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High-temperature thermophysical properties of γ - and δ-Mn from first principles
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Thermophysical properties of γ - and δ-Mn phases have been investigated using first-principles calculations
in their thermodynamically stable temperature range. An adiabatic approximation is used for partitioning of
the Helmholtz free energy into electronic, magnetic, and vibrational contributions from the corresponding
temperature induced excitations, where the fastest degree of freedom has been included in the slower ones.
Namely, electronic excitations (on a one-electron level) have been included directly in the first-principles
calculations at the corresponding temperatures. Magnetic excitations in the paramagnetic state then have been
taken into consideration in the two opposite limits: localized, considering only transverse spin fluctuations (TSF),
and itinerant, allowing for the full coupling of transverse and longitudinal spin fluctuations (LSF). Magnetic
contribution to the free energy has been included in the calculations of the vibrational one, which has been
obtained within the Debye-Grüneisen model. The calculated thermophysical properties such as lattice constance,
thermal lattice expansion, and heat capacity are in good agreement with available experimental data, especially
in the case when the itinerant magnetic model is chosen. We also present our results for elastic properties at high
temperatures.

DOI: 10.1103/PhysRevMaterials.2.034405

I. INTRODUCTION

Elemental Mn has been in the focus of scientific and
industrial research communities because of its complex crystal
structures and its usage as an alloying element in a wide
spectrum of different materials. It has a very rich crystallo-
graphic and magnetic phase diagram. The low temperature
phase of Mn, α-Mn, containing 58 atoms in the unit cell (space
group T 3

d − I 4̄3m), is considered the most complex structure
of elemental solids.

Among five allotropic forms of Mn, four have cubic sym-
metry in their thermodynamic stability temperature range. An
exception to this rule is α-Mn, which has a tetragonal distortion
below Néel temperature TN of 95 K with c/a = 0.99955 [1]
where a noncollinear antiferromagneticlike order is formed. A
theoretical study by Hobbs et al. [2] shows that a magnetic
frustration on inequivalent sites of MnIV drives the magnetic
structure to become noncollinear.

The α phase is stable up to 1000 K where it transforms to
β-Mn. The β phase has a simple cubic structure with 20 atoms
in the unit cell (space group P 4132). It is thermodynamically
stable between 1000 K and 1368 K. Geometric frustration plays
a crucial role in this phase which also causes a lack of any kind
of magnetic order down to very low temperature. Experimental
evidence for the existence of sizable local moments on MnII
sites has led researchers to anticipate that the β phase is a
‘quantum spin liquid’ at low temperatures [3].

Above 1368 K, the β phase transforms to the fcc γ -Mn,
which remains stable up to 1406 K where it transforms again
to the bcc δ-Mn, stable up to the melting point TM 1517 K.

*heht@kth.se

Experimental investigations of these phases at high temper-
ature are extremely difficult. Therefore, different approaches
are used to stabilize them at low temperatures. In the case of
γ -Mn, alloying with Ni, Cu, or Pd with consequent quenching
to low temperatures allows one to get stable γ -Mn. Then the
desired properties of γ -Mn can be obtained by studying their
concentration dependence with decreasing amount of alloying
elements.

Employing this method, Endoh and Ishikawa [4] studied
magnetic and structural properties of quenched γ -FeMn by
means of neutron diffraction. They found that γ -Mn is tetrag-
onally distorted below the Néel temperature TN 540 K where
antiferromagnetic type I (AFMI) ordering causes a tetragonal
distortion leading to ≈ 6% contraction of the unit cell along the
[001] axis. A magnetic moment of 2.3 μB extrapolated to 0 K
has been reported in their study. This magnetically assisted
tetragonal distortion was first investigated by Oguchi and
Freeman [5] using first-principles method whose results were
in good agreement with the experimental data [4]. Thermal
properties of γ -Mn, e.g., heat capacity and thermal expansion
were also determined from an extrapolation of the data for
γ -MnCu alloys [6].

Since alloying and subsequent quenching was not possible
for δ-Mn, an epitaxial growth was used to study properties
of the δ phase, which was grown on different bcc substrates
such as Cr, Fe, or V. The main difficulty in such studies was a
strain induced by a substrate, which might cause a substantial
deviation of the properties of a thin layer from those of the
bulk. The effect of substrate on magnetic properties of thin
films of Mn has been a matter of thorough discussion in the
literature [7].

