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Resistivity scaling model for metals with conduction band anisotropy
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It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to
grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have
demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by
the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In
this work, we derive a resistivity scaling model that captures grain boundary and boundary surface scattering as
well as the anisotropy of the band structure. The model is applied to Cu and Ru thin films, whose conduction bands
are (quasi-) isotropic and anisotropic, respectively. After calibrating the anisotropy with ab initio simulations, the
resistivity scaling models are compared to experimental resistivity data and a renormalization of the fitted grain
boundary reflection coefficient can be identified for textured Ru.
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I. INTRODUCTION

Many semiclassical and quantum-mechanical resistivity
scaling models (see [1–12]) have been developed over the
past decades and have provided a satisfactory description for
the thickness-dependent resistivity of metal thin films down
to nanometer-scale thicknesses [13–18]. The thickness depen-
dence can mainly be attributed to grain boundary and boundary
surface scattering, whose impact on the resistivity increases
when the film thickness is reduced. For grain boundaries, this
is a consequence of the typical observation that grain sizes in
polycrystalline films decrease with decreasing thickness.

Fuchs and Sondheimer developed a seminal semiclassical
model that describes the impact of thin film boundary surface
scattering on the resistivity by applying diffuse or partially
diffuse boundary conditions [1,2]. Mayadas and Shatzkes later
included the impact of grain boundary scattering without
invoking Matthiessen’s rule [3]. The resulting expression is still
widely used today as it provides an analytical expression of the
thin film resistivity as a function of its thickness, allowing for
a straightforward analysis of experimental resistivity data and
determining the relative impact of grain and film boundaries.
The model is typically being considered with two fitting
parameters that respectively represent the average reflection
coefficient of the grain boundaries and the specularity of the
thin film boundary surfaces (due to, e.g., atomic-scale bound-
ary roughness). In this way, the relative contribution of grain
boundary and boundary surface scattering for the resistivity
degradation can easily be read from the fitting parameters.

The Mayadas-Shatzkes model shines through its simplicity
and wide applicability, but it is derived within the framework
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of the simplest effective mass description for the conduction
bands. This offers a reasonable description in the case in which
the metal is nearly isotropic. However, it is not necessarily
adequate for many metals in the periodic table whose band
structure deviates significantly from an isotropic band struc-
ture, e.g., exhibiting an anisotropic Fermi velocity and multiple
bands with multiple electron or hole pockets centered around
different symmetry points in the Brillouin zone (e.g., Co, W,
Os, Ru, Ir) [19,20]. Particularly for textured thin films (see [21])
or nanowires that are grown along a specific crystal orientation
[22–25], one can doubt the validity of this approach.

Recently, Li et al. proposed a phenomenological correction
to the Fuchs-Sondheimer model for metal thin films of Os
with a nonspherical Fermi surface to explain the experimental
findings [26]. In this work, we derive a model to describe
resistivity scaling of imperfect metal thin films, while retaining
some features of the electronic structure to capture the impact
of conduction band anisotropy. The model is similar in spirit to
the Mayadas-Shatzkes model and provides the resistivity as a
function of the film thickness in a straightforward manner with
two fitting parameters representing grain boundary and film
boundary surface scattering. The main extension of our model
is the consideration of a diagonal effective mass tensor that is
tailored for the metal and thin film texture under consideration.

The model is presented in Sec. II after briefly reviewing the
Mayadas-Shatzkes model, followed by a section on the effec-
tive mass fitting procedure. Section IV contains a discussion
of the results, implications for experiments, and limitations of
applicability of the model. We conclude in Sec. V.

II. MODEL

The conduction electrons of a thin film, with length L along
the transport direction, are modeled as quasifree fermions
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residing in a single conduction band and being treated in the
effective mass approximation. The film thickness is considered
to be large enough such that the allowed three-dimensional
wave vectors k, providing a unique (apart from the twofold
spin degeneracy) label for the different electron states, can
safely be assumed to be quasicontinuous.

A. Mayadas-Shatzkes model

Mayadas and Shatzkes proposed a model for the resistivity
scaling of polycrystalline films with reduced thicknesses due to
an increase of grain boundary and boundary surface scattering
[3]. The grain boundaries are modeled by a sequence of δ-
function potential barriers normal to the transport direction
x, which can be regarded as effective representations for an
ensemble average of grain boundaries with different shapes
and orientations:

V GB ≡
N∑

i=1

Sδ(x − xi). (1)

N such barriers are being considered, leading to an average
grain boundary separation d = L/N , which can be understood
as the mean linear intercept for a random straight trajectory
through a thin film sample along the transport direction. This
can easily be extracted from plan-view transmission electron
microscopy (TEM) images, for example [21,27]. The barrier
positions xi are considered to be distributed according to a
Gaussian distribution function g(x1, . . . ,xN ),

g(x1, . . . ,xN ) ≡ 1

L

N−1∏
i=1

exp[−(xi+1 − xi − d)2/(2s2)]

(2πs2)1/2
, (2)

with standard deviation s for the mean linear intercept. The
Boltzmann transport equation is then considered to compute
the distribution function f (k). Keeping only the lowest-order
contributions and assuming a small constant electric field
vector E oriented along the transport direction, the stationary
Boltzmann equation reduces to

eE vx(k)
∂f eq[ε(k)]

∂ε
=

∑
k′

P (k,k′)[f1(k′) − f1(k)] − f1(k)

τ (k)
,

(3)

where e is the electron charge, ε(k) the electron state energy,
vx(k) the x component of the electron velocity, τ (k) the bulk
collision time due to impurities, defects, and electron-phonon
interactions, P (k,k′) the scattering rate to go from k to k′ (or
the opposite) as a result of elastic grain boundary scattering,
and f1(k) ≡ f (k) − f eq[ε(k)] with f eq[ε(k)] the Fermi-Dirac
distribution. Scattering at boundary surfaces is not yet included
in this equation. The scattering rates are calculated with
Fermi’s golden rule and an averaging over the distribution
g(x1, . . . ,xN ), leading to

