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This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides.
We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling
rates, and perform the study with both a k · p-based analytic method and a recursive Green’s function–based
numerical method. The study yields the transmission coefficient as a function of incident energy and transverse
wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in
both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current
valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and
band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in
structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum
for transmission in the armchair direction; and (3) for transmission ∼0.1, a tunneling current valley polarization
of the order of 10% can be achieved.
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I. INTRODUCTION

Valleytronics has recently attracted a lot of attention [1,2].
It can be realized in two-dimensional (2D) hexagonal struc-
tures such as graphene [3] or monolayer transition metal
dichalcogenides (TMDCs) [4] where electrons carry valley
pseudospin—a binary quantum index in association with the
existence of two inequivalent and degenerate band structure
valleys at the corners (K and K ′) of the Brillouin zone. The
large crystal momentum separation between K and K ′ protects
the valley pseudospin well from intervalley scattering and
leads to good-sized valley coherence suitable for valley-based
information processing.

The implementation of valleytronics requires valley control.
Various schemes to manipulate valley polarization have been
proposed, such as those based on ballistic transport through
a zigzag nanoribbon [1], defect scattering [5], band structure
warping [6], and strain [7]. In gapped graphene or TMDCs,
where the presence of inversion symmetry breaking leads
to the emergence of opposite orbital magnetic moments for
electrons in the two valleys [2], alternative valley control is
made available by coupling the valley pseudospin to external
fields, e.g., out-of-plane magnetic fields or in-plane electric
fields. Such coupling can result in valley polarization [8,9],
or the valley Hall effect [2] creating a topological current
in graphene systems [10] or in 2H -monolayer TMDCs [11].
Specifically, the coupling between a valley pseudospin and an
in-plane electric field gives rise to the so-called valley-orbit
interaction (VOI) [12,13] suitable for valley manipulation.
Based on the VOI mechanism, a unified methodology has
been developed to realize functional devices such as valley
qubits [13,14], valley field-effect transistors (FETs) [14,15],
and valley filters [16].

Novel valley physics is exhibited in 2H -monolayer TMDCs
[17], distinct from that in graphene. For example, they possess
intrinsic inversion symmetry breaking, as opposed to graphene
systems that use substrates [18,19] to achieve the breaking
or vertical electric fields [20–23] to control the breaking.
Moreover, while an approximate electron-hole symmetry holds
in graphene, the lack of such a symmetry leads to distinct valley
physics for holes and electrons [24] in TMDCs. For example,
a strong spin-orbit coupling (SOC) exists in the valence bands
of TMDCs giving a large spin-orbit splitting in the bands. Due
to the time-reversal symmetry, both the spins and spin-orbit
gaps in top valence bands are opposite in signs for electrons in
the two valleys [17]. This is known as the spin-valley coupling
and protects holes from intervalley scattering by nonmagnetic
impurities, thus enhancing the valley coherence of holes.

Previous studies of TMDC-based valleytronics mainly
focus on the optical pumping of valley polarization, which
exploits the unique optovalleytronic physics in 2H -monolayer
TMDCs, namely, direct band gaps at the two valleys and
the valley-dependent selection rule [25]. These properties
provide a strong light-matter coupling and allow the generation
of valley polarization by application of circularly polarized
light [26–29]. On the other hand, from both scientific and
technological perspectives, studies of nonoptical approaches
should also be essential for TMDC-based valleytronics. In
connection to this alternative direction, there have recently
been theoretical works proposing the use of ferromagnetic
materials [30], line defects [31], or point defect scattering [32]
for the generation of valley currents. However, a systematic
theoretical study of valley filtering for holes using gated
quantum structures is yet to be performed for TMDCs. With
such structures it permits valley control via electrical gates and,
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thus, constitutes a particularly interesting tactic in line with the
prevailing practice in the IC industry.

In this work, we study the valley filtering of hole states in
lateral quantum structures of 2H -monolayer TMDC systems
with electrostatic gating. We start, in Sec. II, by deriving a one-
band, low-energy effective Hamiltonian from a four-band k · p

model, for the topmost valence band in TMDCs. This effective
Hamiltonian facilitates the theoretical understanding as well as
design of hole-based valleytronic structures. Guided by the
Hamiltonian, Sec. III presents one-barrier, lateral quantum
devices formed of gated structures in TMDCs and lateral
sandwich heterostructures such as WS2/MoS2/WS2. These
structures can generate valley-dependent hole tunneling and
perform the function of valley filtering. In Sec. IV, a symmetry-
based analysis using the S matrix is provided for hole trans-
missions in the quantum structures. Section V formulates the
hole transport problem within a three-d-orbital tight-binding
description of TMDCs, and presents a recursive Green’s
function (RGF) algorithm for solving hole transmissions in
the structures. Specifically, a mixed r-k space (i.e., real and
momentum space) scheme for the RGF algorithm is developed
which reduces the dimensionality of the problem from two
to one. In Sec. VI, we present numerical results of hole
transmissions in the quantum structures. The main findings
are the following: (i) The tunneling current valley polarization
increases with increasing barrier width or height; (ii) both the
valley-orbit interaction and band structure warping contribute
to valley-dependent tunneling, with the former contribution
being manifest in structures with asymmetric barriers, and the
warping contribution being orientation dependent and reaching
maximum for transmission in the armchair direction; and (iii)
for transmission ∼0.1, a current valley polarization of the order
of 10% can be achieved. Our study is concluded in Sec. VII.
The Appendix provides a supplement to the discussion of the
k · p model in Sec. II.

II. k · p EFFECTIVE HAMILTONIAN FOR
THE VALENCE BAND

We derive, for 2H -monolayer TMDCs, an effective one-
band Hamiltonian for the topmost valence band states near
Dirac points, within the k · p theory. Such a Hamiltonian
provides insights into various effects in the valley physics of
holes in TMDCs.