Early first-principles calculations within the local density
approximation (LDA) for the fcc [8] and bcc Mn [9] suggested
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that there should be an almost degeneracy between energy of
nonmagnetic (NM) and AFMI states at the equilibrium (LDA)
volume. These calculations also predicted an AFM structure
for the expanded experimental volume. Later generalized
gradient approximation (GGA) calculations by Asada and
Terakura [10] and Eder et al. [11] removed the degeneracy
between the NM and AFMI states in fcc Mn and the NM and
ferromagnetic (FM) states in bcc Mn predicted within the LDA.
They found that the AFMI is the ground state of fcc Mn. At
the same time, they disagreed on the magnetic ground states of
the bcc Mn: While Asada and Terakura [10] predicted that it is
FM, Eder et al. [11] found the AFMII state to be the magnetic
ground state of the bcc Mn.

The latest calculations for the bcc and fcc structures were
reported by Hafner and Hobbs [12] who used an all-electron
projector-augmented wave (PAW) method to study different
phases of Mn. The AFMI state is found to be the magnetic
ground state of the fcc Mn and the AFMII state the magnetic
ground state of the bcc Mn. For bcc Mn, they also reported
that first-order transition from the AFMII to the AFMI state at
≈1.23% expanded volume.

The earlier prediction [13] that the ground state of bcc Mn
is a ferrimagnetic (FIM) state has been argued by Monh et al.
[14] who have shown that the FIM is just projection of a
spin-spiral state onto a collinear spin-quantization axis. Several
spin-spiral states have been reported in that study [14], which
might represent the ground state depending on the volume.

Although there exist numerous investigations of the mag-
netic ground state of bcc and fcc Mn at 0 K, theoretical
calculations for high temperature γ and δ phases are absent.
The only published attempt to study such phases at finite
temperature is Asada and Terakura’s work where they used
a quasiharmonic approximation to study competing phases
below TN . In their study, the Debye-Grüneisen model (DGM)
was set up following a semiemprical Moruzzi, Janak, and
Scharwz (MJS) scheme [15]. The cohesive energy curves
computed at 0 K of each phase were used to calculate the
Debye temperature. It was mentioned that the reason why the
Grüneisen constant came out negative for the AFMI bcc Mn
was an abnormally flat cohesive energy curve.

Because of difficulties in performing high temperature
experiments, there is no experimental data for elastic moduli
of γ and δ-Mn. The available data usually corresponds to
highly concentrated alloys and in a temperature range much
lower than the thermodynamically stable range of these phases.
Theoretical calculations for elastic properties of paramagnetic
γ and δ-Mn are also lacking. This could be partly due to a
rather large underestimation of the lattice parameter obtained
from first-principles calculations. It has been suggested that an
underestimation of the lattice parameter in γ -Mn could be due
to strong correlation effects in this system [16] although taking
such effects into consideration does not improve results much
compared to the GGA calculations [11].

Several strategies have been put forward by different groups
to study finite temperature properties of elements and alloys
such as thermodynamic integration [17–20] and temperature
dependent effective potentials [21,22]. While both techniques
are powerful and proven to be successful in many applications,
they are computationally expensive and may have problems
related to structural stability of investigated phases.

For example, a recent application [23] of TU-TILD ther-
modynamic integration [24] for δ-Mn overestimated the heat
capacity by 9.3 J/mol K at 1514 K, near to the melting point. A
technical difficulty that has been observed for such simulations
is that δ phase is dynamically unstable at lower temperatures
and therefore transforms to ω phase. Transformations of this
kind demand a special care for thermodynamic modeling
of high temperature phases. Besides, the above mentioned
techniques are not able to take properly into consideration
thermal magnetic excitations, which play a crucial role in
thermodynamic properties of these systems as will be demon-
strated below.

In the present paper, we use therefore another approach
to the calculations of thermophysical properties of γ and
δ-Mn at high temperatures. Following the coarse-graining
of the partition function in time scale, we first include the
one-electron excitations in the first-principles calculations.
Simultaneously, we include in our first-principles calculations
magnetic excitations in the paramagnetic state in two two
different limits: either including only TSF or fully coupled
TSF and LSF. These excitations are then adiabatically coupled
to the thermal lattice vibrations calculated within the Debye-
Grüneisen model.

