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Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer
graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding
nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the
analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically
favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons
into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll
lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride
layers used in the model are found by density functional theory calculations.
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I. INTRODUCTION

A set of methods for synthesis of carbon nanoscrolls
(CNSs) has been elaborated in the recent decade including
electrochemical exfoliation of graphite leading to dispersion
of monolayer graphene sheets [1–3], high-energy ball milling
of graphite [4], chemical vapor deposition [5–7], electrostatic
deposition of graphene sheets in hydrogen atmosphere [8], the
microexplosion method [9,10], the use of microwave sparks in
liquid nitrogen [11], rolling of a graphene layer on a substrate
immersed in isopropyl alcohol solution [12], and rolling around
water nanodroplets [13] and around nanowires [14]. A CNS-
based foam with a high specific capacitance and a very low
density has been produced [15]. A CNS-based nanoelectronic
device has been also fabricated [12]. These advances in CNS
synthesis generate considerable interest for electronic [16–19],
optical [16], electric [7,9–11], and mechanical [7] properties
and possible applications of CNSs. Namely, CNSs hold much
promise for applications in supercapacitors [10,14,15], batter-
ies [14], chemical sensors [20,21], nanofluidic devices [13,22],
nanoelectromechanical systems [17], and for hydrogen storage
[23–25].

The following theoretical approaches have been used to
consider structure and energetics of nanoscrolls, which hold
the key to understanding their properties, application, and
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formation mechanisms. First, the structure and energetics of
CNSs have been studied by density functional theory (DFT)
calculations in the local density approximation (LDA [26])
[18]. However, such calculations considerably underestimate
the interlayer interaction energy of graphite [27–31]. Further-
more, DFT calculations do not allow to consider systems
consisting of more than several hundred atoms. Second, a
set of semiempirical atomistic approaches has been used.
The structure of single-layer carbon nanoscrolls (SCNSs) was
studied using a chain model in which a row of carbon atoms
parallel to the nanoscroll axis is considered as one particle
[32]. The processes of SCNS [33] and single-layer boron
nitride nanoscroll (SBNNS) [34] rolling have been simulated
by molecular dynamics. To use successfully such semiem-
pirical atomistic approaches tedious work on elaboration
of appropriate interatomic potentials is necessary. However,
the parameters of classical interatomic potentials for carbon
have not been fitted to reproduce bending elastic energies of
graphene or boron nitride layers. For example, the bending
elastic constant for a graphene layer calculated used different
versions of the popular Brenner potential is about 2 times
smaller [35] than the constant obtained by previous ab initio
calculations [36–41] and by DFT calculations performed in the
present paper. Whereas semiempirical atomistic approaches
allow to consider nanoscrolls consisting of thousands of atoms,
very few examples of a large size can be considered, which is
not sufficient to study the structure and energetics as functions
of nanoscroll dimensions. Third, two types of analytical and
semianalytical models have been elaborated [33,42–45]. These
models allow to calculate dependences of structural and ener-
getic characteristics of a nanoscroll on its dimensions using
values of bending elastic constants and interlayer interaction
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energies obtained in the experiment or by high-level ab initio
methods. The first of the models is based on an approximate
consideration of the potential energy of a single-layer nano-
scroll with a large number of layers and gives an expression
for dimensions of such nanoscrolls in the stable state [33,43].
The second one gives the expression of nanoscroll potential
energy [42,44,45], whereas the dimensions of nanoscrolls in
a stable state can be obtained by numerical calculations. Such
a model allows to consider not only large nanoscrolls but
also nanoscrolls with a minimal number of layers, which
are promising, for example, for enhancement of adsorption
properties of nanoscroll-based materials or decreasing the size
of nanoscroll-based nanoelectromechanical systems.

In addition to CNSs, graphene oxide nanoscrolls not
only with a hollow cavity inside [46] but also wrapped
around carbon nanotubes [47] and metal nanoparticles [48]
as well as boron nitride nanoscrolls have been obtained
[49–51]. Advances in the synthesis of other 2D materials,
such as hexagonal boron nitride and graphene/hexagonal boron
nitride heterostructures (see Refs. [52,53] for recent reviews),
and the variety of methods of CNS synthesis listed above
allow us to expect that other types of nanoscrolls can be
produced in the near future. Such nanoscrolls can have unique
properties, which are interesting for fundamental science and
promising for applications. For example, metamaterials with
a negative magnetic permeability based on conductors rolled
into scrolls have been considered [54]. We believe that bilayer
carbon/boron nitride nanoscrolls (CBNNSs) with alternating
dielectric and conducting layers are promising for elaboration
of such new metamaterials with negative refractive indexes
and magnetic permeability. However, up to now only prop-
erties of single-layer carbon nanoscrolls [18,32,33,42–45] and
rolling of single-layer boron nitride nanoscrolls [34] have been
considered.