Figures 1(a) and 1(b) present the top and side views, re-
spectively, of atomic arrangement in a 2H -monolayer TMDC
crystal with chemical formula MX2, which is a three-layered
structure with one layer of transition metal atoms M = Mo or
W sandwiched between two layers of chalcogen atoms X = S,
Se, or Te. Figure 1(c) shows the corresponding Brillouin zone.
Throughout this work, we take the x axis (y axis) to be along
the armchair (zigzag) direction and the z axis perpendicular to
the xy plane. With this convention, the wave vectors at K and
K ′ satisfy the relation �kK ′ = −�kK .

Main features of the effective Hamiltonian are summarized
below. In the presence of an in-plane potential energy variation,
the Hamiltonian manifests a valley-dependent term, namely,
the valley-orbit interaction (VOI). Other terms that emerge and
are valley dependent include those in association with the pres-
ence of band trigonal warping (TW) [33], intrinsic spin-orbit

FIG.1. (a) Top view of 2H -monolayer TMDC in real space, where
large pink disks represent metal atoms M and small brown disks
represent the chalcogen atoms X. (b) Side view of 2H -monolayer
TMDC in real space. (c) The first Brillouin zone.

coupling (SOC) [33,34], or Rashba SOC [24,34]. Among these,
the TW and VOI terms are found to be dominant and, thus,
constitute potential resources for valleytronic applications.

In the following, we will provide a sketch of the theoretical
derivation and leave background details to the Appendix.

A. Spinless effective one-band model

We ignore the carrier spin and SOC first. The essen-
tial features of valence band structure around Dirac val-
leys are captured by a four-band k · p Hamiltonian [33],
which is constructed on the basis of the Bloch func-
tions at K (K ′) with an even parity in the z direction,
e.g., {�v

A1(A1), �
c+2
E1−(E1+), �

c
E1+(E1−), �

v−3
E1−(E1+)}. Here, the super-

script denotes the corresponding energy band to which the state
belongs, with c (v) standing for the first conduction (valence)
band and c + 2 (v − 3) the third conduction (fourth valence)
band; the subscript indicates the corresponding irreducible
group representation to which the state belongs, of C3h, the
group of wave vectors at K (K ′). The Hamiltonian in the
four-band k · p model reads
H4b

=

⎛
⎜⎜⎜⎝

Ev + Vext τP1k+ τP2k− τP3k+
τP ∗

1 k− Ec+2 + Vext τP4k+ 0

τP ∗
2 k+ τP ∗

4 k− Ec + Vext τP5k−
τP ∗

3 k− 0 τP ∗
5 k+ Ev−3 + Vext

⎞
⎟⎟⎟⎠,

(1)

where τ = 1 (−1) for the K (K ′) valley; k± = ∂y ± iτ∂x ;
Vext = Vext(x,y) is the in-plane potential energy; Eb (b = v,
c + 2, c, or v − 3) is the band edge energy at K or K ′; and
Pμ (μ = 1−5) is, except for a trivial prefactor, the momentum
matrix element between corresponding basis states. Note that
Pμ’s are real valued [33]. We employ the Löwdin perturbation
theory [35] and treat the off-diagonal k · p terms and diagonal
Vext as perturbations to the third order. This gives, for low-
energy holes in the topmost valence band, the following one-
band electron Hamiltonian,

H1b(τ ) = H0 + HTW + HVOI, H0 = h̄2k2

2m∗ + Vext,

HTW = ταTW
(
k3
y − 3kyk

2
x

)
, HVOI = ταVOI(∇Vext × �k) · ẑ,

(2)
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where

αTW = 2P1P2P4

(Ev − Ec+2)(Ev − Ec)
+ 2P2P3P5

(Ev − Ev−3)(Ev − Ec)
,

(2a)

αVOI = − P 2
1

2(Ev − Ec+2)2 − P 2
2

2(Ev − Ec)2

− P 2
3

2(Ev − Ev−3)2 , (2b)

and

m∗ = h̄2

2

(
P 2

1

Ev − Ec+2
+ P 2

2

Ev − Ec
+ P 2

3

Ev − Ev−3

)−1

(2c)

is the effective mass. Two τ -dependent terms enter the effective
Hamiltonian, namely, HTW corresponding to the band warping
and HVOI corresponding to the VOI. As HVOI comes from
couplings of the top valence band to the rest in the model, it
consists of corresponding contributions that scale, respectively,
inversely with (Ev−Ec+2)2, (Ev−Ec)2, and (Ev−Ev−3)2. In
comparison to the corresponding expression of αVOI in gapped
graphene, where it scales inversely with (Ev−Ec)2, αVOI here
is weaker due to the typically large gap size contrast between
the two materials.

Overall, the spinless effective Hamiltonian in Eq. (2) is
sufficient to capture the main valley-dependent effects and,
thereby, can serve as a useful guidance for the design of
valleytronic devices. The inclusion of spin and SOC in the
model slightly modifies the parameters m∗, αTW, and αVOI, as
will be explained in the next subsection.

B. Effects of spin-orbit coupling

The effects of SOC are described in more details in the
Appendix. Basically, they can be classified into two categories,
namely, intrinsic and extrinsic ones.

The intrinsic effects derive from the coupling of electron
spins to the crystal potential and modify the band structure
obtained in the spinless model. Overall, the inclusion of
intrinsic SOC effects produces a shift of the various band
edges by opening up the spin-orbit gaps, resulting in a relative
band edge shift of the order of �so/�BG, where �so is the
typical spin-orbit gap and �BG the typical band gap in TMDCs.
Using Eqs. (2a) and (2c), this produces in m∗ and αTW a
corresponding relative change of the order of �so/�BG. Using
�so = O(100 meV) and �BG = O(1 eV), such a change is
typically small. If desired, such a change can be incorporated
by redefining the various band edges in the spinless model.