II. METHODOLOGY

A. Electronic structure calculations

Density functional [25] calculations in this work have been
performed by the exact muffin-tin orbital (EMTO) method
[26–28] within the coherent potential approximation (CPA)
[29,30] for the electronic structure of the disordered local
moment (DLM) atomic spin configuration (an alloy consisting
of 50% spin-up(↑) and 50% spin-down(↓) used to model a
paramagnetic state [31,32].

The total energies have been calculated using GGA [33,34]
using the full charge density (FCD) technique [28,35]. The
EMTO-CPA calculations were done using an orbital momen-
tum cutoff lmax = 3 for partial waves. The integration of the
Brillouin zone was performed using 27 × 27 × 27 for γ -Mn
and 33 × 33 × 33 for δ-Mn k-point grids generated according
to the Monkhorst-Pack scheme [36].

B. Helmholtz free energy calculations

In this study, the Helmholtz free energy F is obtained by its
partition to different contributions [37–39] and using adiabatic
approximation to connect different parts to each other. In
this approximation, the renormalization of electronic structure
due to atomic vibration is absent, i.e., it is a static lattice
approximation. Effects beyond static lattice can be important
in particular systems [19,40]. Nevertheless, as will be shown,
the static lattice method is still a good approximation when one
compares the results with experiments.

The total free energy is divided into two major contributions
F = FE + FV : partial free energy FV due to slower atomic
vibrations and partial free energy FE due to faster electronic
and magnetic excitations. Following the adiabatic assumption,
the vibrational partial free energy FV is calculated using the
DGM based on FE electronic partial free energy, which also
include magnetic contributions through an additional modeling
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FIG. 1. (a) Volume dependence of magnetic moments calculated using different models. For LSF data calculations have been done at
1410 K and for DLM at 0 K. (b) Longitudinal spin fluctuations energy as a function of magnetic moments μB . LSF curve represents the energy
calculated at 1410 K and for Wigner-Seitz radius of 2.80 bohrs and DLM curve shows the energy at 0 K and for Wigner-Seitz radius of 2.60
bohrs. Inset: temperature dependence of magnetic moments for γ - and δ-Mn. Moments calculated at theoretical equilibrium volumes.

of the corresponding magnetic state. The contribution from
one-electron excitations is calculated by using the Fermi-Dirac
function in the electronic structure calculations [41].

C. Magnetic excitations

In both structures, Mn is in the paramagnetic state in the cor-
responding temperature range. The simplest description of that
state is given by the DLM model, which takes into account only
transverse spin fluctuations [42]. High-temperature transverse
fluctuations correspond to a Heisenberg type paramagnetic gas
with local spin moments S, whose entropy is kB ln(2S + 1). In
our case 2S = m, where m is the local magnetic moment of
an atom. Therefore, the magnetic entropy is given by the usual
formula [43,44]:

STSF = kB ln(m + 1), (1)

where m is the magnetic moment obtained in self-consistent
DLM-CPA calculations.

It is applicable, however, only in the case when local mag-
netic moments are large and stable with respect to perturbations
of the magnetic state. In Fig. 1(a), we show the dependence
of the local magnetic moments of the γ and δ phases on the
Wigner-Seitz radius in the DLM state in the 0 K DLM-CPA
calculations. As one can see, the local magnetic moments
practically vanish in both phases for the equilibrium 0 K lattice
parameter. One can also see that the LSF energy presented in
Fig. 1(b) has nearly parabolic form.

This is a clear indication of the itinerant character of
magnetism in these two phases. Therefore, in order to include
LSF in our calculations, we use an approximate expression for
the magnetic entropy with the full coupling of the transverse
and longitudinal fluctuations [45]

SLSF = 3kB ln(m). (2)

Here m is the average magnitude of the local magnetic
moment, which should be determined self-consistently by
minimizing the corresponding Helmholtz free energy. This
expression is valid in the classical limit if the LSF energy has
a quadratic form, although it also produces quite reasonable
results for a more complicated form of the LSF energy,
similar to those presented in Fig. 1(b) for larger equilibrium
high-temperature Wigner-Seitz radii. Although in the latter
case the LSF energy has a more complicated form with a
minimum at higher magnitudes of the local magnetic moment,
the difference between LSF energy minimum and LSF energy
for m = 0 is of an order of 8 mRy, i.e., ≈1260 K, which is less
than the temperature of interest and thus LSF should play an
important role also in this case.