Here we use our recent semianalytical model [44] to
compare the structure and energetics of single-layer and bilayer
carbon nanoscrolls (SCNSs and BCNSs) and single-layer and
bilayer boron nitride nanoscrolls (SBNNSs and BBNNSs)
as well as CBNNSs made of bilayer graphene/hexagonal
boron nitride heterostructure. Not only characteristics of the
stable state of nanoscrolls but also the barriers to rolling and
unrolling are studied as functions of nanoscroll dimensions.
The calculated barriers allow us also to estimate the lifetimes
of the nanoscrolls relative to unrolling using the Arrhenius
formula and thus to determine dimensions of the smallest
nanoscrolls which are sufficiently stable to be used in nano-
electromechanical systems, electronic devices, and composite
materials. Moreover, recent experimental and theoretical data
are carefully analyzed to choose appropriate values of inter-
layer interaction energies used in the numerical calculations,
whereas values of the bending elastic constants for graphene
and hexagonal boron nitride are revised by calculations within
the DFT approach. This allows us to perform the quantitative
comparison of characteristics of the nanoscrolls.

The paper is organized in the following way. In Sec. II the
choice of interlayer interaction energy values is discussed and
elastic constants for bending of graphene and boron nitride
layers used in the model are calculated. Section III presents
the model of nanoscrolls and calculations of their structure
and energetics. Our conclusions are summarized in Sec. IV.

II. INTERLAYER INTERACTION AND ELASTIC ENERGY

The present section is devoted to the choice of values for
interlayer interaction energies in graphene-graphene, boron
nitride–boron nitride, and graphene–boron nitride systems and
elastic energies of rolled graphene and boron nitride layers.
Since standard DFT methods fail to describe properly weak
van der Waals interaction of graphene and boron nitride
layers, the values for the interlayer interaction energy are
chosen on the basis of the literature review involving avail-
able experimental data and results of calculations within the
random phase approximation (RPA) and quantum Monte Carlo
(QMC) approach (Sec. II A). The values of the bending elastic
constants are accessible through DFT and these calculations
are performed in Sec. II B.

A. Interlayer interaction energy

The interlayer interaction in graphite has been studied in
diverse experiments and the following data for the interlayer
interaction energy were reported: −52 ± 5 meV/atom [55],
−43 ± 5 meV/atom [56], −35+15

−10 meV/atom [57], and −31 ±
2 meV/atom [58]. The RPA and QMC calculations of the
interlayer interaction energy in graphite and graphene bilayers
[for bilayers the energy is expressed in meV per atom of
the upper (adsorbed) layer] in the ground-state AB stacking
gave very similar values of −48 meV/atom [59] (RPA),
−56 ± 6 meV/atom [60] (QMC), and−35.6 ± 1.6 meV/atom
[61] (QMC), with the only exception of −91.35 meV/atom
[62] (RPA). Therefore, we use as an estimate for the interlayer
interaction energy of commensurate graphene layers the av-
erage of the experimental data, which corresponds to about
−40 meV/atom.

The adjacent layers of nanoscrolls have, nevertheless, dif-
ferent curvature radii and should be considered as incommen-
surate. The interlayer interaction energy in such incommen-
surate structures can be estimated as the average of interlayer
interaction energies for commensurate structures with different
relative in-plane displacement of the layers [27,63–66]. Based
on the potential energy surface for interaction of graphene
layers fitted to the experimental data on the shear mode
frequencies in bilayer and few-layer graphene and graphite, the
energy cost for transition from the ground-state structure to the
incommensurate one was estimated to be about 5 meV/atom
[65]. The same value can be deduced from the DFT calculations
at the experimental interlayer distance [67] using the exchange-
correlation functional of Perdew, Burke, and Ernzerhof (PBE)
[68] as well as the PBE-D2, PBE-D3, PBE-D3(BJ), vdW-
DF2, and optPBE-vdW functionals. This approach has been
verified against the experimental data on the shear mode
frequencies, shear modulus, and the results of RPA, QMC, and
local second-order Møller-Plesset perturbation theory (LMP2)
calculations for bilayer graphene, graphite, and bilayer and
bulk boron nitride [67]. It can be also mentioned that the LDA
calculations at the optimized interlayer distance gave the result
which is only 1 meV/atom smaller [27,31]. Therefore, it is
reasonable to assume that the interlayer interaction energy of
incommensurate graphene layers is about −35 meV/atom.