On the other hand, there are also extrinsic SOC effects
coming from the coupling between spins and external electric
fields. These include the Rashba SOC in the presence of a
vertical electric field and the SOC-induced change in VOI.
As discussed in the Appendix, if we take the in-plane and
out-of-plane electric fields to be of the same order, then the
Rashba SOC is a factor of �so/�BG smaller than HVOI given
in Eq. (2). For this reason, we will ignore the Rashba SOC
in our study of the valley-dependent transport. As for the
SOC-induced change in αVOI, it is estimated to be of the order
of �so/�BG just as that in the case of m∗ and αTW.

FIG. 2. (a) A one-barrier structure with the gray area indicating a
barrier lying along the armchair direction. (b) A one-barrier structure
with the gray area showing a barrier lying along the zigzag direction.
(c) The inverted valence band edge diagram of a one-barrier structure
with the barrier height V0 and the source-drain bias V1 = 0 (V1 �= 0)
for a symmetric (asymmetric) structure.

Overall, the above discussion confirms the applicability
of the effective Hamiltonian given by Eq. (2) to hole-based
valleytronics in TMDCs.

III. QUANTUM STRUCTURES FOR VALLEY FILTERING

We now explore electrical valley filtering of holes in
TMDCs going through a lateral quantum barrier. In the corre-
sponding tunneling problem to be considered here, the carrier
energy E and transverse wave vector kt = kx(ky) for tunneling
in the zigzag (armchair) direction are taken to be conserved
quantities. In addition, the valley index τ is also a constant of
the tunneling due to the spin-valley locking caused suppression
of intervalley scattering.

Depending on the orientation of the barrier, two cases are
analyzed as follows.

A. Barrier stripe along the armchair direction

First, we consider the case where the barrier stripe lies along
the armchair direction, i.e.,Vext = Vext(y) [see Fig. 2(a)]. Using
Eq. (2), we write the effective Hamiltonian for a given kx :

HAC(ky → −i∂y,y; kx) = Hkinetic + Hpotential + h̄2k2
x

2m∗ ,

Hkinetic(ky → −i∂y ; kx) = h̄2k2
y

2m∗ + ταTWk3
y − τ3αTWk2

xky,

Hpotential(y; kx) = Vext(y) − ταVOIkx∂yVext(y). (3)

Under the specific classification of terms in Eq. (3), HVOI

generates a valley-dependent term “−ταVOIkx∂yVext(y)” in the
potential energy Hpotential that can result in valley-dependent
tunneling. We note that in systems with a homogeneous
band gap, the effect of HVOI is expected to be significantly
suppressed. This can be understood in terms of the Ehrenfest
theorem; namely, if we treat “−ταVOIkx∂yVext(y)” in Eq. (3)
as a perturbation and perform the first-order perturbation-
theoretical estimation, then we obtain −ταVOIkx〈∂yVext(y)〉 ∝
d〈py〉/dt = 0 within the effective one-band approximation.
Two structures are available in order to dodge the Ehrenfest
theorem-caused suppression. For practical applications, let us
focus on a hole energy which on the incident side is near
the local valence band edge. First, one could use a suitably
high barrier such that in the barrier region the hole energy
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would be deep in the band gap and sufficiently away from the
local valence band edge. This would invalidate the low-energy,
one-band approximation in the barrier region and hence the
Ehrenfest theorem valid in the low-energy regime would cor-
respondingly be violated. Second, one could alternatively use
a lateral heterostructure. In this case the various coefficients in
the one-band Hamiltonian would become material dependent
and hence vary in space. Therefore, a straightforward applica-
tion of the Ehrenfest theorem would fail. With either structure,
the existence of a sizable, nonvanishing 〈−ταVOIkx∂yVext(y)〉
can be made possible. As such, we identify the presence
of either a band-gap inhomogeneity or a sufficiently high
barrier in the structure as the necessary condition for a clear
manifestation of the VOI-induced valley-dependent tunneling.
Such a condition will be numerically verified in Sec. VI.

Equation (3) indicates that HTW also contributes to the
kinetic energy, Hkinetic, a valley-dependent term “ταTWk3

y −
τ3αTWk2

xky” that is odd in ky . Naively, one would think that
such a term could be effective in generating a valley-polarized
current. However, their effect on tunneling is negligible, as
explained in the following. We consider a tunneling electron
with energy E lower than the barrier height. For such an
electron, the corresponding wave vector ky is complex with
a finite imaginary part describing the attenuation of wave
amplitude in the barrier. We analyze the valley dependence
of ky in the barrier by analytically continuing the Hamiltonian
HAC into the complex ky plane. Using Hkinetic in Eq. (3), the
local valence band dispersion in the barrier can be written as

E(ky,τ ) =
∑

i=0,1,2···
τ iaiki

y, (3′)

where ai are real-valued constants. For an incident carrier
at the given energy E, the above equation implies multiple
solutions of wave vectors {ky’s}, with each constituting a
channel available to the carrier tunneling. In the following, we
show that {ky’s} have identical distributions in the imaginary
part for τ = ±1. Let ky,K (E) be a solution at energy E

for τ = 1. Then it follows that {ky,K (E), k∗
y,K (E)} are both

solutions, as is well known for an equation such as Eq. (3′)
with real-valued constants. On the other hand, it can be
verified that {−ky,K (E),−k∗

y,K (E)} are solutions for τ = −1.
Now we compare the solutions for τ = ±1. We see that the
imaginary parts of {ky,K (E), k∗

y,K (E)} and those of {−ky,K (E),
−k∗

y,K (E)} are identical. This suggests the same tunneling rates
for carriers of opposite valleys. Thereby, as opposed to HVOI,
HTW does not effectively lead to valley-dependent tunneling.

