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Evaluation of van der Waals density functionals for layered materials
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In 2012, Björkman et al. posed the question “Are we van der Waals ready?” [T. Björkman et al., J. Phys.:
Condens. Matter 24, 424218 (2012)] about the ability of ab initio modeling to reproduce van der Waals (vdW)
dispersion forces in layered materials. The answer at that time was no, however. Here we report on a new generation
of vdW dispersion models and show that one, i.e., the fractionally ionic atom theory with many-body dispersions,
offers close to quantitative predictions for layered structures. Furthermore, it does so from a qualitatively correct
picture of dispersion forces. Other methods, such as D3 and optB88vdW, also work well, albeit with some
exceptions. We thus argue that we are nearly vdW ready and that some modern dispersion methods are accurate
enough to be used for nanomaterial prediction, albeit with some caution required.
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I. INTRODUCTION

The van der Waals (vdW) heterostructures [1], and
nanoscience more generally, promise to transform science and
technology by offering controllable material properties at the
nanoscale. But many challenges must be met for the unprece-
dented benefits of heterostructures to be realized in technology.
Not least of these is understanding what combinations of two-
dimensional (2D) layers are both useful and structurally stable
and, relatedly, how we can engineer structures to improve
stability.

Significant work must thus be carried out to devise useful
heterostructures, especially working out what combinations
of layer types are useful and feasible. Isolating 2D layers
is difficult, however. Assembling heterostructures is more
difficult [1]. Thus, studying even a small representative space
of interesting heterostructures seems like an impossible task
for experimental laboratories.

Conveniently, heterostructure science has been paralleled
by advances in computer modeling [2,3], which offers the
ability to scan large spaces of candidate materials quickly
and efficiently. The prediction of heterostructure properties
relies, at a minimum, on two major factors: an ability to
reproduce lattice parameters, and thus basic geometries, and
an ability to reproduce energies and their differences, and thus
to understand the relative stability of different geometries. A
good method must thus be able to reproduce these properties
if it is to offer reliable results. Otherwise time can be wasted
by experimentally exploring poor candidates misidentified as
good by the virtual screening process. More worrisome, good
candidates might never make it past the virtual screening
process. Both hamper technological progress.
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In this paper, we report an assessment of modern vdW
dispersion approaches on a representative sample of 2D materi-
als, including graphene, boron nitride, MoS2, MoSe2, MoTe2,
WS2, PdTe2, TaS2, TaSe2, HfS2, HfSe2, and HfTe2. Our
tests, building on previous work by Björkman and co-workers
[4,5], are designed to interrogate how well modern approaches
can deal with the most basic properties of heterostructures.
They thus include an important additional test not previously
reported by Björkman et al.: the quality of energy differences
between different structural arrangements of homostructures.
This test is critically important as it shows that a method
not only works well in optimal homostructures, where it may
benefit from a cancellation of errors at the optimal interlayer
spacing, but is also likely to work well in heterostructures
which, due to the presence of incommensurate lattices, involve
layered structures and their interactions in a range of relative
configurations [6].

We compare the predictive accuracy of 11 modern vdW
methods against the predictions of the random-phase ap-
proximation (RPA) [7–9], which have been established as
one of the most accurate methods for describing the physics
of vdW materials [10,11]. Quantum Monte Carlo (QMC)
methods, widely considered to be highly accurate, have been
applied for predicting the interlayer distance and the binding
energy of graphite [12,13]. QMC, however, has only been
applied to a limited number of systems, while RPA has been
applied to a wide range of systems. Our tests show that the
fractional ionic atoms method [14] (referred to here as FIA
for notational brevity—the method is more fully described as
MBD@rsSCS/FI+ER as per the original paper) achieves a
useful balance between the accurate prediction of the lattice
constants, energies, and energy differences.

II. THEORY

Dispersion forces, or van der Waals forces, are weak forces
that arise from the coupling between charge fluctuations in
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quantum systems. There has been a steady improvement in
ab initio methods which account for a full description of
chemical and dispersive forces. Broadly speaking, these fall
into three categories: semiempirical (SE) “DX” models from
Grimme et al. [15–17], models based on atomic polarizabilities
(AP-D) modified by the electron density [14,18–20], and full
density functional approximations (DFA) based on pairwise
dispersion models using only the density [21,22]. Table I
summarizes the methods applied in this paper, categorized
according to the above scheme. Further details of all methods
are provided in the original works and more detailed summaries
of modern dispersion approaches are provided in Refs. [2,23].
Here we focus on methods which correct generalized gradient
approximations (GGAs), as these are the most widely available
and easily employed class of density functionals.