For the graphene/boron nitride heterostructure, the cost
for the transition from the commensurate state with the AB1
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stacking characterized by the minimal interlayer interaction
energy to incommensurate states was estimated from the RPA
calculations [64] to be about 7 meV/atom. The close value of
7.4 meV/atom was obtained from the vdW-DF2 calculations
at the experimental interlayer distance [69]. Using the minimal
interlayer interaction energy of the commensurate heterostruc-
ture of about −42 meV/atom found from the RPA calculations,
the interlayer interaction energy in the incommensurate state
results to be about −35 meV/atom [64] again, the same as the
selected value for pure graphene.

As far as we are aware there are no experimental data on
the interlayer interaction in hexagonal boron nitride. The only
reported RPA value of −37.6 meV/atom for the commensurate
bilayer [62] needs further verification since the value of
−91.35 meV/atom obtained for graphene in the same paper is
clearly too large in magnitude. The result of the paper for the
commensurate graphene/hexagonal boron nitride heterostruc-
ture of −57.9 meV/atom is also rather different from another
publication [64] and from the results of the same paper for pure
graphene and boron nitride bilayers, which seems somewhat
surprising provided the apparent similarity in these van der
Waals–bonded layered materials. Therefore, we do not have
reliable data on the interaction energy of commensurate boron
nitride layers. Nevertheless, it can be expected this energy
is close to the interlayer interaction energies in graphene
bilayers and graphene/boron nitride heterostructures. The en-
ergy cost for the transition of boron nitride bilayers from the
ground-state commensurate structure to the incommensurate
one was estimated to be 6.3 meV/atom on the basis of
vdW-DF2 calculations at the experimental interlayer distance
[70]. Similar values of 6–7 meV/atom can be deduced from
other DFT calculations at the experimental interlayer distance
[67] and LMP2 calculations [71]. These data are of the same
order of magnitude as those for graphene and graphene/boron
nitride heterostructure and it can be roughly assumed that the
interlayer interaction energy of incommensurate boron nitride
layers is also −35 meV/atom.

B. Bending elastic constant

The results of previous calculations related to bending
elastic energies of graphene [36–41,72–74] and boron nitride
[36,41,72–76] layers show significant scatter. To get insight
into these characteristics we have performed DFT calculations
of elastic energies of carbon and boron nitride nanotubes
using the VASP code [77]. The dependence of the elastic
energy on the nanotube chirality is usually negligibly small
[36,37,40,72–76]. Therefore, only armchair nanotubes are
studied here. Radii of the considered nanotubes are within
10 Å and the calculations are done for the minimal unit
cells of the nanotubes under periodic boundary conditions.
The dimensions of the rectangular model cell perpendicular
to the nanotube axis are 40 Å. The PBE functional [68] is
used and the projector augmented-wave method (PAW) [78]
is applied to describe the interaction of valence electrons with
the core. The integration over the Brillouin zone is carried
out according to the Monkhorst-Pack scheme [79] with 36 k

points along the nanotube axis. The maximum kinetic energy
of plane waves is 550 eV. The convergence threshold of the
self-consistent field is 10−8 eV. The size of the model cell

FIG. 1. Calculated difference RN − RB (in Å) in the radii of
the cylinders formed by nitrogen and boron atoms in geometrically
optimized boron nitride nanotubes as a function of the average
nanotube radius R (in Å).

along the nanotube axis and positions of atoms within the
model cell are optimized so that the residual forces are within
0.01 eV/Å. The calculations for flat graphene and boron nitride
layers have been also performed to extract the elastic energies
of the nanotubes. In these calculations the rectangular model
cells comprising 4 atoms are considered with the 20 Å vacuum
gap between the periodic images of the layers. The 36×40 × 1
k-point grid is used, where the first number corresponds to
the armchair direction and second one to the zigzag direction.
The relative energy of nanotubes per atom is computed as
Erel = ENT − EFL, where ENT and EFL are the energies per
atom in the nanotube and flat layer, respectively.

The same as in previous publications [36,72–76], geom-
etry optimization performed in the present paper leads to
displacement of boron and nitrogen atoms inward and outward,
respectively, of the initially smooth wall. As a result, two
cylinders are formed, where the inner one is composed of boron
and the outer one of nitrogen. The difference in the radii of the
cylinders formed by nitrogen, RN, and boron, RB, decreases
with increasing the average radius R (Fig. 1). This average
radius is used below to study the dependence of the elastic
energy on the curvature radius.