P (k,k′) = F (|kx |)δk⊥,k′
⊥δkx,−k′

x
,

F (|kx |) ≡ h̄k2
F

me|kx |d
R

1 − R

× 1 − exp
(−4k2

xs
2
)

1 + exp
(−4k2

x

) − 2 exp
(−k2

xs
2
)

cos(2kxd)
,

R = 1
/[

1 + h̄4k2
F/(meS)2], k⊥ ≡ (ky,kz). (4)

The derivation can be found in Appendix A. The reflection
coefficient R for an electron at the Fermi level with wave vector
perpendicularly oriented to a δ-function barrier was used to
rewrite the transition probability. Note that the expression on
the second line is corrected with a factor of 2 in comparison
with Mayadas and Shatzkes. The solution of Eq. (3) is then
given by

f1(k) = −τ ∗(k)eEvx(k)
∂f eq[ε(k)]

∂ε
,

1/τ ∗(k) ≡ 1/τ (k) + 2F (|kx |). (5)

For random grain boundary configurations of typical metallic
thin films, it is safe to assume k2

Fs
2 � 1, such that F (|kx |)

reduces to

F (|kx |) = h̄k2
F

me|kx |d
R

1 − R
. (6)

The conductivity σ GB
x (along transport direction x), taking into

account the bulk scattering contribution and grain boundary
scattering, can be calculated using [28,29]

σ GB
x = −2e2

∫
d3k

(2π )3
v2

x(k)τ ∗(k)
∂f eq[ε(k)]

∂ε
. (7)

The result obtained by Mayadas and Shatzkes, assuming zero
temperature (being a very reasonable assumption for typical
metals at room temperature) and an isotropic bulk collision
time τ (or equivalently an isotropic mean free path l0), is given
by

σ GB(α) = nee
2τ

me
3

[
1

3
− α

2
+ α2 − α3 ln

(
1 + α

α

)]
,

ne = k3
F/(3π2) = (2meEF)3/2/(3π2h̄3), (8)

α ≡ 2τ
h̄kF

med

R

1 − R
= l0

d

2R

1 − R
, l0 ≡ vFτ,

with ne the bulk electron density and vF the Fermi velocity:
vF ≡ h̄kF/me. Scattering at the thin film boundary surfaces
is not taken into account through a scattering probability, but
through boundary conditions on the Boltzmann distribution
function, carrying an additional dependence on the coordinate
z normal to the film boundary surfaces. This approach was first
introduced by Fuchs and Sondheimer without the inclusion
of grain boundary scattering [1,2]. The Boltzmann equation
becomes

vz(k)
∂f1(z,k)

∂z
+ eEvx(k)

∂f eq[ε(k)]

∂ε
= −f1(z,k)

τ ∗(k)
,

f1(0,kx,ky,kz) = pf1(0,kx,ky,−kz) [vz(k) > 0], (9)

f1(t,kx,ky,kz) = pf1(t,kx,ky,−kz) [vz(k) < 0],

where t is the film thickness, p reflects the probability to
scatter specularly at the boundary surfaces at z = 0 and z = t ,
while diffuse scattering occurs with a probability 1 − p. Note
that the notion of a transverse velocity vz(k) is invalid for
extremely thin films, where confinement heavily affects the
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band structure. Due to the large conduction electron density
of typical metals, this region is limited to thin films with
thicknesses up to a few atom layers, i.e., ∼1 nm [21,30].
The solution of the equation with surface scattering boundary
conditions is given by

f1(z,k) = −τ ∗(k)eEvx(k)
∂f eq[ε(k)]

∂ε
Fp(z,k),

Fp(z,k) ≡ 1 − ϑ(kz)
(1 − p) exp{−z/[τ ∗(k)vz(k)]}
1 − p exp{−t/[τ ∗(k)vz(k)]}

−ϑ(−kz)
(1 − p) exp{(t − z)/[τ ∗(k)vz(k)]}

1 − p exp{t/[τ ∗(k)vz(k)]} , (10)

with the Heaviside step function ϑ(k) and Fuchs fraction
Fp(z,k) (see Fig. 1). This solution leads to the following
conductivity formula for thin films with grain boundary
and partially diffusive boundary surface scattering on top
of isotropic bulk collisions, σ GB+BS(α,p):

FIG. 1. The Fuchs fraction Fp(z,k), defined in Eq. (10), is evalu-
ated as a function of the film thickness t , showing its average over the
position normal to the film boundaries for the full range of specularity
parameters p (0 � p � 1) and transverse velocities vz (−vF � vz �
vF). The bulk limit is retrieved (Fuchs fraction equal to 1) when p = 1
or vz = 0 and the lower bound when p = 0 and |vz| = vF. The results
are obtained for τ ∗(k) = 25 fs and vF = 1.57 × 106 m/s, resembling
a monocrystalline Cu thin film.

σ GB+BS(α,p) = σ GB(α) − nee
2τ

me

6

πκ
(1 − p)

∫ π/2

0
dθ

∫ π/2

0
dφ

sin3θ cos θ cos2φ

H 2(α,θ,φ)

1 − exp[−κH (α,θ,φ)/ cos θ ]

1 − p exp[−κH (α,θ,φ)/ cos θ ]
, (11)

with

κ ≡ t/ l0,

H (α,θ,φ) ≡ 1 + α/| sin θ cos φ|, (12)

and θ and φ respectively referring to the polar and azimuthal
angle of the spherical coordinate system with poles located on
the z axis.