To understand the qualitative advantages and disadvantages
of dispersion methods, we must first focus on the competing
pictures of dispersion forces: the first, more dominant among
chemists, is that interactions between atoms can be modified
and then summed to get the total interaction. The second, more
dominant among physicists, employs polarizability models
from Lifshitz which are based on the physics of macroscopic
solids.

Dobson recently described how these two pictures can be
connected to one another [10] and thus applied to nanostruc-
tures which share properties with molecules and bulk solids.
He divided contributions to dispersion forces into three types
of “nonadditivity” effects. His first, here called “Dobson-A”
effects, involves contributions from chemical environments
and is present in all useful theories of dispersion forces. His
second, Dobson-B effects, involves many-body interactions
known from Lifshitz theory and is present in the RPA, and the
many-body dispersion (MBD) [19] class of approximations
which has been used to show their vital importance for
describing nanostructure binding [24–26]. His third, Dobson-
C, involves metallic/insulating physics and is approximated
in MBD [24] and fully present in RPA. Dobson-C effects
mostly affect asymptotic physics [27–30] [that is, the energetic
behavior of layered materials for large (�10 nm) separation
distances between the layers] and are unlikely to be relevant to
typical studies of two-dimensional heterostructures.

In the computational assessment of the quality of the vdW
methods, a critical concern is the identification of benchmarks.
In such studies, the two primary quantities that are predicted are
the c0 lattice parameter and the layer binding energy Eb, and
these must be tested against suitable benchmark data. Lattice
parameters are known accurately from experiments, which
can serve as a benchmark, at least up to contributions from
the zero-point energy. The situation for binding energies Eb

is rather more challenging, however, given the inaccuracies
encountered in the indirect measurement of small energy
differences. Therefore, for Eb, we instead use published RPA
values for Eb [4,6,28,31] as benchmarks for the present study,
as done in previous studies [4]. Note that the RPA gives good
agreement with experiment for lattice constants [4,32] and
includes all of Dobson’s nonadditivity classes A, B, and C. It
is thus likely to carry a complete picture of binding in layered
materials.

With the qualitative picture and quantitative benchmarks
established, we can now consider the models in our study.

All three categories (SE, AP-D, and DFA) of dispersion
methods have seen steady improvements in accuracy over
the past decade [5]. Table I reports the list of approaches
tested here, representing recent iterations in each category
(we note that MBD@rsSCS has problems in transition-metal
dichalcogenides [14] and was thus excluded from our studies).

Any new method is assessed by performing statistical tests
on the outcomes of calculations for a set of benchmark sys-
tems, compared against higher-level theory (or experimental)
data. Usually, such benchmarking has lacked the inclusion
of 2D heterostructures and has been based only on atomic
and molecular systems. Tests are typically reported only for
graphite and hexagonal boron nitride, if anything. Methods
may thus suffer from inaccuracies in predicting the properties
of the interaction in 2D materials generally. Here, we seek
to remedy this deficiency to understand which methods are
suitable for calculations of 2D and related systems.

At the pairwise level, we test Grimme’s D2 empirical
correction [15] (DFTD2), Grimme’s D3 empirical correction
[16] in its original form (DFTD3) and with Becke-Johnson
damping (DFTD3BJ), the exchange-hole-based correction
of Steinmann and Corminboeuf [20] (DFTdDsC), and the
Tkatchenko-Scheffler (TS) method [18] and its self-consistent
screened version [19] (SCSTS). The many-body dispersion
method (MBD@rsSCS) [19], based on SCSTS but with ex-
plicit many-body Dobson-B contributions, collapses in the
calculations of materials with large polarizabilities, including
transition metals in the fourth and fifth rows of the periodic
table. We therefore instead use a recently introduced modifi-
cation of the MBD@rsSCS method, the FIA method, which
involves a more sophisticated treatment of polarizabilities
by drawing from the properties of fractional ions [33]. FIA
has been shown to perform as well as MBD in molecular
tests, but significantly outperforms it in strongly polarizable
systems, such as transition-metal dichalcogenides, interactions
involving ions, and benzene dimers [14,34,35]. The other
computational methods are all based around the two-point
vdW density functional approach of Dion et al. [22]. This
vdW correction is applied with the revPBE density functional
[21], the optPBE density functional [21] (optPBEvdW), and
the optB88 density functional [21] (optB88vdW). Also, in a
form modified by Lee et al., it is combined [36] with the BP86
density functional [37] (vdWDF2).