Though we subtract the energies per atom in the flat layers
we should admit that the calculations for nanotubes and
flat layers are not fully consistent; e.g., the model cells are
different. This small inconsistency, however, is not important
for calculations of the elastic energy as long as we assume
that the calculated relative energy Erel = Eel + E0 is given by
the sum of the elastic energy Eel and small correction E0 to
the energy of the flat layer per atom. We also assume that the
elastic energy depends on the average curvature radius R as
Eel = C/Rp. The parameters corresponding to the best fit to
this dependence are listed in Table I. According to our results,
both for carbon and boron nitride nanotubes the deviation from
the classical quadratic law with p = 2 is negligible.

Let us discuss the reasons of the deviation of exponent p

from 2 based on our calculations and literature data. The cases
of deviation of exponent p from 2 for boron nitride nanotubes
have been reported in the literature. In Ref. [36] the approx-
imation Erel = 1.60/R1.94 − 1.65/R1.95 (PBE) was obtained
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TABLE I. Parameters of approximation of the energy of nanotubes relative to the graphene layer obtained by DFT calculations according
to the expression Erel = E0 + C/Rp .

Method Nanotubes E0 (meV/atom) C (eV Å2/atom) p Ref.

Carbon
PBE armchair 9.59±0.13 2.146 ± 0.013 2.053 ± 0.005 This work
LDA armchair −18±7 1.1 ± 0.2 1.5 ± 0.2 [41]
LDA zigzag 2±2 2.07 ± 0.14 2.06 ± 0.07 [41]

Boron nitride
PBE armchair 6.21±0.05 1.3227 ± 0.0010 1.9943 ± 0.0010 This work
LDA armchair 26.5±0.8 0.83 ± 0.02 1.75 ± 0.02 [76]
LDA zigzag 53±7 1.56 ± 0.09 2.53 ± 0.12 [76]

for armchair boron nitride nanotubes and in Ref. [75] the
best fit by the power law gave Erel = 1.4497/R2.09481 (LDA)
both for armchair and zigzag boron nitride nanotubes. Some
deviation from p = 2 is also observed when we fit the ab initio
data presented in Refs. [76] and [41] (Table I). On the other
hand, very small deviations from p = 2 were found by tight-
binding calculations in Ref. [72], namelyErel = 2.0/R2.083 and
Erel = 2.2/R1.996 for armchair and zigzag carbon nanotubes,
respectively, and Erel = 1.4/R1.984 and Erel = 1.4/R1.980 for
armchair and zigzag boron nitride nanotubes, respectively. The
scatter in the exponent p in different papers indicates that
its deviation from p = 2 is of computational rather than of
fundamental nature. In particular, if we ignore the energy offset
E0, which is within the typical error of DFT calculations, in
approximation of our data, p gets much farther from 2, to 1.77
for carbon nanotubes and 1.87 for boron nitride nanotubes.
Increasing the number of considered nanotubes of different
radii also improves the agreement with the classical law with
p = 2 according to our calculations.

Therefore, it is reasonable to assume that the classical
law with p = 2 is valid for rolling both graphene and boron
nitride layers. The parameters of approximation of our data
with the corresponding expression are given in Table II.

It is seen from Fig. 2 that the classical law describes our
DFT data very well. The calculated bending constants are in
excellent agreement with the previous ab initio calculations
(Table II) using the LDA, PBE, and Perdew-Wang 91 (PW91)
functionals [80]. It should be also mentioned that the value
C = 1.79 eV Å

2
/atom close to our result for carbon nanotubes

was reported previously for sulfur-terminated zigzag graphene
nanoribbons [37] (PBE).

The obtained coefficient C for boron nitride is by a factor of
one and a half smaller than that for graphene (Fig. 2, Table II),
in agreement with the results reported previously [36,72–74].
This difference can be explained by the fact that the Young
modulus for boron nitride is 10%–20% smaller compared
to graphene [64,70] as well as by buckling of boron nitride
nanotubes [36,72–76].

III. STRUCTURE AND ENERGETICS OF NANOSCROLLS

We consider the structure and energetics of nanoscrolls
made from flat rectangular single-layer and bilayer nanorib-
bons with the length L and width w. According to the
analytical model of single-layer nanoscrolls [44,45] used here,
the distance R between the layer and the nanoscroll axis is

TABLE II. Parameters of approximation of the energy of nanotubes relative to the graphene layer obtained by DFT calculations according
to the expression Erel = E0 + C/R2 (p = 2).