B. Barrier stripe along the zigzag direction

Next, we consider the case where the barrier lies along
the zigzag direction, i.e., Vext = Vext(x) [see Fig. 2(b)]. The
effective Hamiltonian becomes

HZZ(kx → i∂x,x; ky) = Hkinetic + Hpotential + h̄2k2
y

2m∗ ,

Hkinetic(kx → i∂x ; ky) = h̄2k2
x

2m∗ − τ3αTWkyk
2
x,

Hpotential(x; ky) = ταTWk3
y + Vext(x) + ταVOIky∂xVext(x).

(4)

FIG. 3. The schematic diagram showing incident and reflected
waves in the two regions, labeled as I and II, of the one-barrier
structure.

We note that, as argued in the previous case, HVOI can gen-
erate a valley-dependent tunneling when the band gap varies
in space. On the other hand, as opposed to the first case, HTW

now contributes to the kinetic energy a term “−τ3αTWkyk
2
x”

that is quadratic in kx . Such a term can modify the carrier
effective mass in a valley-dependent way. Therefore, when
the Hamiltonian is analytically continued into the tunneling
regime, it results, due to the mass difference between carriers
of opposite valleys, in a valley-contrasted tunneling behavior
where carriers of one valley have a larger mass and weaker
tunneling than those of the other valley. By comparing the two
cases of barrier orientations, we find that HTW shows a strong
anisotropy in producing the valley contrast.

For further investigation of valley-dependent hole transport
below, we shall consider barriers with symmetric (V1 = 0)
or asymmetric (V1 �= 0) profiles as shown in Fig. 2(c), in
structures with homogeneous or inhomogeneous band gaps.
We define the valley polarization of a tunneling current as
Pv ≡ (TK − T−K )/(TK + T−K ), with TK(−K) referring to the
transmission probability of hole states at the K (K ′) valley,
and study Pv with a symmetry-based analysis in Sec. IV and
numerically in Sec. VI.

IV. SYMMETRY-BASED ANALYSIS

The symmetry-based analysis is performed within the
formalism of the S matrix. Figure 3 shows the scattering of
a hole off a barrier, where �

ξ,in (out)
E,kt ,τ

is the wave in region ξ

(ξ = I or II) moving toward (away from) the barrier. The S

matrix relates the incoming current amplitudes A (carried by
�

I,in
E,kt ,τ

) and D (carried by �
II,in
E,kt ,τ

) to the outgoing ones B

(carried by �
I,out
E,kt ,τ

) and C (carried by �
II,out
E,kt ,τ

):

(
B

C

)
= SE,kt ,τ

(
A

D

)
=

(
rE,kt ,τ t ′E,kt ,τ

tE,kt ,τ r ′
E,kt ,τ

)(
A

D

)
, (5)

with the matrix elements rE,kt ,τ and r ′
E,kt ,τ

being the reflection
and tE,kt ,τ t ′E,kt ,τ

the transmission amplitudes. In particular,
for a hole moving from region I to region II, the transmission
probability is given by TE,kt ,τ = |tE,kt ,τ |2.

For a given set of E, kt , and τ , the S matrix given in Eq. (5)
is 2 × 2. Additional restrictions on the S matrix arise from the
probability conservation and also the symmetry in the system,
as discussed next.
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A. Probability conservation

As is well known, due to the probability conservation law,
SE,kt ,τ is required to be unitary. This leads to

|tE,kt ,τ | = |t ′E,kt ,τ |. (6)

B. Time-reversal symmetry

Under the time-reversal operation, �ξ,in (out)
E,kt ,τ

transforms into

�
ξ,out (in)
E,−kt ,−τ and, correspondingly, Eq. (5) is transformed into
(

A∗
D∗

)
= SE,−kt ,−τ

(
B∗
C∗

)
or

(
B

C

)
= ST

E,−kt ,−τ

(
A

D

)
, (5′)

using the unitarity of SE,−kt ,−τ . Comparing Eq. (5′) to Eq. (5),
we obtain ST

E,−kt ,−τ = SE,kt ,τ and, thus, |tE,kt ,τ | = |t ′E,−kt ,−τ |.
Combined with Eq. (6), it leads to

|tE,kt ,τ | = |tE,−kt ,−τ |. (7)

Equation (7) implies the following. For normal incidence,
where kt = 0, Eq. (7) concludes a vanishing tunneling current
valley polarization in all cases independent of the barrier shape
and orientation. In other words, the analysis here identifies
kt �= 0 as a necessary condition on incident carriers for the
generation of tunneling current valley polarization.

C. Reflection symmetry

For barriers lying along the zigzag direction, the reflection
symmetry under the transformation x → −x is always broken
due to the dissimilarity between M and X. However, for
barriers lying along the armchair direction, the situation varies
depending on V1.

In the case where V1 = 0, the structure exhibits the reflec-
tion symmetry under the transformation y → −y. Under the
reflection,�ξ,in (out)

E,kx ,τ
transforms into �

ξ,out (in)
E,kx ,−τ and, correspond-

ingly, Eq. (5) becomes(
A

D

)
= SE,kx,−τ

(
B

C

)
or

(
B

C

)
= S

†
E,kx ,−τ

(
A

D

)
. (5′′)

Comparing Eq. (5′′) to Eq. (5), we obtain S
†
E,kx ,−τ = SE,kx,τ

or |tE,kx ,τ | = |t ′E,kx ,−τ |. Combined with Eq. (6), it gives

|tE,kx ,τ | = |tE,kx ,−τ |. (8)

Equation (8) concludes a vanishing tunneling current valley
polarization for any incident angle, when V1 = 0. Therefore,
for one-barrier structures with barriers along the armchair
direction, V1 �= 0 is another necessary condition, apart from
kt �= 0, on the generation of tunneling current valley polariza-
tion.

The result of this section along with that derived in Sec. III
within the effective Hamiltonian-based analysis is summarized
in Table I below.

As summed up in Table I, in all of the cases the condition
kt �= 0 is required for a nonvanishing tunneling current valley
polarization. We note that this condition can be experimentally
realized by, for example, sampling the transmitted current [6]
or generating the incident current [36,37], at an angle with
respect to the barrier’s normal direction.