D. Free energy of lattice vibrations

The vibrational free energy contribution FV = ED − T SD is
calculated using DGM where

ED(V,T ) = 9
8�D + 3kBT D(�D/T ), (3)

SD(V,T ) = kB[4D(�D/T ) − 3 ln(1 − e−�D/T )]. (4)

Here D(x) = (3/x3)
∫ x

0 dt[t3/(et − 1)] is the Debye function.
The Debye temperature �D(V,T ) was determined from the
mean sound velocity vm(V,T ), namely:

�D = h̄

kB

(
6π2

V

)1/3

vm(V,T ). (5)

The mean sound velocity must be calculated by averaging the
three acoustic branches over directions confined to the first
Brillouin zone, viz.:

vm(V,T ) =
(

1

3

3∑
i=1

∫
	

1

v3
i

d	

4π

)− 1
3

, (6)
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(a) Transverse wave I (b) Transverse wave II (c) Longitudinal wave

FIG. 2. Group velocities (km/sec) of δ-Mn as a function of crystallographic direction. The calculated velocities correspond to Wigner-Seitz
radius of 2.775 bohrs at 1440 K. The unit of color legend is km/sec.

where d	 is an increment of the solid angle about the center
of the Brillouin zone, and vi’s are longitudinal and transverse
sound velocities. It is desirable to find some approximations
for Eq. (6) in order to simplify the calculations. For example,
for isotropic crystals [46] this relation simplifies to:

vm =
(

1

3

[
2

v3
s

+ 1

v3
l

])− 1
3

, (7)

where vs and vl are transverse (shear) and longitudinal sound
velocities, respectively. In an isotropic solid, two transverse
velocities are considered to be degenerate. As we shall observe,
it is hardly the case for a real crystal.

E. Debye temperature calculations

The MJS model [15] suggests a semiempirical relation
between bulk modulus and �D. This approximation has been
successfully applied in many DGM investigations of different
systems including quite complex ones [48]. However, its suc-
cess has a limitation as has been pointed out, for example, in the
case of δ-Fe [49]. A common practice is to use homogenization
theories such as Voight, Reuss, or Hill averages to relate the
single crystal elastic constants to the mean sound velocities.
In such cases, an isotropic propagation of sound velocities is
assumed and Eq. (7) will be used to calculate �D. Since there
are several choices to evaluate the averaged sound velocity
from the single crystal elastic constants, a legitimate question
can be raised: Which of the homogenization theories is the
most appropriate one?

For an example, Ledbetter [50] has employed different
homogenization theories for different elements and reported
that Reuss’s method, which assumes uniform local stress, is
a better approximation than Voight’s method, which assumes
uniform local stress. Ledbetter’s argument is based on the fact
that continuity of stress across grains that comes from Reuss’s
approximation is more important than the strain continuity that
comes from Voight’s approximation. Our calculations based on
Voight and Reuss approximations show that this is certainly not
true, for example, in the case of γ -Mn.

Therefore we directly calculate the averaged sound velocity
from Eq. (6). The directions confined to the irreducible wedge
of the Brillouin zone for both γ and δ phases have been sampled
and for each direction, the group velocities are calculated by
solving the Christoffel equation [51]. Once the directional
dependence of velocities is known, one can directly obtain
the average sound velocity vm using Eq. (6). Calculated sound
velocities using the direct averages are almost identical to
an approximation introduced recently, the resultant effective
direction (RED) technique [49]. Since elastic constants are
temperature and volume dependent, the procedure mentioned
above is repeated for each volume and temperature in order
to calculate vm(V,T ). The calculations of the single-crystal
elastic constants from partial free energies will be discussed in
Sec. III C.

The three group velocities can be seen in Fig. 2 as a function
of reciprocal direction. Although for general directions the vi-
brational modes are not strictly pure transverse or longitudinal
[52], they have been categorized here in this way for the sake
of convenience. It can be seen in Fig. 2(a) that the lowest shear
shows a very anisotropic behavior. The same is true for the
next shear mode which can be seen in Fig. 2(b). These two
modes play a crucial role in determination of vm as can be
understood from Eq. (6). On the other hand the longitudinal
mode, Fig. 2(c), shows an isotropic behavior which is a rather
expected behavior for this type of mode.