Method Nanotubes E0 (meV/atom) C (eV Å
2
/atom) Ref.

Carbon
PBE armchair 8.1 ± 0.3 2.010 ± 0.007 This work
PBE armchair/zigzag 1.95 [36]
PBE armchair 1.92–1.96 [37]
PBE zigzag 1.93–1.98 [37]
PW91 armchair 2.02–2.17 [39]
PW91 zigzag 2.14 [38]
LDA armchair −2.2 ± 1.0 2.09 ± 0.04 [41]
LDA zigzag −0.2 ± 0.5 1.949 ± 0.009 [41]
LDA armchair 2.00 [40]
LDA (8, 4) 2.15 [40]
LDA (10, 0) 2.16 [40]

Boron nitride
PBE armchair 6.43 ± 0.04 1.3280 ± 0.0004 This work
LDA armchair 33.8 ± 1.1 1.03 ± 0.02 [76]
LDA zigzag 18 ± 8 1.25 ± 0.04 [76]
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FIG. 2. Calculated energy Erel (in eV/atom) of armchair nan-
otubes relative to the flat layer per atom as a function of average
nanotube radius R (in Å). The results of DFT calculations for
carbon (open circles) and boron nitride (filled squares) nanotubes
are approximated by the dependence Erel = C/R2 + E0, where C =
2.010 eV Å

2
/atom and E0 = 8.1 meV/atom for carbon (dashed line)

and C = 1.3280 eV Å
2
/atom and E0 = 6.43 meV/atom for boron

nitride (solid line).

described in polar coordinates (R,ϕ) by the equation of the
Archimedean spiral R = hϕ/2π , where h is the approximate
distance between adjacent spiral turns (equal to the interlayer
spacing of the nanoscroll). The length L is measured along
the spiral line and the width w corresponds to the edge of the
nanoribbon parallel to the nanoscroll axis. The length L for the
Archimedean spiral is determined by the following equation
[44]:

L = L(ϕin,ϕout) =
∫ ϕout

ϕin

h

2π

√
1 + ϕ2 dϕ

= h

4π

[
ϕout

√
1 + ϕ2

out − ϕin

√
1 + ϕ2

in

+ ln
(
ϕout +

√
1 + ϕ2

out

) − ln
(
ϕin +

√
1 + ϕ2

in

)]
, (1)

where ϕin = πRin/h and ϕout = πRout/h are the inner and
outer angles of the single-layer nanoscroll corresponding to its
inner Rin and outer Rout radii, respectively [see the scheme of
the single-layer nanoscroll in Fig. 3(a)]. The interlayer spacing
h of both graphite [81] and hexagonal boron nitride [82] at
room temperature is close to 0.335 nm. We use this value of
the interlayer spacing h for all the considered nanoscrolls.

The energy EW1 of the interlayer interaction between
adjacent turns of the single-layer nanoscroll is proportional
to the area of the layer overlap:

EW1 = εw

Sa

L(ϕin,ϕout − 2π ), (2)

where ε is the interlayer interaction energy per one atom of
the nanoscroll, L(ϕin,ϕout − 2π ) is the length of the layer
overlap, Sa = 3

√
3a2/4 is the area per one atom, and a is

the bond length. As discussed in Sec. II, the scatter of the
experimental data and results of calculations on the interlayer
interaction energy ε for the considered materials allow us
to estimate this energy with an accuracy of about 20%,
which determines the accuracy of our calculations. Since the
difference between the bond lengths of graphite and hexagonal

FIG. 3. (a), (b) Schemes of nanoscrolls with the axis perpendic-
ular to the figure plane: (a) a single-layer nanoscroll, (b) a bilayer
nanoscroll of identical layers. (c), (d) Calculated potential energy E

of carbon nanoscrolls per unit width (1 nm) of the initial nanoribbon
as a function of the inner radius Rin: (c) single-layer nanoscrolls
made from graphene nanoribbons with the length L = 7, 10, 12.5,
and 15 nm, (d) bilayer nanoscrolls made from bilayer graphene
nanoribbons with the length L = 15, 20, 25, and 30 nm. The energies
of bilayer nanoscrolls are measured relative to the energy of the flat
bilayer graphene nanoribbon.

boron nitride is about 1.7%, we neglect this difference and
use the value a = 0.142 nm of the bond length of graphite
for all considered nanoscrolls. As the forces of the interlayer
interaction drop drastically with increasing the separation
between the interacting atoms, the macroscopic approach used
here to estimate the interlayer interaction energy is adequate
already for the overlap lengths which are several times greater
than the interlayer spacing, i.e., for the overlap lengths above
1 nm.