The bulk conductivity is retrieved as the limiting case
corresponding to R = 0 and p = 1:

σ bulk = σ GB+BS(α = 0,p = 1)

= nee
2τ/me = nee

2l0/(mevF). (13)

Also note that the conductivity is finite in the limit p → 0
while

lim
α→+∞ σ GB+BS(α,p) = lim

R→1
σ GB+BS(R,p) = 0,

lim
α→+∞ σ GB(α) = lim

R→1
σ GB(R) = 0, (14)

lim
p→1

σ GB+BS(α,p) = σ GB(α).

Analogous limiting cases can be discovered in the extended
model presented in the following section.

B. Conduction band anisotropy

We extend the Mayadas-Shatzkes model to account for
an anisotropic conduction band, for which we introduce a
diagonal effective mass tensor. The Fermi surface ε(k) =
EF is ellipsoidal and the following relations hold, while k

corresponds to any electron state at the Fermi level:

EF = h̄2k2
x

2mx

+ h̄2k2
y

2my

+ h̄2k2
z

2mz

= h̄2k2
F

2me
,

ne = MxMyMz

k3
F

3π2
= MxMyMz

(2meEF)3/2

3π2h̄3 , (15)

kF ≡
√

2meEF/h̄, Mx,y,z ≡ √
mx,y,z/me.

For Eq. (8), an isotropic magnitude of the Fermi-level veloci-
ties, mean free path, and collision time are considered, which
needs to be modified in the case of conduction band anisotropy.
The electron velocity of Fermi-level states is now anisotropic
and given by

|v(k)| = |∇kE(k)/h̄| = h̄

√
k2
x

m2
x

+ k2
y

m2
y

+ k2
z

m2
z

, (16)

and in general this velocity magnitude can be related to an
anisotropic mean free path l0(k) and/or collision time τ (k)
through |v(k)| = l0(k)/τ (k). The grain boundary scattering
probability is still given by Eq. (4), but R, the reflection co-
efficient of a Fermi-level electron with velocity perpendicular
to a grain boundary barrier, is related differently to the barrier
strength due to the band anisotropy:

R = 1
/[

1 + h̄4k2
F/(MxmeS)2

]
. (17)

In order to compute the conductivity with Eq. (11), we need to
integrate over an ellipsoidal Fermi surface. Hence, we define
new integration variables to map it to a spherical surface
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integration:

kx,y,z → kx,y,z/Mx,y,z. (18)

Following the derivation of Mayadas and Shatzkes, the conduc-
tivity will first be calculated taking only the scattering by grain
boundaries into account. Scattering at the external surfaces
will be accounted for subsequently. We will consider two
cases in the sections below, the first one assuming an isotropic
collision time, and the second one an isotropic mean free
path. The former is relevant for electron-phonon interactions,
while the latter is more suitable for the low-temperature
regime dominated by impurity and defect scattering.

1. Isotropic collision time

Using the result of Eq. (17) and the rescaling according to
Eq. (18), we solve for the conductivity, given by Eq. (7), for
an ellipsoidal Fermi surface with isotropic collision time τ :

σ GB(β) = nee
2τ

mx

3

[
1

3
− β

2
+ β2 − β3 ln

(
1 + β

β

)]
,

β ≡ 2τ
h̄kF

Mxmed

R

1 − R
= α

Mx

. (19)

In order to include scattering at the film boundary surfaces we
adopt the Fuchs-Sondheimer approach as before:

σ GB+BS(β,p) = σ GB(β) − nee
2τ

mx

6

πλ
(1 − p)

∫ π/2

0
dθ

∫ π/2

0
dφ

sin3θ cos θ cos2φ

H 2(β,θ,φ)

1 − exp[−λH (β,θ,φ)/ cos θ ]

1 − p exp[−λH (β,θ,φ)/ cos θ ]
, (20)

with

H (β,θ,φ) ≡ 1 + β/| sin θ cos φ|, λ ≡ tmz/(h̄MzkFτ ) = Mzκ. (21)

The remaining integrations cannot be carried out analytically and are performed numerically. As a limiting case, the bulk
conductivity equals

σ bulk = σ GB+BS(β = 0,p = 1) = nee
2τ/mx. (22)

2. Isotropic mean free path

In the case of an isotropic mean free path and an ellipsoidal Fermi surface, the collision time is directional and given by

τ (k) = l0h̄

|∇kE(k)| = l0

h̄
√

k2
x/m2

x + k2
y/m2

y + k2
z /m2

z

. (23)

The conductivity expression for grain boundary scattering cannot be obtained analytically in this case and is given by

σ GB(α) = nee
2τx

mx

6

π

∫ π/2

0
dθ

∫ π/2

0
dφ

sin3θ cos2φ

ζ (θ,φ) + α/| sin θ cos φ| , (24)

where τx ≡ l0mx/(h̄MxkF) and

ζ (θ,φ) ≡
√

sin2θ cos2φ + sin2θ sin2φ
M2

x

M2
y

+ cos2θ
M2

x

M2
z

. (25)

The extension for scattering at the film boundary surfaces is again obtained in a straightforward manner:

σ GB+BS(α,p) = σ GB(α) − nee
2τx

mx

6

πμ
(1 − p)

∫ π/2

0
dθ

∫ π/2

0
dφ

sin3θ cos θ cos2φ

G2(α,θ,φ)

1 − exp[−μG(α,θ,φ)/ cos θ ]

1 − p exp[−μG(α,θ,φ)/ cos θ ]
, (26)

with

G(α,θ,φ) ≡ ζ (θ,φ) + α/| sin θ cos φ|,
μ ≡ Mzt/(Mxl0) = λ/Mx = Mzκ/Mx. (27)

The bulk limit (α = 0, p = 1) also requires numerical integra-
tion in this case, with 1/ζ (θ,φ) in the integrand.