When the vm and consequently �D is calculated as a
function of volume and temperature, the vibrational energy
ED and entropy SD can be evaluated together with the total
free energy

F (V,T ) = FE(V,T ) + ED(V,T ) − T SD(V,T ).

The fitted total free energy F (V,T ) is then used to calculate
the thermophysical properties namely lattice constant a(T ),
linear thermal expansion coefficient (TEC) α, and isobaric heat
capacityCp(T ) using appropriate derivatives of the free energy.
Elastic moduli and isothermal bulk modulus BT have been
computed from the electronic partial free energies FE(V,T ) at
the theoretical equilibrium volume.
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FIG. 3. Calculated temperature dependence of the lattice parameter for (a) γ - and (b) δ-Mn. The background of both panels is the contour
plot of the Helmholtz free energy as a function of temperature and lattice constant. The unit of color legends is mRy. Experimental data are
taken from Ref. [47].

III. RESULTS

A. Thermal lattice expansion

The calculated lattice parameter as a function of temperature
is shown in Fig. 3(a) for γ -Mn and Fig. 3(b) for δ-Mn. It is
somewhat underestimated for both phases and in both TSF
and LSF calculations compared to the experimental data of
Ref. [47]. However, the LSF results for the lattice constant,
which are 2.0% below the experimental data, are in better
agreement than the TSF results, which are about 4% lower.

The temperature dependence of the lattice constant is
also better reproduced by the LSF model as can be seen in
Fig. 3(b) and in Table I where the thermal expansion coefficient
(TEC) is presented. As one can see, although the LSF model
somewhat underestimates the TEC for both phases compared
with experimental data [47], the TSF model completely fails
to produce reasonable results for γ -Mn, which is known to
have the largest TEC among all the fcc transition metals and
alloys in the 3d series [6]. According to our results, this is due

TABLE I. Calculated and experimental linear TEC of γ - and δ-
Mn. All the data are in 10−6 K−1 units and have been averaged over
the temperature range of stability of the corresponding paramagnetic
phase.

TSFa LSFb Experimentc

γ -Mn: Total 2.74 38.42 49.72
El.+mag.d 10.88 24.62

δ-Mn: Total 29.67 35.71 40.84
El.+mag.d 5.87 24.45

aCalculated with longitudinal spin fluctuations (LSF) model.
bCalculated with longitudinal spin fluctuations (TSF) model.
cLattice parameter measurements, Ref. [47].
dExpansion due to electronic and magnetic excitations.

to large negative contribution from lattice vibrations within
this model. This surprising result is due to an anomaly in the
elastic constants in the TSF model, which will be discussed in
Sec. III C.

It is also clear from Table I that the electronic and mag-
netic contributions to the TEC are dominating in the LSF
model, making up more than 60% of the total TEC. These
contributions are significantly reduced in the case of the TSF
model, especially in δ-Mn. Quite poor results obtained within
the TSF model for the lattice constant and the TEC are
related to the total neglect of longitudinal spin fluctuations at
high temperatures, which increase the magnitude of the local
moment affecting thereby the equilibrium lattice constant at
the corresponding temperature.

B. Heat capacity

Figure 4(a) shows a variation of the heat capacity for γ

and δ-Mn with temperature. A decomposition of the heat
capacity into various contributions have been also presented
in Fig. 4(a). The assessed experimental data by Desai [53] is
plotted by black lines for the sake of comparison. In Desai’s
work, the available experimental data for the heat capacity
have been analyzed considering thermodynamic consistency
and reported. Thus they can be viewed as the most reliable
values available for the heat capacity. Hereafter, we denote the
values reported by Desai as experiment.

In Fig. 4(a), we observe that the heat capacity Cp has been
underestimated for both γ and δ-Mn. For γ -Mn at 1410 K,
the heat capacity in the LSF calculations is underestimated
by 4.5% with respect to the experimental value and by 4.4% at
1360 K. On the other hand, the heat capacity of γ -Mn predicted
in the TSF calculations is underestimated by 27% at 1360 K
and 28% at 1410 K. The Cp of δ-Mn obtained in the LSF
and TSF calculations is underestimated by 8% and 16% at
1410 K, respectively. Thus, the LSF model reproduces rather
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FIG. 4. (a) Calculated heat capacity Cp and its contributions as a function of temperature. Desai’s work [53] represents the critically assessed
values of a large set of experiments. (b) Calculated temperature dependence of elastic moduli of γ - and δ-Mn. Blue, red, and green lines represent
the variation of B, C44, and C′, respectively.

well different sets of experiments for the lattice constant and
heat capacity in both phases.