The total elastic energy Eel of the single-layer nanoscroll
is determined in a similar manner to Eq. (1), through the
integration of (hwEa/2πSa)

√
1 + ϕ2 with respect to the angle

ϕ, whereEa = CK2 is the bending elastic energy per one atom,
K is the layer curvature, and the bending elastic constant C is
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calculated in Sec. II. Analogously to Ref. [44], we use here an
approximate expression for the layer curvature K = 1/R. Thus
the total elastic energy is given by the following expression:

Eel = 2πCw

hSa

∫ ϕout

ϕin

√
1 + ϕ2

ϕ2
dϕ

= 2πCw

hSa

[√
1 + ϕ2

in

ϕin
−

√
1 + ϕ2

out

ϕout

+ ln
(
ϕout +

√
1 + ϕ2

out

) − ln
(
ϕin +

√
1 + ϕ2

in

)]
. (3)

It should be noted that the relative difference between the
total elastic energies calculated using Eq. (3) and the exact
expression for this energy [45] is less than 0.01% even for the
nanoscrolls with the smallest considered inner radius.

The potential energy E of the single-layer nanoscroll is
E = Eel − EW1, where Eel and EW1 are given by Eqs. (3) and
(2), respectively.

For bilayer nanoscrolls, we use the analogous model where
layers 1 and 2 lie on identical Archimedean spirals with
double approximate distance 2h between adjacent spiral turns.
These spirals have the same origins located at the nanoscroll
axis and can be mapped onto each other through rotation by
π radians about this common origin [see the scheme of a
bilayer nanoscroll in Fig. 3(b)]. In such a model, the distance
between adjacent layers 1 and 2 is approximately equal to
the interlayer spacing h. It is convenient to take equations
of these Archimedean spirals in the form R1 = hϕ1/π and
R2 = hϕ2/π , where R1 and R2 are the distances from layers
1 and 2, respectively, to the nanoscroll axis and angles ϕ1 and
ϕ2 are measured from the origin of the spirals. Then the angles
corresponding to the nearest points of adjacent layers (that is
the points which are separated by the interlayer spacing h) are
related by expressions ϕ1 = ϕ2 − π and ϕ2 = ϕ1 − π in the
cases where layer 1 and layer 2, respectively, correspond to
the internal layer in the considered pair of adjacent layers. The
total interlayer interaction energy EW2 of the bilayer nanoscroll
is proportional to the total overlap area of adjacent layers 1 and
2 and takes the form

EW2 = εw

Sa

[L(ϕin1,ϕout2 − π ) + L(ϕin2,ϕout1 − π )], (4)

where ϕin1 = πRin1/h and ϕout1 = πRout1/h are the inner and
outer angles of layer 1 of the bilayer nanoscroll corresponding
to its inner Rin1 and outer Rout1 radii, respectively, ϕin2 =
πRin2/h and ϕout2 = πRout2/h are analogously the inner and
outer angles of layer 2, respectively [see Fig. 3(b)], and
the lengths of the arcs of the spirals L(ϕin1,ϕout2 − π ) and
L(ϕin2,ϕout1 − π ) are determined by Eq. (1) taking into account
the doubled distance 2h between adjacent spiral turns.

The potential energy E of the bilayer nanoscroll is E =
Eel1 + Eel2 − EW2, where EW2 is given by Eq. (4), and Eel1

and Eel2 are the elastic energies of layers 1 and 2, respectively,
determined by Eq. (3) taking into account the doubled distance
2h between adjacent spiral turns. Note that from symmetry
considerations Rin1 = Rin2 and Rout1 = Rout2 for bilayer nano-
scrolls which consist of identical layers 1 and 2 [see Fig. 3(b)].