All calculations are performed using VASP 5.4.1 [38], where
the valence electrons are separated from the core by use
of projector-augmented wave (PAW) pseudopotentials [39].
The energy cutoff for the plane-wave basis functions was set
at 500 eV. The energy tolerance for the electronic structure
determinations was set at 10−7 eV to ensure accuracy. The
diversity of the structures investigated here ensures that our
results are not dependent upon the choice of systems. We use
k-space grids of 9 × 9 × 3 for graphene and boron nitride,
11 × 11 × 3 for PdTe2, and 15 × 15 × 3 for the rest, based on
energy convergence. Geometry optimizations were performed
for all structures, terminating when the forces on all atoms
fell below 0.01 eV/Å. MBD and FI are calculated using the
reciprocal-space implementation [40,41]. The in-plane lattice
parameters a are kept fixed at the respective experimental
values, in accordance with previous work [4]. Small differences
between the experimental and the equilibrium theoretical
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TABLE I. The computational methods used in this study, the key reference of each method, the classification of the method [whether based
on the semiempirical methods of Grimme (S-E), atomic polarizabilities modified by the density (AP-D), or pure functionals of the electronic
density (DFA)], and which Dobson nonadditivity types [10] are supported (? means partially supported). The final columns “c0” and “Eb” group
the methods by their success in predicting c0 and/or Eb. The FIA method is the one that is closest to the accuracy of the RPA method.

Method Ref. Class. Nonadditivity Quality

A? B? C? c0 Eb

⎫⎬
⎭�

⎫⎬
⎭�

RPA [41] ACFD � � �
SCAN-rVV10 [42] DFA � × ×

FIA [14] AP-D � � ? ⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

�

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

×

TS [18] AP-D � × ×
DFTD3BJ [17] S-E � ? ×

SCSTS [19] AP-D � � ×
DFTD2 [15] S-E � × ×
DFTD3 [16] S-E � ? ×

optB88vdW [21] DFA � × ×
⎫⎪⎪⎬
⎪⎪⎭

×

⎫⎪⎪⎬
⎪⎪⎭
�

DFTdDsC [20] AP-D � × ×
optPBEvdW [21] DFA � × ×

vdWDF2 [36] DFA � × ×
Dion [22] DFA � × ×

a lattice parameter do not significantly affect the results for
equilibrium c0 and Eb.

III. RESULTS

Our calculations of c0 and Eb naturally divide the vdW
methods considered into two groups, as summarized in Table I:
one group tends to perform poorly for c0 and acceptably for
Eb, and the other does the opposite. In order to quantify
this classification, we display in Fig. 1 the normalized mean
average error values of c0 or Eb, given by Nc0/Eb

(vdW) =
MAEc0/Eb

(vdW)/[ 1
NvdW

∑
vdW MAEc0/Eb

(vdW)], where vdW
labels the different NvdW = 12 (11 tested here and
SCAN+rVV10) methods considered, and MAEc0/Eb

is the

FIG. 1. The normalized mean average error (MAE) in the binding
energy and lattice spacing for all tested methods. Inset: Scatterplot of
the four best methods showing all tested materials. The oval indicates
the optimal goal of ±2% for c0 and ±5 meV/fu for Eb.

mean average error across the 11 layered compounds. For
each of the 11 vdW methods tested here (plus results for
SCAN+rVV10 from the literature [42]), the MAE for the
prediction of c0/Eb is given by MAE(vdW) = ∑11

i |XRPA −
XvdW|/11, where i iterates over the number of structures, XRPA

is the benchmark c0 or Eb value, and XvdW is the calculated
c0 or Eb value. According to this scheme, an accurate vdW
method is one whose Nc0 (vdW) and NEb

(vdW) are both
significantly less than one. That is, such a method is able to
closely reproduce the results obtained using RPA.

The grouping discussed above is immediately obvious from
this plot. Results clearly fall into two groups of vdW methods:
group I that includes TS, DFTD3BJ, SCSTS, DFTD2, DFTD3,
and optB88vdW, and group II that includes DFTdDsC, optP-
BEvdW, vdWDF2, and Dion. While each group has tradeoffs,
an important feature made clear by this figure is that the FIA
methods sit at the intersection of the two and thus achieve
a balance between energies and lattice constants. Note that
standard MBD theory fails completely for transition-metal
dichalcogenides [14] and has been left out of these tests.