Table II shows Cp and C ′
p obtained by different methods.

Let us note that the calculated value of Cp using the TU-TILD
method at 1410 K overestimates Cp by 5.47% and by 21% at
1520 in δ-Mn, which results in a huge slope of the heat capacity,
not observed experimentally. Highly overestimated value of C ′

p

implies high compliance of the lattice and therefore quite high
values of TEC.

The TSF calculations fail to reproduce C ′
p in γ -Mn although

they yield reasonable results for δ-Mn. The LSF model, on
the other hand, gives a better value of C ′

p for γ and slightly
overestimated C ′

p for δ-Mn. Nevertheless, the LSF model
definitely provides much better overall description of the
thermodynamic properties of both γ and δ phases.

C. Elastic properties

There are three independent elastic constants for cubic
lattices. In addition to the bulk modulus, one needs to evaluate

TABLE II. Calculated and assessed experimental Cp γ - and
δ-Mn. Data for Cp are in J (mol K)−1 and for dCp

dT , slope of heat
capacity are in Jmol−1 K−2 × 10−3 units and have been averaged over
the temperature range of stability of the corresponding paramagnetic
phase.

TSFa LSFb Theoryc Desaid

γ -Mn: 1360 K 31.20 40.72 42.58
C ′

p 4.27 12.22 20.49
δ-Mn: 1500 K 38.77 42.13 54.33 45.96

C ′
p 6.20 10.07 70.92 7.13

aCalculated with longitudinal spin fluctuations (LSF) model.
bCalculated with longitudinal spin fluctuations (TSF) model.
cTU-TILD method, Ref. [23].
dAssessed experimental heat capacity of Ref. [53].

two more elastic constants to determine all of them. Here, we
have determined C44 and C ′ = (C11 − C12)/2 by applying a
homogeneous lattice distortion at a fixed volume and calculat-
ing the electronic and magnetic partial free energy, similar to
the previous studies [49,54].

In Fig. 4(b), we show the elastic constants as a function of
temperature obtained at the corresponding theoretical equilib-
rium volume. As one can see, they change very little (less than
1%) in the corresponding temperature range. The bulk modulus
of γ -Mn calculated using the TSF model is anomalously
low and, surprisingly, it increases with temperature. This is
because of an anomaly in volume dependence of the bulk
modulus.

According to the TSF results, there is a plateau in vol-
ume dependence of the bulk modulus that follows with
an increase with the increase of volume. The volume de-
pendence of elastic constants C ′ obtained using the TSF
model shows also an anomalous behavior similar to the
bulk modulus. Moreover, the bulk modulus predicted by the
TSF model is almost identical to the value of C ′ for both
phases.

Such an unphysical behavior of elastic moduli within the
TSF model is an indication that it does not work properly for
γ -Mn. On the contrary, the LSF model provides a much more
reasonable description of the elastic properties, although the
bulk modulus calculated using the LSF model is also rather
low. The difference in calculated C ′ using the LSF and TSF
models is also appreciable when one takes into account the fact
that this modulus is small.

On the other hand, C44 elastic modulus seems to be insen-
sitive to the type of the used magnetic model: Both models
give similar results. Unfortunately, there is no experimental
information about elastic properties of γ -Mn and δ-Mn.
Nonetheless, considering the results of the previous sections
it seems likely that the LSF results could provide a better
description for elastic moduli.
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IV. CONCLUSIONS

High-temperature thermophysical properties of γ - and δ-
Mn have been calculated by means of first-principles modeling
of the free energy in the paramagnetic state. The latter has
been described using the TSF and LSF models based on the
DLM-CPA description of the electronic structure. The results
show that the LSF model agrees much better with the available
experimental data such as lattice constants, thermal expansion,
and heat capacity. Our results show that the LSF have pro-
nounced effect on all the calculated properties, and therefore
they should be taken into consideration in the corresponding
modeling of these phases.
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