The dependences of the calculated potential energy E of
the nanoscrolls (per width w = 1 nm) on the inner radius Rin

TABLE III. Calculated characteristic dimensions of single-layer
carbon (C), single-layer boron nitride (BN), bilayer carbon (C-C),
boron nitride (BN-BN), and carbon/boron nitride (C-BN) nanoscrolls:
minimal possible length Lm of the initial nanoribbon for which the
stable state of the nanoscroll exists and length L0 of the initial
nanoribbon for which the stable state of the nanoscroll is the ground
state of the system.

single layer bilayer

C BN C-C BN-BN C-BN

Lm (nm) 6.9 5.5 12.4 9.9 11.3
L0 (nm) 12.4 10.1 24.9 20.3 22.7

for different lengths L of the initial nanoribbons are shown
by examples of SCNSs and BCNSs in Figs. 3(c) and 3(d),
respectively. The bending points of these dependences for the
single-layer nanoscrolls correspond to the inner radius at which
ϕout − ϕin = 2π and, therefore, the adjacent layers begin to
overlap and nonzero interlayer interaction energy appears. The
bending points of the dependences for the bilayer nanoscrolls
correspond to the inner radius at which ϕout1 − ϕin1 = 2π and
ϕout2 − ϕin2 = 2π . At this inner radius of a bilayer nanoscroll
the total layer overlap length exceeds the initial nanoribbon
lengthL and the interlayer interaction energy begins to increase
with decreasing the inner radius. The minimum E0 of the
dependence of the potential energy E on the inner radius Rin

corresponds to the stable state of the nanoscroll. This minimum
only exists for nanoscrolls formed from the nanoribbon of
length L which exceeds the minimal possible value Lm. The
calculated values of the minimal possible length Lm are shown
in Table III. Since the elastic bending constant C of graphene
is greater than this constant for hexagonal boron nitride, the
minimal possible length Lm of SCNS is greater than this length
of SBNNS. Analogously, for bilayer nanoscrolls, the minimal
possible length Lm decreases in the following order: BCNS
> CBNNS > BBNNS. The minimal possible length Lm of
a bilayer nanoscroll is 1.8 times greater than this length for
a single-layer nanoscroll made of the same 2D material for
both carbon and boron nitride nanoscrolls. In the framework
of the macroscopic model used here, the stable single-layer
nanoscroll formed from the nanoribbon of the minimal possible
length Lm has ϕout − ϕin = 2π and zero overlap length of
adjacent layers. The overlap length of more than 1 nm, where
the estimation of the interlayer interaction energy using the
macroscopic model becomes adequate, is achieved at the
nanoribbon length L ≈ 8.5 nm both for SCNS and SBNNS.

For bilayer carbon/boron nitride nanoscrolls, the structure
of the stable state is found by numerical minimization of the
potential energy as a function of inner radii Rin1 and Rin2 of
layers 1 and 2, respectively. The performed calculations show
that the inner radius is smaller for boron nitride layers with
the lesser value of the bending elastic constant C and the
outer radius is greater for graphene layers with the greater
value of the bending elastic constant C. These smaller inner
and greater outer radii are considered below as inner and
outer radii of the bilayer nanoscroll made of carbon/boron
nitride heterostructure. Dependences of the inner Rin and
outer Rout radii of the nanoscrolls in the stable state on the
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FIG. 4. Calculated inner Rin and outer Rout radii of nanoscrolls in
the stable state as functions of the length L of the initial nanoribbon:
(a) single-layer carbon (C) and boron nitride (BN) nanoscrolls, (b)
bilayer carbon (C-C), boron nitride (BN-BN), and carbon/boron
nitride (C-BN) nanoscrolls.

length L of the initial nanoribbon are shown in Fig. 4 for all
the considered types of nanoscrolls. Both radii Rin and Rout

increase with increasing the length L. The inner radius of the
bilayer nanoscroll is 1.6–1.7 times greater than the inner radius
of the single-layer nanoscroll made from the nanoribbons of
the same length and the same 2D material. Since the elastic
bending constant C of graphene is greater than this constant
for hexagonal boron nitride, the inner radius of the SCNS is
greater than this radius for the SBNNS made from a nanoribbon
of the same length. Analogously, for the bilayer nanoscrolls
made from the nanoribbons of the same length, the inner radius
decreases in the following order: BCNS > CBNNS > BBNNS.

Dependences of the potential energy E0 which corresponds
to the stable state of the nanoscroll on the length L of the initial
nanoribbon are shown in Fig. 5(a) for all the considered types
of nanoscrolls. The stable state of the nanoscroll is the ground
state of the system for nanoscrolls made from the nanoribbon
of length L which exceeds the value L0. The calculated values
of length L0 are shown in Table III. The maximum of the
dependence of the potential energy E on the inner radius Rin

[see Figs. 3(c) and 3(d)] is equal to the potential barrier E1

to rolling the flat nanoribbon into a nanoscroll. The barrier
E1 tends to zero as the length L of a nanoribbon with a
given width w tends to infinity. The barrier to nanoscroll
unrolling is E2 = E1 − E0. This barrier tends to zero as the
length L of the nanoribbon with a given width w tends to the
minimum possible length Lm for which the stable nanoscroll
can exist. The dependences of barriers E1 and E2 on the length
L of the initial nanoribbon are shown in Figs. 5(b) and 5(c),
respectively, for all the considered types of the nanoscrolls.

