

Following the standard kMC algorithm, a random num-
ber is generated from the uniform distribution, ε ∈ (0,1),

which decides which event i will take place according
to

i−1∑

i=0

ri � εR �
n∑

i=0

ri . (A1)

After an event is executed, the time step is updated with t2 =
t1 + 	t , where 	t = R−1 ln 1/ε′, where ε′ is another random
number from the uniform distribution.
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