C. Directional effective mass fit

The aim of the fitting procedure in this section is to
obtain an anisotropic effective mass model with an ellipsoidal
energy-momentum relation that captures the anisotropic bulk
conductivity of an arbitrary Fermi surface in the best possible
way, thereby providing appropriate directional effective mass
values for the semiclassical resistivity scaling model. The

computational procedure for extracting the conductivity is
presented below for a particular transport direction (x) and
without imposing any Fermi surface averaging (as might be
appropriate for monocrystalline thin films). Nevertheless, it
can be generalized to an arbitrary transport direction with any
type of averaging (e.g., in-plane or isotropic) in a straightfor-
ward manner (see Appendix B).

We start from the bulk conductivity expression for an
arbitrary Fermi surface as obtained from Eq. (3), without
a grain boundary scattering term, and with an additional
conduction band label n:

σ bulk
x = − e2

4π3

∑
n

∫
d3v

v2
x n(v)τn(v)

|∂v/∂k|
∂f

eq
n (ε(v))

∂ε
. (28)
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Note that we consider an integral over group velocities
rather than wave vectors as the directionality of the for-
mer is more physically relevant, underlying the semiclassical
boundary conditions for partial specular surface scattering in
Eq. (10). We can now introduce a directional bulk conductivity
σ bulk

x (θ,φ) such that the total bulk conductivity can be obtained
by an integration over the unit sphere, representing all possible
directions for the Fermi velocity:

σ bulk
x = 1

4π

∫
d2� σ bulk

x (θ,φ), (29)

with σ bulk
x (θ,φ) defined as

σ bulk
x (θ,φ)

≡ − e2

π2

∫ +∞

0
dv v2

∑
n

v2
xn(v)τn(v)

det |∂v(k)/∂k|
∂f

eq
n [ε(v)]

∂ε
. (30)

This quantity will be approximated by considering the Fermi
surface of a single conduction band with ellipsoidal energy-
momentum relation based on the effective mass approximation
as introduced in Eq. (15), which can be rewritten in terms of
directional Fermi velocities vF ≡ (vx,vy,vz) as

axv
2
x + ayv

2
y + azv

2
z = 1, ax,y,z ≡ M2

x,y,zme/(2EF), (31)

or, similarly, as a function of the polar angle θ , azimuthal
angle φ, and the magnitude of the directional Fermi velocity

vF(θ,φ) as

a2
x sin2θ cos2φ + a2

y sin2θ sin2φ + a2
z cos2θ = 1/v2

F(θ,φ),

(32)

such that we get an approximate bulk conductivity σ EMA
x :

σ EMA
x = 1

4π

∫
d2�σ EMA

x (θ,φ), (33)

with approximated directional bulk conductivity:

σ EMA
x (θ,φ) ≡ 4e2E2

F

π2h̄3 axayaz sin2θ cos2φv5
F(θ,φ)τ (θ,φ). (34)

We can now fit parameters ax , ay , az, and EF such that
σ bulk

x (θ,φ) ≈ σ EMA
x (θ,φ) for all angles θ and φ, properly

reflecting the bulk conductivity contributions from the different
velocity orientations. Note that this fitting procedure does not
involve any matching of quantities involving electron states
away from the Fermi level, such as the work function of the
metal or the band curvature of the bottom of a conduction band
emerging from the ab initio band structure. Furthermore, by
fitting in velocity space, the full distribution of electron states
in the Brillouin zone (e.g., centered around different symmetry
points) is not captured, as can be expected when adopting the
effective mass approximation. A suitable fit can be obtained by
combining σ bulk

x (θ,φ) ≈ σ EMA
x (θ,φ) and Eq. (31) to obtain a

system of equations which can be solved with the least-squares
method. The resulting system of equations will depend on the
functional form adopted for τ (θ,φ). In the case of an isotropic
bulk collision time, we obtain

∀ θ,φ : τ (θ,φ) = τ,

v2
F(θ,φ) ≈ [

π2h̄3σ bulk
x (θ,φ)/(4e2E2

Faxayaz sin2θ cos2φ τ )
]2/5

,

⇒ ax(
E2

Faxayaz

)2/5 sin2θ cos2φ + ay(
E2

F axayaz

)2/5 sin2θ sin2φ + az(
E2

Faxayaz

)2/5 cos2θ

=
(

4 sin2θ cos2φe2τ

π2h̄3σ bulk
x (θ,φ)

)2/5

, (35)

where the last equation is obtained by plugging the second equation into Eq. (32) and bringing over factors such that the right-hand
side is independent of the fitting parameters and the left-hand side contains three independent fitting parameters. In the case of
an isotropic mean free path l0, we get in a completely analogous way,

∀ θ,φ : τ (θ,φ) = l0/vF(θ,φ),

v2
F(θ,φ) ≈ [

π2h̄3σ bulk
x (θ,φ)/

(
4e2E2

Faxayaz sin2θ cos2φl0
)]1/2

⇒ ax

EF(axayaz)1/2
sin2θ cos2φ + ay

EF(axayaz)1/2
sin2θ sin2φ + az

EF(axayaz)1/2
cos2θ

=
(

4 sin2θ cos2φe2l0

π2h̄3σ bulk
x (θ,φ)

)1/2

. (36)

As there are only three independent fitting parameters, parame-
ters ax , ay , az, and EF cannot be uniquely determined. The fit is
unaffected by a rescaling EF → CEF, Mx,y,z → C−3/2Mx,y,z

when the collision time is isotropic, and EF → CEF, Mx,y,z →
C−1/2Mx,y,z when the mean free path is isotropic. This re-
maining degree of freedom can be eliminated by matching the
density of states at the Fermi level of the anisotropic effective

mass model and of the ab initio band structure:

