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(Cd,Zn,Mg)Te-based microcavity on MgTe sacrificial buffer:
Growth, lift-off, and transmission studies of polaritons
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Opaque substrates precluded, so far, transmission studies of II-VI semiconductor microcavities. This work
presents the design and molecular beam epitaxy growth of semimagnetic (Cd,Zn,Mn)Te quantum wells embedded
into a (Cd,Zn,Mg)Te-based microcavity, which can be easily separated from the GaAs substrate. Our lift-off
process relies on the use of a MgTe sacrificial layer which stratifies in contact with water. This allowed us to
achieve a II-VI microcavity prepared for transmission measurements. We evidence the strong light-matter coupling
regime using photoluminescence, reflectivity, and transmission measurements at the same spot on the sample.
By comparing a series of reflectance spectra before and after lift-off, we prove that the microcavity quality
remains high. Thanks to Mn content in quantum wells we show the giant Zeeman splitting of semimagnetic
exciton-polaritons in our transmitting structure.
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I. INTRODUCTION

Cavity exciton-polaritons [1] are quasiparticles exhibiting
fascinating phenomena such as Bose-Einstein condensation
[2,3] and superfluidity [4]. Recently, there is a growing interest
in the magnetooptical properties of cavity exciton-polaritons
and their condensates [5–9], e.g., magnetic field tuning of spin
levels paves the way to investigate polariton bistability [10]
and spin multistability [11]. In this context, II-VI based micro-
cavities are of particular interest since they allow to combine
the magnetooptical properties of excitons in diluted magnetic
semiconductors with cavity polaritons [12–18] giving rise to
semimagnetic cavity polaritons [19–23]. In such a system, the
enhanced magnetooptical properties of polaritons are inherited
from their excitonic part and result in an angle-dependent giant
Zeeman splitting [21] and a decrease of the polariton lasing
threshold in a magnetic field [22]. In order to investigate the
properties of a semimagnetic polariton superfluid in a magnetic
field, a sample allowing for transmission measurements is the
most beneficial [4]. Although the transparent substrates are
commercially available, they are not produced in sufficient
sizes and the growth of the desire structure is challenging [24–
26]. Another approach consists of growing a sacrificial layer
between the microcavity structure and the GaAs substrate,
which is removed in a postgrowth process. This method has
proved to be efficient in the case of chemical resistant structures
[27–34]. Here, we present a lift-off method developed for
potentially unstable and hygroscopic magnesium compounds.
Our method results in the production of a microcavity contain-
ing three semimagnetic (Cd,Zn,Mn)Te quantum wells (QW)
enabling transmission measurements. Our optical investigation
shows that after the lift-off process the microcavity properties
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are not undermined and the strong coupling regime is still
present. Our magnetooptical measurements reveal the giant
Zeeman effect of the semimagnetic cavity polaritons. Our
results are an important milestone towards the investigation
of the magnetooptical properties of semimagnetic polariton
superfluids.

II. TECHNOLOGY

A. Molecular beam epitaxy growth

Using molecular beam epitaxy on a 3” (100)-oriented
GaAs:Si substrate, we have grown a 1-μm-thick CdTe buffer
and a 1-μm hygroscopic MgTe layer. Typically, Mg-based II-
VI compounds crystallize in the rock salt or wurtzite structure
[35], but the metastable zinc-blende structure can be obtained
by growing epitaxially the Mg-based compound on a (100)-
oriented zinc-blende substrate [36–38]. In our case, MgTe
inherits its zinc-blende structure from the CdTe buffer. The
reduced lattice mismatch of MgTe-CdTe compared to MgTe-
GaAs ensures good growth conditions for MgTe. As shown
in Fig. 1, the microcavity itself consists of (Cd,Zn,Mg)Te
layers with various Mg concentration and is lattice matched to
MgTe, assuring the refractive index contrast in the distributed
Bragg reflector (DBR) layers and keeping the lattice constant
unchanged [20,39–41]. Both DBRs, bottom and top, consist
of 22 pairs made of Cd0.61Zn0.06Mg0.33Te for low refractive
index layers and Cd0.84Zn0.08Mg0.08Te for high refractive index
layers. The determination of the Mg concentration in DBRs is
based on both the absorption edge energy of the presented
system and the analysis of the refractive index described in
detail in Sec. III. The Cd0.84Zn0.08Mg0.08Te cavity has a λ0/n

optical thickness with λ0 = 760 nm, corresponding to the
cavity resonance at the center of the DBRs stopband and near
the QWs emission. Three Cd0.91Zn0.088Mn0.002Te quantum
wells are placed at the antinode of the electric field standing
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FIG. 1. (a) Sample structure with the nominal layers thickness. (b) Scanning transmission electron microscope (STEM) image of the sample
schematically presented in (a). (c) Close-up of the cavity region with the (Cd,Zn,Mn)Te QWs. (d) Presence of Mn in QWs and Mg in barriers
revealed by energy x-ray spectroscopy in STEM configuration.