We can identify the four best methods from Fig. 1: FIA,
DFTdDsC, DFTD3, and optB88vdW, based on the observation
that they have the smallest Nc0/Eb

(vdW) values. For these
four methods and for the 11 vdW materials considered, the
inset displays a scatterplot of the values of �c0/c0 and
�Eb. We identify a region (in pink) that marks the optimal
accuracy targets for each of the four methods across the set of
structures. The values ±2% [42] and ±5 meV/fu (functional
unit) for �c0/c0 and �Eb, respectively, are chosen based on
the following criteria: for the c lattice parameter, it is on the
scale of zero-point energy effects; for �Eb, it is about what one
expects for a typical “registry” difference (e.g., between AA′
and AB in MoS2—discussed in more detail below). The inset
in the figure shows that while no method achieves the desired
performance across even most materials, the FIA method is the
one that has the most results within the shaded circle.
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FIG. 2. (a) The side view of the various stacking orders for
graphene, hBN, and MoS2. (b) The MAE (thick line and markers)
and ME (dashed line, with indicators of sign) for energetic differ-
ences �E = EG1

0 − EG2
0 that serve as a proxy quality metric for

heterostructures. Here, G1 and G2 indicate different stackings of the
same material.

So far, we have focused on properties of optimal homostruc-
tures, i.e., layered materials in which the layers have been
arranged in their lowest-energy configuration. In the future,
the primary goal of studying layered materials is likely to shift
to heterostructures, in which perfect registry is impossible to
achieve due to different lattice parameters. Thus, it is important
to ask whether or not methods are sufficiently accurate for
heterostructures. Reliable heterostructure benchmarks from
RPA or other high-level theories are beyond current compu-
tational limits, however, making benchmarking impossible.
Graphene/BN are a notable exception [6].

To overcome this limitation, we test instead an important
and related property of homostructures, namely, the difference
in energies between structures arranged in nonoptimal stack-
ings [illustrated in Fig. 2(a)] and the energy of the lowest-
energy state. Since heterostructures involve many atoms out-
side optimal registry, the ability of a method to reproduce these
energy differences will be important for accurate calculations.
Furthermore, these energies involve an interplay between
dispersive and electrostatic forces [43], and thus methods
cannot rely on any convenient cancellation of errors near the
optimal lattice point and must reproduce both with sufficient
accuracy. Thus, although imperfect, these tests are likely to be
the best available proxy for heterostructure physics.

We examine the influence of stacking on the contribution of
each of the 11 methods and display the results in Fig. 2(b). We
focus on the following stacking configurations for graphene,

hBN, and MoS2: AA in graphene, hBN, and MoS2, AB in
hBN and MoS2, and A′B in MoS2. These cases all have
reliable RPA benchmark data [6,31] and include both small
and large energy differences to cover different physical regimes
that may be encountered in real heterostructures. Our results
show that two of the four methods already identified as
good, namely, optB88vdW and FIA, are also the best at
capturing energy differences (note that SCSTS does best on
the energy-difference tests, but is worst for binding energies).
The consistent behavior of the four methods emphasizes their
general accuracy in various situations.

Finally, in our assessment of the various dispersion ap-
proaches, we devote some special attention to PdTe2, which
exhibits the interesting property that the covalent and vdW
dispersion forces compete; according to our calculations, the
application of Perdew-Burke-Ernzerhof (PBE) (without any
vdW dispersion model) yields a c0 of 5.327 Å and a Eb

of 18.2 meV, which are much closer to the experimental
values than the corresponding quantities for other transition
metal chalcogenide (TMC) compounds when calculated using
PBE. The performance of the vdW dispersion methods in
the case of this compound is important in identifying the
behavior of the dispersion forces in an extreme case. Out of
the 11 vdW methods, the ones that have the lowest errors in Eb

are DFTdDsC, SCSTS, TS, and optPBEvdW, while the ones
with the lowest errors in c0 are DFTD2, DFTD3, DFTD3BJ,
DFTdDsC, FIA, SCSTS, TS, and optB88vdW. This means that
while the FIA method, on average, achieves the tradeoff, other
methods can be more accurate in selected cases.