(axayaz)
1/2 4E2

F

π2h̄3 = −2
∑

n

∫
d3k

(2π )3

∂f
eq
n [ε(k)]

∂ε
, (37)

with the density of states for the effective mass model on the
left-hand side obtained from the electron density in Eq. (8) and
the definition in Eq. (31). The Fermi-level density of states of
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FIG. 2. (a),(b) The resistivity is evaluated as a function of the film
thickness, considering a Fermi energy of 5 eV (ne ≈ 50.8 nm−3),
reflection coefficient R = 0.5, and specularity parameter p = 0.5
for different degrees of out-of-plane anisotropy by varying the
eccentricity parameter M (Mx = My = M , Mz = 1/M2), assuming
(a) an isotropic collision time of 37.7 fs (full lines) and 3.77 fs (dashed
lines) and (b) an isotropic mean free path of 50 nm (full lines) and
5 nm (dashed lines). The values of collision time and mean free path
are equivalent choices when M = 1. (c),(d) The ratio of the resistivity
contributions due to grain boundary and boundary surface scattering is
evaluated as a function of the film thickness, considering an isotropic
(c) collision time and (d) mean free path.

the anisotropic effective mass remains constant under rescaling
EF → CEF, Mx,y,z → C−1/6Mx,y,z, which differs from the
invariance of the conductivity in the case of an isotropic
collision time or mean free path. For the numerical evaluation
of σ bulk

x (θ,φ), we have considered 500 pairs (θi,φi), uniformly
distributed on the unit sphere, and approximated the derivative
of the Fermi-Dirac distribution function at low temperatures
(kBT � EF) by

∂f
eq
n [ε(k)]

∂ε
≈ −ϑ[2δE − |εn(k) − EF|]

4δE
, (38)

with ϑ(ε) the Heaviside step function and δE > 0 very small.

III. RESULTS

The metal thin film conductivity (or resistivity) scaling for-
mulas, derived under the assumption of an isotropic collision
time [Eq. (20)] and an isotropic mean free path [Eq. (26)], are
evaluated for different parameters and degrees of conduction
band anisotropy in Fig. 2, fixing the reflection coefficient
and specularity parameter to the same value of 0.5 and the
average linear intercept equal to the film thickness (d = t). The
following effective masses are considered:Mx = My = M and
Mz = 1/M2, with eccentricity parameter M > 0. By varying
M , the anisotropy can be controlled without changing the
electron density or the density of states at the Fermi level, easily
verified by plugging these effective masses into the second
line of Eq. (15) and observing that the eccentricity parameter
drops out. The resulting Fermi surface represents an ellipsoidal

TABLE I. Least-square fit of the diagonal effective mass tensor
and Fermi energy for bulk Cu and Ru following the procedure of
Sec. II C with Eqs. (35) and (36) and averaging appropriate for the
texture under consideration, as explained in Appendix B.

Isotropic
Texture quantity Mx,y Mz EF (eV)

Cu Any τ 1.23 1.23 4.52
l0 1.25 1.25 3.93

Ru None τ 1.69 1.69 3.71
l0 1.72 1.72 3.37

[001] τ 1.65 1.54 5.00
l0 1.91 1.62 2.54

(prolate when M < 1 and oblate when M > 1) conduction
band with in-plane (x-y) versus out-of-plane (z) anisotropy.
All resistivity scaling curves show similar behavior with lower
in-plane mass and higher out-of-plane mass resulting in a lower
resistivity for all film thicknesses. The bulk collision time or
mean free path predominantly affects the large film thickness
behavior which is found to approach the bulk resistivity limit.
The resistivity is dominated by grain boundary backscattering
for all degrees of anisotropy, increasingly for lower (higher)
in-plane (out-of-plane) effective masses. The ratio of resistivity
due to grain boundary versus boundary surface scattering
reaches a minimum when the film thickness is of the order
of the bulk mean free path, the minimum shifting up for a
higher (lower) in-plane (out-of-plane) effective mass.

According to the fitting procedure of Sec. II C, the di-
rectional effective masses and Fermi energy were obtained
for bulk Cu and Ru, as presented in Table I. For Ru, we
consider untextured films for which a spherically averaged
Fermi surface with Mx = My = Mz is appropriate, as well
as [001]-textured films for which in-plane (x-y) averaging
(Mx = My �= Mz) of the Fermi surface is appropriate (see
Appendix B for details). All the subsequent results depend on
the film texture under consideration. For Cu the Fermi surface
is quasi-isotropic, hence the fit does not depend on the film
texture. The bulk Fermi surfaces for Cu and Ru (see Fig. 3)
were obtained with the computation of the bulk electronic
structures using ab initio calculations based on the density
functional theory implemented in the QUANTUM-ESPRESSO

FIG. 3. The Fermi surface in the first Brillouin zone is shown for
bulk Cu and Ru with the magnitude of the directional Fermi velocity
indicated in color.

033801-6



RESISTIVITY SCALING MODEL FOR METALS WITH … PHYSICAL REVIEW MATERIALS 2, 033801 (2018)

TABLE II. Values for the (isotropic) collision time (τ ) and mean
free path (l0) are listed for Cu and untextured and [001]-textured Ru
films, as obtained from the fitted effective masses and Fermi energy
in Table I, the bulk limit of Eqs. (20) and (26), and the experimental
resistivity values at 300 K (in-plane: ρx-y ; out-of-plane: ρz) [34].