wave in the center of the cavity in order to maximize the
coupling between QW excitons and cavity photons. The Zn
content is estimated based on the QWs emission energy [42]
and the Mn content is estimated from the giant Zeeman effect
according to Ref. [43]. The presence of Zn in DBRs and
QWs reduces strain and the presence of Mn2+ ions in the
QWs enhances the magnetooptical properties of the polaritons
through the s,p-d exchange interaction.

During the growth process, the sample is not rotated, which
results in a wedgelike shape for the cavity and DBRs. This
allows different light wavelengths to be confined in the cavity
at different positions in the sample. As a result, we are able
to tune our structure through a wide range of cavity mode
wavelengths around the photon-exciton resonance.

B. Lift-off process

In order to isolate the microcavity structure from the GaAs
substrate and CdTe buffer, the epitaxial face of the sample is
glued to a quartz plate with a neoprene glue and immersed in
deionized water at room temperature. During this rinsing step,
schematically presented in Fig. 2, MgTe in the thick sacrificial
layer reacts with water, dissociating in Mg(OH)2 and H2Te,
which results in a stratification of the MgTe sacrificial layer
and consequently disjoints the substrate from the microcavity
structure glued on the quartz plate. After immersion, the sample
is dried in nitrogen flow to avoid further sample degradation,
and a small effort is needed to mechanically separate the

FIG. 2. Sketch of the lift-off procedure. The microcavity structure
is grown on a hygroscopic MgTe buffer and its epitaxial face is glued
to a quartz plate. After 2-hour rinsing in deionized water, it is dried
with pressurized nitrogen and mechanically removed from the opaque
GaAs substrate.

microcavity on the quartz plate from the substrate. Various
immersion times have been tested from 15 minutes to 24 hours.
We find that for our structure formed on 1-μm-thick MgTe
the optimal immersion time is about 2 hours, which allows
to obtain a lifted-off structure with the best homogeneity. As
can be seen in Fig. 3(a) after our lift-off process, we obtain
homogeneous flakes with a characteristic area of more than 2
mm2, which is enough for both preliminary studies and poten-
tial devices. Shorter times do not allow for lift-off after drying
and longer times affect the microcavity structure as revealed
by optical microscopy characterization shown in Fig. 3(b).
It is worth noticing that the hygroscopic layer is ten times
thicker compared to our previous work performed on exfoliated
QDs [34]. In the latter work, the sample was immersed for 24
hours and then we could proceed with the exfoliation-like lift-
off of the QDs. In the present work, the microcavity structure
presents a risk of degradation during immersing in water due to
the presence of magnesium compounds in each of its layers and
therefore the immersion time had to be reduced. We observe,
indeed, that increasing the immersion time makes the lift-off
easier, however, the microcavity molders at the same time.

III. OPTICAL SPECTROSCOPY

A. Room-temperature transmission and reflectivity

Optical transmission investigations were performed after
lift-off of the microcavity from the substrate and the buffer. In
Fig. 4, we compare the transmittance and the reflectance spec-
tra, both measured at room temperature. The high reflectance
spectral range between 1.38 and 1.48 eV called stopband
corresponds to a transmittance minimum. The cavity mode
is visible at center of the stop-band as a minimum (maximum)
of the signal in the reflectivity (transmission) spectra. Side
oscillations result from interference in the multiple layers of
the DBRs. The experimental data are fitted using the transfer
matrix formalism [44,45] (red solid lines in Fig. 4). In our
model, the refractive index values of the (Cd,Zn,Mg)Te layers
are approximated by literature data of (Cd,Mg)Te layers given
in Ref. [46]. The Mg content in the low energy gap (high
refractive index) Cd0.84Zn0.08Mg0.08Te was evaluated basing
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FIG. 3. Sample surface characterization by optical microscope in
transmission mode. (a) Best surface homogeneity is achieved after a
2-hour immersion time—continuous area of more than 2 mm2 can be
seen; edge of the sample at the bottom left corner of the image. (b)
Too long immersion time (24-hours) results in holes torn out within
the sample.

on the energy gap determined from Fig. 4(b) (Eg(low) = 1.7
eV), taking into account an energy gap increase of about
18.5 meV for each percent of Mg [37], and an energy gap
increase related to Zn content, as determined from observation
of (Cd,Zn)Te QWs. On this basis, the Mg content in the high
energy gap (low refractive index) Cd0.61Zn0.06Mg0.33Te layer
is used as a fitting parameter adjusting the stop-band width,
which is governed by the refractive index step in the DBR
layers.