TABLE I. TW- and VOI-based valley-polarized hole tunneling
in various situations. All cases require oblique incidence (kt �= 0)
for Pv to be nonvanishing. “*” here indicates the condition of either
a band-gap inhomogeneity or that a suitably high barrier is further
required for a sizable polarization.

Barrier orientation
(kt �= 0) Symmetric barrier Asymmetric barrier

Armchair Pv = 0 VOI*
Zigzag TW TW, VOI*

V. RECURSIVE GREEN’S FUNCTION APPROACH

Section V A presents a generic, efficient recursive Green’s
function method in the mixed r-k space, for the study of carrier
transmission in 2D material-based, lateral quantum structures.
Section V B discusses the application of the method to TMDC
systems.

A. Mixed r-k space formulation for recursive Green’s function

Figure 4(a) shows a quantum structure with lattice transla-
tional symmetry in the x direction and a potential variation in
the y direction generated with electrostatic gating, for example,
on top of the gray area. We consider electron transport in the
y direction in the tight-binding model. The system is taken to
have a square lattice structure. For illustration, only nearest-
neighbor hoppings {t+,t−,u+,u−} and next-nearest-neighbor
hoppings {v+,v−,w+,w−} are included in the model. In the
case of TMDCs, a supercell can be chosen to transform the
hexagonal lattice of TMDCs into a square lattice, as will be
shown in Sec. V B.

FIG. 4. (a) A lateral quantum structure in a two-dimensional
square lattice. Unit cells are represented by circles. The gray area
indicates a barrier. The region bounded by vertical yellow lines
denotes a column of unit cells. Hj (j = integer) is the on-site part
of the tight-binding Hamiltonian for a cell with coordinates (i,j ).
t±, u±, v±, and w± are hopping matrices. (b) Reduction of the
two-dimensional lattice to a one-dimensional chain in the mixed r-k
space, with H̃j and t̃± being, respectively, the effective on-site cell
Hamiltonian and nearest-neighbor hoppings.
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The wave equation in the tight-binding model is given by

HjCi,j + u+Ci+1,j + u−Ci−1,j + t+Ci,j+1 + t−Ci,j−1

+ v+Ci−1,j+1 + v−Ci+1,j−1 + w+Ci+1,j+1

+w−Ci−1,j−1 = ECi,j , (9)

where Ci,j is the amplitude, which can be multicomponent,
at the cell with coordinates (i,j ) and Hj is the corresponding
on-site part of the Hamiltonian. Let kx be the transverse Bloch
wave vector and ax the lattice constant in the x direction. Using
the Bloch theorem, e.g., Ci+1,j = eikxax Ci,j , we can effectively
remove the x dependence from Eq. (9) and reduce it to

H̃j (kx)Ci,j + t̃+(kx)Ci,j+1 + t̃−(kx)Ci,j−1 = ECi,j . (9′)

With the x coordinate fixed at “i”, Eq. (9′) now involves
only a single column of unit cells. Figure 4(b) shows the
corresponding reduced system—a one-dimensional chain. The
on-site part of the Hamiltonian (H̃j ) and nearest-neighbor
hoppings (t̃±) in the chain are given by

H̃j (kx) = Hj + u+eikxax + u−e−ikxax ,

t̃+(kx) = t+ + w+eikxax + v+e−ikxax ,

t̃−(kx) = t− + v−eikxax + w−e−ikxax . (10)

The remaining task is then to apply the standard recursive
Green’s function technique [38] and calculate the transmission
coefficient in the effective chain.

We make two notes about the present method. First, in
an alternative recursive Green’s function approach, one could
perform the calculation in the xy space, where one replaces
the structure with an infinite x dimension with one of a finite
x dimension, e.g., a nanoribbon. In order to avoid edge effects
as well as finite size effects, this nanoribbon would have to
be wide enough. The present approach in mixed kx and y

space is obviously much more efficient from a computational
point of view, and naturally permits the study of transport
quantities such as the transmission coefficient as a function
of the transverse wave vector, kt , in the case of lateral quantum
structures. Second, as the present approach solves the wave
amplitude on each atomic site, it automatically satisfies the
requirement of current continuity across the interface between
different regions, as opposed to bulk band structure–based
approaches [16,39], where bulk solutions are firstly obtained in
each region of the quantum structure and then matched across
the interface. For such approaches, special care has to be taken
to ensure current continuity at the interface.

B. TMDC-based quantum structures

We now apply the method developed in Sec. V A to TMDC-
based lateral quantum structures.

For a semiquantitative study, we adopt a minimal, three-
orbital tight-binding description that uses dz2 ,dx2−y2 ,dxy of the
metal atom M as the basis states, which are known to be the
dominant constituent orbitals near the conduction and valence
band edges [40]. Overall, since the D3h point-group symmetry
of TMDCs is faithfully retained, we expect that the omission
in the model of the p orbitals from the chalcogen atom X, even
though they also contribute to the band edge states, would not
pose any essential problem for a semiquantitative study.

FIG. 5. The chalcogen atoms are denoted by the dashed circle, and
their atomic orbitals are ignored in the three-orbital model. (a) The
hopping terms considered in the calculation, with tnn the nearest-
neighbor hopping, tnnn the next-nearest-neighbor hopping, and ttnn

the third-nearest-neighbor hopping. (b) Supercell for barriers along
the armchair direction. (c) Supercell for barriers along the zigzag
direction.