Texture ρx-y (μ� cm) ρz (μ� cm) τ (fs) l0 (nm)

Cu Any 1.71 1.71 38.8 43.8
Ru None 7.05 7.05 9.2 6.6

[001] 7.62 5.82 6.0 8.2

packages [31]. Projector augmented wave [32] potentials
with the Perdew-Burke-Ernzerhof generalized gradient [33]
approximation form of the exchange-correlation functional and
a finer Monkhorst-Pack k-point sampling grid of 40 × 40 × 40
together with kinetic energy cutoff of 80 Ry are used to ensure
the total energy converges up to a tolerance of 10−12 eV.

Based on the fit for the effective masses and the Fermi
energy, the value of σ bulk/τ or σ bulk/l0 can be obtained,
assuming an isotropic bulk collision time or an isotropic bulk
mean free path, by plugging the obtained values into the bulk
limit of Eqs. (20) and (26), respectively. We extract a value
for the isotropic collision time or mean free path by fixing
the resistivity along the transport direction to the experimental
value at room temperature [34]. The obtained values are
provided in Table II.

We have now fixed all the parameters that enter the conduc-
tivity formulas in Eqs. (20) and (26), based on ab initio Fermi
surface calculations and calibration with bulk resistivity data,
apart from the reflection coefficient R, the specularity param-
eter p, and the average linear intercept d between grains. The
average linear intercept has been estimated from TEM images
for an appropriate subset of the thin film samples according
to the standard method in Ref. [27], and the relation d(t) for
any thickness t is obtained with linear interpolation, with the
addition of a virtual data point (t = 0, d = 0), reflecting an
imperfect thin film in the limit t → 0. Hence, the reflection
coefficient R and the specularity parameter p remain as the

TABLE III. Values for the reflection coefficient R and specularity
parameter p for the different metal thin films under consideration with
the different assumptions for the electronic structure and dominant
bulk scattering process. The appropriate set of assumptions for each
set of data is underlined.

Isotropic
Texture quantity R p

√
SSE (μ� cm)

PVD Cu Any τ 0.22 0.02 0.86
l0 0.18 0.00 0.86

PVD Ru None τ 0.45 0.99 4.72
l0 0.43 0.94 4.71

[001] τ 0.48 0.96 4.08
l0 0.37 1.00 4.25

ALD Ru None τ 0.40 0.00 5.94
l0 0.38 0.00 5.80

[001] τ 0.43 0.00 6.28
l0 0.26 0.00 4.80
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FIG. 4. (a) Experimental values for the average linear intercept
as a function of the film thickness. Piecewise linear interpolation is
considered for the resistivity scaling model. (b) Resistivity scaling fits
and experimental resistivity data on a log-log scale of PVD Cu, PVD
Ru on SiO2, and ALD Ru on TiN/SiO2. The fits for p and R are listed
in Table III. They are obtained for Cu and untextured Ru, assuming
isotropic τ (full) or isotropic l0 (dashed), as well as for [001]-textured
Ru with isotropic τ (dotted) or isotropic l0 (dot-dashed).

only two fitting parameters. We will fit R and p to experimental
thickness-dependent resistivity and intercept data of both Cu
and Ru films. Cu films were deposited by physical-vapor
deposition (PVD; sputtering) at room temperature on 1.5 nm
TaN/SiO2/Si substrates and capped by 1.5 nm of TaN to prevent
oxidation of Cu. The films showed an fcc crystalline structure
with strong [111] texture [21]. PVD Ru films were deposited
on SiO2/Si substrates, leading to a strong hexagonal [001]
texture [21]. Additional Ru films were deposited by atomic
layer deposition (ALD) on TiN/SiO2/Si substrates leading to
the absence of any texture in the films, i.e., the films were
random hexagonal polycrystals [35]. The microstructure of
all thin films was found to be near-bamboo-like with only
few grain boundaries parallel to the sample surface, such
that the grain boundary normals are perpendicular to the
out-of-plane-direction, and without any preferred in-plane
orientation. Thin film resistivities were obtained from four-
point sheet resistance measurements at room temperature as
well as the film thickness measured by both x-ray reflectance
and Rutherford backscattering spectrometry [21].

All the fitted parameters for the different sets of data and
different assumptions for film texture and bulk scattering
(isotropic collision time or isotropic mean free path) are listed
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FIG. 5. The SSE of the fit of (a) Eq. (20) and (b) Eq. (26) to the
PVD Cu data of Fig. 4 is shown for 0 � R, p � 1. The minimum is
indicated with a star.

in Table III and the resulting resistivity curves are shown
in Fig. 4(b). The steep resistivity increase for PVD Cu and
PVD Ru below a film thickness of 7 nm could not be fitted
satisfactorily with any set of parameters R and p. Therefore,
the presented fits for the PVD data have been obtained without
considering the data point for thickness around 3 nm (still un-
dershooting the PVD Ru data point around 5 nm thickness sys-
tematically). Even though different film textures and bulk scat-
tering properties underlie the different resistivity scaling curves
of a given data set, the curves are in very close agreement.

The sum of squared errors (SSE) of the full range of R and
p is shown for all the combinations of film texture and bulk
scattering assumptions for the different fits in Figs. 5 and 6,
with the results of Table III indicated. The fit is very robust for
the reflection coefficientR, unlike for the specularity parameter
p. Furthermore, slight differences between the reflection co-
efficients can be identified when considering a [001]-textured
thin film with isotropic collision time or mean free path for
PVD and ALD Ru. Assuming an isotropic collision time
(mean free path), increases (decreases) the obtained reflection
coefficient with respect to the untextured film assumption, for
which the assumption regarding the bulk scattering isotropy
is of little importance. The specularity parameter is in general
barely affected.