B. Low-temperature reflectivity: Strong coupling

In order to study the exciton-photon coupling in our mi-
crocavity structure, we performed reflectance measurements
at helium temperatures (T = 7 K). The experiment was set
on the same cleaved part of the sample before and after the
lift-off process. Taking advantage of the wedgelike shape of
the layers resulting from the growth process, we have collected
a series of reflectance spectra for various cavity mode energies,

FIG. 4. Reflectance (a) and transmittance (b) spectra measured at
room temperature. A stopband is observed between 1.38 and 1.48
eV. The cavity mode is at 1.43 eV. Side oscillations result from
interference in the multiple layers of the DBRs. Red solid lines
represent the fit using the transfer matrix method taking into account
the refractive index dispersion.

i.e., exciton-photon detuning values. As can be seen in Fig. 5
when probing various places at the sample surface along the
thickness gradient, the whole spectra (stop-band, cavity mode,
and side-band oscillations) drifts in energy from higher to

FIG. 5. Reflectivity maps before (a) and after (b) lift-off measured
at 7 K reveal the strong exciton-photon coupling, thus the formation
of exciton-polaritons. Solid lines represent model based on exciton-
photon interaction Hamiltonian (1).
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lower values compared to the both heavy and light hole QW
excitons. When the energy of the cavity mode is close to the
QW excitons, around 1.65 eV, we observe clear anticrossing
behavior, which is a signature of the strong exciton-photon
coupling and the formation of exciton-polaritons. Comparing
the reflectance maps before and after the lift-off process
[Figs. 5(a) and 5(b), respectively], it is clear that the strong
coupling regime is still present after lift-off, which proves that
the lift-off process does not significantly alter the microcavity
structure despite the relatively high Mg concentration in the
DBR layers. We attribute the little difference in dependence
of the stop-band energy on the position to the fact that we
probe a slightly different position on the sample before and
after lift-off. Solid blue lines in Fig. 5 represent the solution of
the time independent Schrödinger equation for the interaction
Hamiltonian between both heavy- and light-hole excitons and
photons:

H =
⎡
⎣

Eph ωhh/2 ωlh/2
ωhh/2 Ehh 0
ωlh/2 0 Elh

⎤
⎦, (1)

where Eph is the confined photon energy which is being
changed during scan, Ehh and Elh are the energies of heavy-
hole and light-hole excitons, respectively, ωhh and ωlh are
the coupling energies of heavy-hole and light-hole excitons,
respectively, with a photon. We do not observe a significant
effect of the lift-off procedure on the parameters Ehh, ωhh,
and ωlh. Those fitting parameter values are Ehh = 1643.0
meV, ωhh = 10.6 meV, ωlh = 7.4 meV and Ehh = 1643.8
meV, ωhh = 10.3 meV, ωlh = 8.5 meV for before and after
lift-off, respectively. We, however, notice that some of the
system parameters have changed after the lift-off process,
e.g., the light-hole exciton energy decreased from 1660.4 to
1652.2 meV. Since the light-hole exciton energy is particularly
sensitive to strain, we conclude that the strain of the sample
induced by cooling process on GaAs and glass substrate is
different. Also the full width at half maximum (FWHM) of
the cavity mode decreases from 5.97 to 5.32 meV, which can
be interpreted as an increase of cavity quality factor due to
suppression of the absorption after removing the absorbing
CdTe buffer and GaAs substrate and improvement of the
reflectance on the air/semiconductor interface comparing to
the (Cd,Zn,Mg)Te/MgTe interface.