A few more notes are given below about the tight-binding
model. First, in order to describe the warping and effective mass
of the valence bands with a reasonable accuracy, hopping terms
up to the third-nearest neighbors are included [see Fig. 5(a)].
Second, following our earlier discussion in Sec. II B about the
SOC, the model accounts for the dominant SOC effect—the
resultant spin-orbit gap by including it in the on-site orbital
energy—and ignores the less significant Rashba SOC. In fact,
the Rashba SOC is automatically excluded from the model.
With the coupling being proportional to the matrix element of
z [41] between states, it vanishes between any pair of states
from {dz2 ,dx2−y2 ,dxy} where all the states are of even parity
in the z direction. Third, as a main contribution to the VOI
comes, according to Eq. (2b), from the coupling between the
first conduction band and the first valence band, the model is
able to accommodate this interaction. Therefore, overall, the
model is able to capture major valley-dependent effects that
are of interest to our investigation. If desired, one can use the
three-orbital model as an effective model and adjust the various
on-site and hopping parameters to fit it with an extensive one
and improve the quantitative aspect of the model.

The formulation of Sec. V A is developed for the structure
of a square lattice. In order to apply it to the TMDC system,
we choose the supercells as shown in Fig. 5(b) for barriers
along the armchair direction and Fig. 5(c) for barriers along
the zigzag direction. It can be verified that in each case a unit
cell is “nearest-neighbor” coupled, on the supercell scale, to
the eight neighboring cells, among which four of them share
common edges and the rest share common vertices with it. It
can be verified that this intersupercell coupling does not extend
beyond nearest neighbors.

VI. NUMERICAL RESULTS

We apply the formalism presented in Sec. V to the numerical
study of valley filtering of holes in TMDC lateral quantum
structures, with the tight-binding parameters and the band
offsets between different TMDCs in the study taken from
Refs. [40,42].
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FIG. 6. Hole transmissions and corresponding tunneling current
valley polarizations, i.e., Pv , as functions of total carrier energy, in
one-barrier structures with barriers lying along the armchair direction.
Results in (a)–(c) are calculated using the parameters of WSe2.
(a) Valley-averaged transmissions for various kx’s with barrier height
V0 = 0.01 eV, source-drain bias V1 = 0.01 eV, and barrier width W

nearly 100 Å. (b) Tunneling current valley polarizations for various
kx’s in the same structure considered in (a). (c) Tunneling current
valley polarization for various barrier heights (V0) and biases (V1)
at kx = 0.05a−1. (d) Tunneling current valley polarization for two
TMDCs with V0 = 0.01 eV, V1 = 0.01 eV, W ≈ 100 Å, and kx =
0.05a−1.

Our numerical results of hole transmissions in various
one-barrier structures are presented in Figs. 6–8. In Figs. 6
and 7, we consider homogeneous structures with barriers

FIG. 7. Hole transmissions and corresponding tunneling current
valley polarizations, i.e., Pv , as functions of total carrier energy, in
symmetric, one-barrier structures with barriers lying along the zigzag
direction and the source-drain bias V1 = 0 eV. For (a)–(c), the results
are obtained with the tight-binding parameters of WSe2. (a) Valley-
averaged transmissions for various transverse wave vectors ky’s with
barrier height V0 = 0.01 eV and width W nearly 100 Å. a = lattice
constant. (b) Tunneling current valley polarizations for various ky’s
in the same structure considered in (a). (c) Tunneling current valley
polarizations for various barrier heights (V0) and widths (W ) at ky =
0.05a−1. (d) Tunneling current valley polarizations for two TMDCs
with V0 = 0.01 eV, V1 = 0 eV, W ≈ 100 Å, and ky = 0.05a−1.

lying along the armchair and zigzag directions, respectively,
while Fig. 8 compares homogeneous with heterogeneous
structures. In all figures, we take the valence band edge of
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FIG. 8. The comparison of tunneling current valley polarization
between a WS2/MoS2/WS2 heterostructure and a homogeneous
MoS2 quantum structure with the same barrier width and height.
Curves labeled “hetero” refer to the tunneling current valley polariza-
tion in the heterostructure and those without the label refer to that in the
homogeneous structure. (a) Tunneling current valley polarization for
barriers along the armchair direction with V0 = 0.45 eV, W ≈ 10 Å,
and kx = 0.1a−1, for V1 = 0 eV or 0.1 eV. (b) Tunneling current valley
polarization for barriers along the zigzag direction with V0 = 0.45 eV,
W ≈ 10 Å, and ky = 0.1a−1, for V1 = 0 eV or 0.1 eV. In (a), since
the VOI effect is dominant, the polarization vanishes at V1 = 0 eV.

the structure on the incidence side to be the zero reference
energy.

We summarize below the common features in Figs. 6
and 7. Figures 6(a) and 7(a) present valley-averaged hole
transmission coefficients, showing a magnitude which is near
unity for hole energy above the barrier and rapidly decreases
for hole energy below the barrier. Figures 6(b) and 7(b) present
corresponding tunneling current valley polarizations. We see
that they vanish at kt = 0 and increase with the magnitude
of the transverse wave vector kt , in agreement with Table I.
Moreover, the valley-dependent tunneling as a mechanism of
valley filtering is verified. As shown in the figures, outside
the tunneling regime, e.g., when transmissions are ∼1, the
resultant tunneling current valley polarization becomes in-
significantly small. On the other hand, the polarization rises
up as the carrier energy moves into the tunneling regime,
with the resultant polarization depending on the barrier width
as well as the height—the wider or higher the barrier, the
larger the polarization. This is evident in Fig. 6(c) when

comparing polarizations in the two cases where V1 is fixed
at 0.01 eV. The polarization increases with increasing V0.
A similar trend also holds in Fig. 7(c) when comparing the
case where V0 = 0.01 eV, W = 100 Å to either that where
V0 is increased to 0.02 eV or that where W is increased to
200 Å. Figures 6(d) and 7(d) compare tunneling current valley
polarizations for MoSe2 and WSe2. Within the three d-orbital
tight-binding model employed here, the two materials show
analogous behaviors, which can be attributed to their identical
crystal structures and similar band structures. We have also
performed calculations for MoS2 and WS2, and found, due to
the dominance of valence bands by the d orbitals of metallic
ions, that the resultant polarization curves for MoS2 and WS2

are, respectively, nearly identical to those of MoSe2 and WSe2.
Last, in Figs. 6(c), 6(d), 7(c), and 7(d), a phenomenon of
oscillations in Pv is noticeable. These oscillations also show
up in Figs. 6(a) and 7(a) and are attributed to the Fabry-Perot
type resonance occurring between the two barrier-electrode
interfaces.