IV. DISCUSSION

It is evident from the results that conduction band anisotropy
can have an impact on thin film resistivity scaling. The
resistivity curves with different degrees of in-plane versus
out-of-plane anisotropy in Fig. 2 clearly show the impact on
resistivity scaling, the lowest resistivity being realized by the
lowest in-plane and highest out-of-plane effective masses. As
such, the electrons suffer less from boundary scattering and
are more resilient to grain boundary scattering. The impact is
more pronounced in the case of an isotropic collision time as
compared to an isotropic mean free path and this can be under-
stood by having a closer look at the conductivity expressions
in Eqs. (11), (20), and (26). In the case of an isotropic collision
time, both the effective mass along the transport direction and
the parameter for grain boundary scattering are renormalized
with respect to the Mayadas-Shatzkes formula (me → mx ,
α → β). As the latter is not renormalized in the case of an
isotropic mean free path, the impact of anisotropy is more
limited.

FIG. 6. The SSE of the fit of Eq. (20) for isotropic collision time
(left column) and Eq. (26) for isotropic mean free path (right column)
to the (a) PVD Ru on SiO2 and (b) ALD Ru on TiN/SiO2 data of
Fig. 4 is shown for 0 � R, p � 1, assuming an untextured (top row)
and a [001]-textured film (bottom row). The minimum is indicated
with a star.

When the average linear intercept is comparable to the
film thickness, grain boundary scattering is typically more
detrimental to the conductivity than boundary surface scat-
tering. This feature can clearly be seen in Fig. 2 and has
also been observed before [21,36]. This behavior also shows
from Figs. 5 and 6, with all fits showing a strong correlation
along R(p) = R(0) + Bp with B � 1, resulting in a quite
robust reflection coefficient R and a specularity parameter p

which can easily swing up or down for minor variations in the
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data or for different assumptions regarding the film texture
and bulk scattering properties. The physical reason is that
backscattering at grain boundaries is maximally detrimental to
the electron transport velocity, which gets completely reversed
by the scattering event (vx → −vx). Conversely, a diffusive
boundary scattering event reorients the velocity arbitrarily,
possibly retaining or even enhancing the transport velocity of a
conduction electron. One should therefore be careful drawing
any conclusion from the optimal value of p in these fits (see
Table III), as it carries little physical meaning.

While the quality of the fit to thickness-dependent resistivity
data and the value of the specularity parameter barely depend
on the different assumptions for film texture and bulk scattering
(isotropy of bulk collision time or mean free path), the obtained
value of the grain boundary reflection coefficient can be
affected. When attempting to draw meaningful conclusions
on grain boundary scattering from the precise value of the
reflection coefficient, one should also consider the film texture
and degree of conduction band anisotropy as well as the
characteristics of the dominant bulk scattering mechanism
before proceeding with the appropriate fitting procedure. These
complications arise only when one considers metals with a
high degree of anisotropy, such that one has to go beyond the
standard Mayadas-Shatzkes formula. For Cu, the conduction
band is nearly isotropic and the different assumptions lead to
results that are in close agreement.

All the resistivity measurements in the fits were performed
at room temperature, so we expect the (acoustic) phonons
to provide the dominant scattering mechanism in the bulk
regime, rendering the isotropic collision time assumption and
the corresponding R parameters meaningful. Furthermore,
the [001]-textured film assumption should apply to PVD Ru
while the results with an untextured film assumption should be
considered for ALD Ru, even though this does not provide the
best overall fit. The appropriateness of the fit is not reflected in
the quality of the fit, but it certainly dismisses the validity of
certain results under different assumptions. For example, the
reflection coefficient would turn out to be significantly larger
for the Ru samples if the [001]-texture with isotropic bulk mean
free path would be the appropriate assumption.

A returning problem of the Mayadas-Shatzkes model and
its extension for anisotropic conduction bands is the under-
estimation of the resistivity for small film thicknesses (for
PVD Cu and PVD Ru on SiO2 in our case) [37]. While
it is hard to guarantee film continuity for the samples at
very low thicknesses, several limitations and approximations
underlying the Mayadas-Shatzkes model and its extension
(including the consideration of a three-dimensional wave
vector, the phenomenological treatment of boundary surface
scattering, and the perturbative treatment of grain boundary
scattering) could also be (partially) responsible for a systematic
underestimation (already remarked on by Choi et al. [22]). A
recent validity analysis showed that this is certainly the case for
a perturbative treatment of boundary surface scattering due to
surface roughness and grain boundary scattering for extremely
narrow nanowires [11]. Additionally, the consideration of a
single (diagonal) effective mass (tensor) could be too approx-
imate for complicated Fermi surfaces such as for Ru. A full
numerical simulation of Eq. (9) with the correct Fermi surface,
originating from multiple bands, should be able to rule this out.

A recent study by Zheng et al. for W thin films, while limited to
thin films with fully diffusive boundary surface scattering and
without grain boundary scattering, goes in this direction [38].
Furthermore, one could refine the simplistic perpendicular
δ-function barriers for grain boundary scattering. Atomistic
studies for extremely small nanowires with few grain bound-
aries with different orientations have been done [25,39,40],
but require a full numerical treatment for which metal thin
films with realistic grain profiles are too complicated. In recent
work, Li et al. introduced a phenomenological correction for
conduction band anisotropy and argued that it was responsible
for the sharper resistivity increase at small thicknesses for
Os films [26]. Our results do not agree with this as they
cannot explain an underestimation of the resistivity for small
thicknesses merely based on conduction band anisotropy.
Another issue that might explain the deviations is the lack of
data on average linear intercepts below 5 nm thickness. Since
grain boundary scattering is dominant, the resistivity curve will
be strongly dependent on the value of d, hence an accurately
determined value of the average linear intercept is crucial for
the fitting procedure. The linear interpolation that we employed
might be too limited.