C. Polariton dispersion

To observe the polariton dispersion in our lifted-off struc-
ture, we performed measurements resolved by the angle of
emission. For that purpose, we collected the signal from the
sample in a far-field configuration (k-space imaging) at helium
temperatures (T = 7 K). We investigated two positions at the
sample surface corresponding to two different values of the
exciton-photon detuning. Results of k-space measurements of
back illuminated photoluminescence presented in Figs. 6(a)
and 6(d) reveal various behaviors of polaritons in the pre-
sented system. For a slightly negative detuning δ = −3.6 meV
[Fig. 6(a)], we observe that polariton recombination occurs
mainly at the bottom of the lower polariton dispersion curve,
for a more negative detuning δ = −15.3 meV [Fig. 6(d)],
the polariton recombination occurs mainly at the so-called

FIG. 6. Low-temperature angle-resolved back excited photolu-
minescence [(a) and (d)], angle-resolved reflectance [(b) and (e)],
and real-space transmittance at normal incidence [(c) and (f) [for
two different detuning values δ = −3.6 meV [(a)–(c)] and δ =
−15.3 meV [(d)–(f)].

bottleneck of the lower polariton. Despite the relatively strong
signal observed for negative detuning, polariton condensation
was not observed due to a heat dissipation in our sample with
only three 10-nm-thick QWs. This is in agreement with the
fact that for samples we have grown without a MgTe buffer, the
lowest number of QWs required for condensation was 4 (20-nm
QWs) [20,22]. The values of exciton-photon detuning are
determined thanks to the lower and upper polariton dispersion
curves measured using angle-resolved reflectance [Figs. 6(b)
and 6(e)] and fitted using Hamiltonian (1) including the angular
dependence of the cavity photon energy. Transmittance spectra
at normal angle (k = 0), presented in Figs. 6(c) and 6(f) also
allow to identify the lower and upper polariton resonances.

D. Giant Zeeman effect for polaritons

Figure 7(a) shows photoluminescence spectra measured in
magnetic field up to 5 T, in Faraday configuration, in two
circular polarizations, at low temperature (T = 7 K). Two
polariton peaks corresponding to lower and upper polaritons
can be resolved. Their position as a function of magnetic field
is plotted in Fig. 7(b). We observe significant splitting of both
polariton states, as expected for semimagnetic polaritons [21].
Since the total (uncoupled) exciton wave function is distributed
over the polaritons, the sum of the lower and upper polariton
splitting gives the Zeeman splitting of the uncoupled exci-
ton [47], which allows to evaluate [43] the Mn content in the
QWs to x = 0.2%. Worth noticing is the fact that typically
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FIG. 7. Magnetophotoluminescence at normal incidence per-
formed at T = 7 K reveals a giant Zeeman effect of polaritons proving
the presence of Mn2+ ions in the microcavity. (a) Photoluminescence
spectra measured in Faraday configuration, in two circular polariza-
tions. Magnetic field step size is 0.5 T. (b) Energy position of the lower
and upper polaritons as a function of magnetic field. The sum of the
energy splitting for the lower and upper polaritons gives information
on the Mn2+ ions content in the sample.

several tens of μeV splitting in several teslas is observed, while
in our sample this value is about 2 meV at 5 T.

IV. CONCLUSIONS

In this work, we have presented a lift-off method, which
allowed to obtain a microcavity designed for transmission
investigation of semimagnetic cavity polaritons. The lift-off
process relies on a MgTe sacrificial layer that dissociates in
water. The immersion time of the sample in water is a crucial
parameter and we show that for a 1-μm-thick sacrificial
MgTe layer an optimal 2 hour immersion time allows to
easily separate the microcavity from the GaAs substrate
and does not undermine the cavity optical parameters
neither the exciton-photon strong coupling. Low-temperature
transmission measurements and angle-resolved reflectance and
back illuminated photoluminescence evidence the polaritons
dispersion. Our magnetooptical investigation shows the
giant Zeeman splitting of semimagnetic cavity polaritons.
These results are an important milestone toward the study of
magnetooptical properties of superfluid cavity polaritons for
which transmitting samples are needed.
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[20] J.-G. Rousset, B. Piȩtka, M. Król, R. Mirek, K. Lekenta, J.
Szczytko, J. Borysiuk, J. Suffczyński, T. Kazimierczuk, M.
Goryca, T. Smoleński, P. Kossacki, M. Nawrocki, and W.
Pacuski, Strong coupling and polariton lasing in Te based
microcavities embedding (Cd,Zn)Te quantum wells, Appl. Phys.
Lett. 107, 201109 (2015).

[21] R. Mirek, M. Król, K. Lekenta, J.-G. Rousset, M. Nawrocki,
M. Kulczykowski, M. Matuszewski, J. Szczytko, W. Pacuski,
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