The lifetime τ of the nanoscrolls can be estimated using
the Arrhenius formula 1/τ = � exp(−E2/kT ), where � is
the frequency multiplier, k is the Boltzmann constant, and

FIG. 5. Calculated (a) potential energy E0 in the stable state, (b)
barrier to rolling E1, (c) barrier to unrolling E2 of nanoscrolls per
unit width (1 nm) of the initial nanoribbon as functions of the length
L of the nanoribbon: single-layer carbon (C) and boron nitride (BN)
and bilayer carbon (C-C), boron nitride (BN-BN), and carbon/boron
nitride (C-BN) nanoscrolls. The energies of the bilayer nanoscrolls
are measured relative to the energy of the corresponding flat bilayer
nanoribbon.

T is the temperature. The frequency multiplier is the same
order of magnitude as the characteristic frequency of vibration
corresponding to nanoscroll unrolling. We believe that such a
vibration corresponds to the breathing mode of the nanoscroll
which occurs with the oscillation of the overlap length [83]
and thus can lead to unrolling of the nanoscrolls with the
smallest overlap lengths due to thermodynamic fluctuations.
Let us estimate here the lifetime of such smallest nanoscrolls.
Both the analytical model and molecular dynamics simulations
give the frequency of breathing vibrations of the smallest SCNS
made from a graphene nanoribbon of length L = 10 nm to
be about 50 GHz [83]. To estimate the order of magnitude
of the nanoscroll lifetime we use the frequency multiplier
� = 50 GHz for all the considered nanoscrolls. The calculated
dimensions of the initial nanoribbon (length L and width w)
corresponding to nanoscrolls with a lifetime of 1000 years are
shown in Fig. 6. This figure shows that if the initial nanoribbon
length is only a few nanometers greater than the minimal
possible length Lm of the stable nanoscroll then the nanoscrolls
made from such initial nanoribbons are sufficiently stable for
any possible applications.
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FIG. 6. Calculated dimensions (length L and width w) of the
initial nanoribbons from which the nanoscrolls with the lifetime in
the stable state of τ = 1000 years at room temperature can be made:
single-layer carbon (C) and boron nitride (BN) and bilayer carbon
(C-C), boron nitride (BN-BN), and carbon/boron nitride (C-BN)
nanoscrolls.

IV. CONCLUSIONS AND DISCUSSION

We have considered the structure and energetic charac-
teristics of carbon, boron nitride, and carbon/boron nitride
nanoscrolls made from initial single-layer and bilayer rectan-
gular nanoribbons based on the analytical model describing the
potential energy of the nanoscrolls and numerical calculations.
The analytical model relies on the classical quadratic law
according to which the elastic bending energy of monolayers
is inversely proportional to the square of the curvature radius.
While diverse data can be found in the literature on the
elastic energies of graphene and hexagonal boron nitride
nanotubes including the cases of significant deviation from
this law, the thorough analysis of the literature data and density
functional theory calculations performed in the present paper

convincingly demonstrate that the quadratic law matches well
the dependences of the elastic energies on the curvature radius
both for graphene and boron nitride layers. Therefore, the use
of this law in the analytical model of nanoscrolls is completely
justified.

The lengths of initial nanoribbons for which stable and
energetically favorable nanoscrolls are possible correspond
to the range from 7 to about 30 nm for all the considered
types of nanoscrolls. The calculated barriers to rolling and
unrolling of such nanoscrolls with small dimensions are within
10 eV. Simultaneously, the calculated lifetimes of nanoscrolls
relative to spontaneous unrolling are greater than 1000 years
at room temperature. This is so even for the nanoscrolls
made from nanoribbons with a length exceeding the min-
imal possible length of the stable nanoscroll by only few
nanometers. The calculated values of the barriers and lifetimes
show that such nanoscrolls offer promise as movable parts of
nanoelectromechanical systems based on rolling and unrolling
of the nanoscrolls under the action of the electrostatic force
analogously to already realized systems based on the relative
motion of walls or bending of carbon nanotubes (see Ref. [84]
for a review).
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