Next, we discuss the contrast between Figs. 6 and 7. This
contrast is primarily manifested as an order-of-magnitude dif-
ference in Pv’s with, for example, Pv ≈ O(0.001%) in Fig. 6(c)
and Pv ≈ O(10%) in Fig. 7(c). According to Table I, the
dominant mechanisms of tunneling current valley polarization
are different in the two cases—while it is VOI based in Fig. 6(c),
it is TW based in Fig. 7(c). In the case of Fig. 6(c), because
of the Ehrenfest theorem, the VOI mechanism is greatly
suppressed. Therefore, it results, for the homogeneous struc-
tures considered here, in a strong orientational dependence of
tunneling current valley polarization.

The weak strength of the VOI effect illustrated in Fig. 6
can be improved in several ways. For example, in Fig. 6(c),
when comparing the three curves with V0 all fixed at 0.01 eV,
it shows that the polarization increases with increasing V1.
Alternatively, one can invoke a violation of the Ehrenfest
theorem by introducing a suitably high barrier or a band-gap
inhomogeneity such as that in a heterostructure, and reinstate
the VOI effect, as discussed below.

In Fig. 8, we study tunneling current valley polarizations in
heterostructures. Specifically, we consider WS2/MoS2/WS2

[43,44] with the valence band offset taken to be 0.45 eV
between WS2 and MoS2. We compare the heterostructure
to the homogeneous structure of MoS2 with a barrier height
matching the offset. Figure 8(a) presents the case where the
barrier is oriented in the armchair direction. It shows that the
VOI-based polarization of about the order of 1% is generated,
with the heterostructure having the higher polarization than
the homostructure. On the other hand, Fig. 8(b) presents the
case where the barrier stripe is oriented in the zigzag direction,
and it shows that the homostructure gives rise to the higher
polarization. Moreover, we find that when V1 is turned on
the polarization is reduced. We interpret this reduction as an
indication of the VOI contribution being opposite in sign to that
of the TW—the dominant contribution at V1 = 0. Using the
amount of reduction as an estimate, we obtain from the graph
that the VOI-contributed Pv is around 2% in the homogeneous
case and 5% in the heterogeneous case. A comparison between
the VOI contributions in Figs. 8(a) and 8(b) shows that the VOI
effect varies relatively slowly in order of magnitude with the
barrier orientation.
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VII. CONCLUSION

In summary, we have derived an effective one-band k · p

Hamiltonian for the valence bands, which can capture main
valley-dependent effects and can be used to explore electroval-
leytronics of holes in monolayer TMDCs. Using this Hamil-
tonian as a guidance, an electrical valley filtering structure
has been proposed, which is formed of a lateral quantum
structure with a potential barrier, with the filtering based on
valley-dependent tunneling rates. The valley filtering physics
in such a structure has been investigated with both a S-matrix-
based analysis and a numerical calculation of transmission
coefficients with the recursive Green’s function method.

Generally, we find that the tunneling current valley polariza-
tion increases with the barrier width and height. Specifically,
two effects on valley filtering are identified. The effect of
trigonal warping is shown to be strongly orientation dependent,
being minimal in structures with armchair-oriented barriers
and maximal in those with zigzag-oriented ones. In addition to
this effect, in structures with asymmetric barriers, a VOI mech-
anism emerges contributing to valley filtering in a relatively
isotropic fashion. For homostructures, the VOI-contributed
tunneling current valley polarization is largely suppressed.
However, by introducing either a band-gap variation or a
suitably high barrier into the structure, the VOI effect can be
significantly restored.

Overall, our study demonstrates that for transmission ∼0.1
a tunneling current valley polarization ∼1%−10% can be
achieved via electrical gate control in lateral, TMDC-based
one-barrier structures. Extension of the present treatment to
the case of double-barrier resonant tunneling structures may
be quite worthwhile, in the sense that the trade-off between
the transmission and the tunneling current valley polariza-
tion existing in one-barrier structures may be altered to suit
applications.
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APPENDIX

In Sec. II, it is stated for holes in an in-plane electric
field that the major valley-dependent effects, namely, those
due to TW and VOI, can be derived within the four-band
k · p model given in Eq. (1). In this Appendix, we provide
background details of the model as well as of the inclusion
of SOC effects in the model. A similar and comprehensive
theoretical treatment of the model with primary applications
to conduction band electrons in a vertical electric field can be
found in Refs. [24,33].

For the construction of the k · p Hamiltonian, we use
Bloch functions at high-symmetry points (K and K ′) as
the basis set. In the spinless case, these Bloch functions
are classified according to the irreducible representations
A1, A2, E1+, E1−, E2+, and E2− of the C3h group. For a
reasonable k · p description of hole states near the valence
band edge, we include a few bands around the valence band

edge. Here, we start from a 14-band model [24] including the
spin degeneracy and involving the following Bloch functions
at the K (K ′) point: |ψc+2

E1−(E1+),s〉, |ψc+1
A2(A2),s〉, |ψc

E1+(E1−),s〉,
|ψv

A1(A1),s〉, |ψv−1
E2−(E2+),s〉, |ψv−2

E2+(E2−),s〉, |ψv−3
E1−(E1+),s〉. Here,

“s” denotes spin (s = +1/−1 or ↑/↓), the superscript denotes
the band index, and the subscript denotes the corresponding
irreducible representation. These states are chosen to cover
as many distinct irreducible representations as possible so
that the Hamiltonian is sufficiently general and manifests all
qualitatively distinct interband couplings. The form of the k · p