Having established that the FIA method has the most com-
petitive agreement with RPA among the GGA-based methods
investigated in this paper, we note that recently published
results on the dispersion-corrected meta-GGA SCAN+rVV10
[42] show it gives a superior performance even to FIA, with
about 40% average improvements to lattice constants and
energies (no results are available for stacking energies), despite
poor performance [5] for PBE+rVV10 in the same systems.
However, a critical issue with SCAN+rVV10 is the compu-
tational performance: given the complexity of the evaluation
of the kinetic-energy density in meta-GGA-based methods,
would SCAN+rVV10 suffer from higher computational com-
plexity? To quantify this, we have performed a full-relaxation
calculation on a hybrid bilayer system composed of graphene
and WS2. This system has 3 × 3 WS2 and 4 × 4 graphene, and
both calculations started with the same initial atomic structure
and with an energy cutoff of 600 eV (which is higher than
the value used in the rest of the calculations here because this
is required for the convergence of the meta-GGA functional).
The full relaxation of this system using SCAN+rVV10 on 64
cores required ∼4.1 times the time FIA requires to perform the
same calculation.

Therefore, while SCAN+rVV10 and FIA have compet-
itive accuracies, especially when compared to other meth-
ods tested here, an FIA calculation takes far less time than
SCAN+rVV10. We point out that the recent reparametrization
of the PBE+rVV10 method, known as PBE+rVV10L [44],
has been reported to yield reasonably accurate results that
are comparable to SCAN+rVV10. But this method requires
the tuning of a fitting parameter for different systems which
makes it of limited applicability in general since one cannot
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use the same method to treat, e.g., a molecule adsorbed to a
layered surface. A similar strategy was previously employed
by Björkman et al. [4] who simply scaled VV10 energies by
66% to better match RPA results for layered materials.

IV. CONCLUSIONS

We have investigated the accuracy of 11 vdW dispersion
methods for the prediction of the geometric and energetic
properties of 11 representative vdW materials, and we have
found that there is a tradeoff between the accuracy in deter-
mining the geometric and energetic properties. Out of the 11
methods, we report that the recently introduced FIA methods
achieves the tradeoff, and that the FIA, DFTD3, optB88vdW,
and DFTdDsC methods achieve high accuracy with respect to
the other methods. Two methods out of these four, namely, FIA
and optB88vdW, deliver more accurate predictions compared
to the other two for 2D materials with nonequilibrium stacking
orders.

We believe that the ability of most methods to get good
lattice parameter or energies, but not both, points to underlying
problems in the ability of their polarizability models to adjust
to different geometries (Dobson-A and -B nonadditivity),
especially when the layers are brought close to contact. Conse-
quently, the damping function which connects the dispersion
correction to the underlying exchange-correlation functional
is unable to meet the competing demands of getting both
energies and lattice parameters right. Only methods with
very good underlying polarizability physics, such as FIA or
SCAN+rVV10 [45], give sufficiently good dispersion energies
near contact to reproduce geometries and energies together.
This argument is supported by out-of-equilibrium results for
the benzene dimer [35].

It is interesting to note that each of the four best methods
found here represents the latest generation of a different class
of vdW methods, highlighting the steady improvements in
each class. Our work thus suggests two important elements

for the success of future vdW methods: (a) achievement of
the tradeoff between geometry and energy characteristics, and
(b) inclusion of the physical principles that drive the current
methods, perhaps by borrowing “best practice” from methods
of a different class.

Importantly, our work highlights the need to test and develop
methods using a wide range of systems. Most dispersion
methods are optimized and initially tested on small molec-
ular systems, due in part to the availability of high-quality
benchmark data. However, as we have shown here, this does
not necessarily mean they work well in layered systems or,
presumably, when molecules are physi- or chemisorbed onto
surfaces. We feel this motivates the need for better benchmark
data of difficult systems.

Let us finally draw our attention to the most promising route
for improving dispersion-force modeling. Here we focused on
generalized gradient approximation (GGA)-based approaches,
due to their wide availability. The meta-GGA SCAN+rVV10
offers superior performance to any of the GGA-based ap-
proaches, however, despite known problems with PBE+VV10
for layered systems and a complete absence of Dobson-B
contributions. This suggests that (modified) meta-GGAs may
offer a superior starting point for dispersion corrections.
Combining the most reliable dispersion corrections here (e.g.,
FIA) with meta-GGAs may thus offer the possibility of even
better performance going into the future. Progress along these
lines is being pursued
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