Hamiltonian can be determined using the symmetry of the
basis functions. For example, under the z → −z reflection
operation (σh), the basis functions are classified into the two
following sectors: (i) the even sector given by {|ψc+2

E1−/E1+ ,s〉,
|ψc

E1+/E1− ,s〉, |ψv
A1/A1

,s〉, |ψv−3
E1−/E1+ ,s〉} and (ii) the odd sector

given by {|ψc+1
A2/A2

,s〉, |ψv−1
E2−/E2+ ,s〉, |ψv−2

E2+/E2− ,s〉}. This leads
to the 14-band Hamiltonian H14b with the following form:

H14b = Hkp + Hsoc + Hext, (A1)

where Hkp is the Hamiltonian in the absence of SOC; Hsoc

is the intrinsic SOC, ∝ ∇V × �p · �S; and Hext is the potential
energy due to an external electric field, given below:

Hkp =

⎛
⎜⎜⎜⎝

Heven,↑ 0 0 0

0 Heven,↓ 0 0

0 0 Hodd,↑ 0

0 0 0 Hodd,↓

⎞
⎟⎟⎟⎠, (A1a)

Hsoc =

⎛
⎜⎜⎜⎝

�so
even,z 0 0 �so

−
0 −�so

even,z �so
+ 0

0 (�so
+ )† �so

odd,z 0

(�so
− )† 0 0 −�so

odd,z

⎞
⎟⎟⎟⎠,

(A1b)

Hext =

⎛
⎜⎜⎝

Vext 0 ξz 0
0 Vext 0 ξz

ξ
†
z 0 Vext 0
0 ξ

†
z 0 Vext

⎞
⎟⎟⎠. (A1c)

Hkp is block diagonal, since the k · p term (= kxpx + kypy)
is even in the z direction as well as spin diagonal. Heven (odd),s

is the block Hamiltonian spanned by the basis functions in
the even ({\rm odd}) sector with spin s, with Heven (odd),↑ =
Heven (odd),↓. For Hsoc, the terms proportional to Sx and Sy are
odd in z, and mix the even and odd sectors with opposite spins
giving �so

± = �so
x ± i�so

y . In contrast, the terms proportional
to Sz only mix bands within the same sector and with the
same spin giving �so

even,z or �so
odd,z. For Hext, the electron spin

is conserved, and the out-of-plane field component couples
bands between opposite sectors giving ξz while Vext is taken
to be slowly varying in the plane and thus contributes only to
diagonal matrix elements [13].

Equation (A1) shows that H14b is nearly diagonal. For the
study of holes, it can be reduced to a smaller matrix involving
fewer states by, for example, projecting H14b onto the even
sector {|ψc+2

E1−/E1+ ,s〉, |ψc
E1+/E1− ,s〉, |ψv

A1/A1
,s〉, |ψv−3

E1−/E1+ ,s〉}
to which the valence band (v) belongs. In this projection, the
off-diagonal couplings between v and those in the odd sector
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in H14b produce the second-order perturbation-theoretical
terms that are proportional to (|�so

± |)2/�BG, |�so
±ξz|/�BG,

or |ξ 2
z |/�BG (�BG = typical band gap) and modify Heven,s .

However, these terms are relatively small in comparison to
those in Heven,s . For example, the term of (|�so

± |)2/�BG results
in the spin at the valence band being tilted away from the z

direction but, in comparison with �so
even,z in Heven,s , it is lower in

magnitude by (�so/�BG)2 (�so = typical SOC matrix element
in Hsoc). Similarly, the term of |�so

±ξz|/�BG can be shown to
give rise to a Rashba SOC of the order of kP 2

μ�BG(eλz)/�3
BG

(λz = the electric field in the z direction), which is lower than
the VOI term in Eq. (2) by �so/�BG, if the in-plane and out-of-
plane electric field components are taken to be of the same or-
der. Therefore, for our study of the electric effect, it is ignored.

Accordingly, for the study of holes, we focus only on the
even sector, or Heven,↑ and Heven,↓, and drop the rest of the
blocks as well as the various couplings between the blocks. The
forms of Heven,s at K and K ′ valleys are different and related
by the time-reversal operation. In terms of the valley index τ

and spin s, they can be expressed as Hτ
4b,s = Hτ

even + τs�so
even,z

[17], summarized below:
Hτ

4b,s = H4b + Hso,

Hso =

⎛
⎜⎜⎜⎝

�v
so 0 0 0

0 �c+2
so 0 �c+2,v−3

so

0 0 �c
so 0

0 �c+2,v−3
so 0 �v−3

so

⎞
⎟⎟⎟⎠. (A2)

H4b above is given by Eq. (1). For our study, the off-diagonal
matrix elements in Hso in Eq. (A2) can be ignored from the
perturbation-theoretical viewpoint. Therefore, the effect of Hso

primarily shifts the various band edges by the amount of �so,
i.e.,

Ev → Ev ′ = Ev + �v
so, Ec+2 → Ec+2′ = Ec+2 + �c+2

so ,

Ec → Ec ′ = Ec + �c
so, Ev−3 → Ev−3′ = Ev−3 + �v−3

so .

(A3)

With the Löwdin perturbation theory [35], we treat the off-
diagonal k · p terms and diagonal Vext in (A2) as perturbations
to the third order. This gives, for the topmost valence band, the
following one-band, low-energy electron Hamiltonian,

H ′
1b(τ ) = H ′

0 + H ′
TW + H ′

VOI,

H ′
0 = h̄2k2

2(m∗)′
+ Vext,

H ′
TW = τα′

TW
(
k3
y − 3kyk

2
x

)
,

H ′
VOI = τα′

VOI(∇Vext × �k) · ẑ, (A4)

where α′
TW, α′

VOI, and m∗′ are basically those in Eqs. (2a)–(2c)
except with the replacement prescribed in (A3). Therefore, the
inclusion of SOC introduces a relative change of the order of
�so/�BG in the TW and VOI effects and the effective mass.
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