V. CONCLUSION

The semiclassical resistivity scaling formula derived by
Mayadas and Shatzkes for metal thin films with grain boundary
and boundary surface scattering is extended to account for con-
duction band anisotropy. Apart from a dependency on the film
texture, this extension introduces an additional dependency on
the anisotropy of the dominant bulk scattering mechanism. An
explicit formulation for the thickness-dependent resistivity is
derived and presented for two limit cases: bulk scattering with
an isotropic collision time and with an isotropic mean free path.

A systematic procedure is presented to fit a (or multiple)
highly anisotropic conduction band(s) of a metal of choice to
an ellipsoidal Fermi surface and then demonstrated for Cu and
Ru, respectively, nearly isotropic and highly anisotropic. This
procedure allows us to systematically fit the grain boundary
reflection coefficient and specularity parameter of the film
boundary surfaces for textured and untextured metal thin
films with anisotropic conduction bands. A dependency of
the reflection coefficient on the film texture and the bulk
scattering characteristics is observed, while the obtained spec-
ularity parameter is barely unaffected and moreover physically
insignificant due to the resistivity contribution of boundary
surface scattering being much weaker. While conduction band
anisotropy has been suggested before as a possible explanation
for deviations from Mayadas-Shatzkes (e.g., a steeper resistiv-
ity increase for very small film thicknesses), this hypothesis
does not follow from our model. The main consequence of
considering conduction band anisotropy is a renormalization
of the reflection coefficient, without significantly adjusting
the quality of the fit to experimental thickness-dependent
resistivity data.
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APPENDIX A: TRANSITION PROBABILITY FOR GRAIN
BOUNDARY SCATTERING

Fermi’s golden rule prescribes a transition probability
P (k,k′) from an initial state | i〉 with wave vector k to a final
state |f 〉 with wave vector k′:

P (k,k′) = 2π

h̄
|〈f |V |i〉|2δ(Ei − Ef ). (A1)

The squared matrix element for the Mayadas-Shatzkes grain
boundary potential yields

|〈f |V GB|i〉|2 = δk⊥,k′
⊥

(
S

L

)2 ∑
n,n′

exp[i(kx − k′
x)(xn − xn′ )],

(A2)

with n and n′ ranging from 1 to N . As a result, we obtain

P (k,k′) = mxS
2

h̄3L|kx |
δk⊥,k′

⊥δkx,−k′
x

×
∑
n,n′

exp[i(kx − k′
x)(xn − xn′ )], (A3)

where we rewrote the Dirac δ function as δ(Ei − Ef ) =
mxL/(2πh̄2|k′

x |)δkx,−k′
x
. The average of Eq. (A3) with the

Gaussian distribution function of Eq. (2) yields the result of
Eq. (4), with mx = me.

APPENDIX B: EFFECTIVE MASS FITTING FOR
TEXTURED AND UNTEXTURED THIN FILMS

In order to fit a diagonal effective mass tensor to a Fermi
surface as presented in Fig. 3 while properly reflecting the
symmetries of a textured or untextured polycrystalline thin
film with differently oriented grains, an averaging procedure
is introduced. We take the appropriate average over all possible
orientations of the Fermi surface which can occur in the differ-
ent grains. For untextured thin films, the values of σ bulk

x (θ,φ)
should be replaced with values that are obtained from averaging
the ab initio data over all angles:

σ bulk
x (θ,φ) → sin2θ cos2φ

〈
σ bulk

t (θt ,φt )
〉
(θt ,φt )∈�

. (B1)

For [001]-textured (along z) films, the Fermi surface should
be averaged over all directions in the x-y plane, requiring the
following replacement:

σ bulk
x (θ,φ) → cos2φ

〈
σ bulk

t (θ,φt )
〉
φt∈[0,2π[. (B2)

Examples of this averaging procedure are shown in Fig. 7.
Even for Cu, the directional bulk conductivity before and after
averaging is very different. Nonetheless, the effective mass
fitting results for Cu were found to be independent of the
averaging procedure, only depending on the assumption for
bulk scattering (isotropy of collision time or mean free path), as
expected for a nearly isotropic Fermi surface. For Ru, however,
there is a strong dependence on the averaging procedure.

Up to this point, we have always considered matching the
anisotropic bulk conductivity along the transport direction x,
but one can also consider the out-of-plane bulk conductivity
σ bulk

z or σ bulk
t along any transport direction t by replacing

the velocity squared that appears in the conductivity formula,

FIG. 7. The unaveraged (left) and averaged (right) values of
σ bulk

x (θ,φ)/τ are shown for (a) untextured Cu with isotropic averaging,
according to Eq. (B1) and (b) [001]-textured Ru with in-plane
averaging, according to Eq. (B2), considering an isotropic collision
time. All the directions are depicted as the surface of a unit sphere in
Mollweide projection with the equator and center corresponding to
z = 0 (θ = π/2) and z = y = 0 (θ = π/2, φ = 0), respectively.

v2
xn → v2

tn, in the derivations above and in Sec. II C. Ideally,
the resulting effective masses and Fermi energy should be
consistent, but this does not appear to be the case for Ru.
Its nonellipsoidal multiband Fermi surface lies at the heart
of this inconsistency. The Fermi velocities of the complicated
Fermi surface get projected to the velocity squared along the
direction under consideration, a process which in general does
not retain all the transport features, particularly in the case of
highly nonellipsoidal (multiband) Fermi surfaces.

We have fitted the effective masses for Ru based on
a fitting procedure with transport along different transport
directions, using the ab initio data presented in Fig. 3, and
the results are summarized in Table IV. The ratio of in-plane
versus out-of-plane resistivity, being an essential property of

TABLE IV. The ratios of in-plane (ρx-y) versus out-of-plane (ρz)
resistivity of Ru are listed (represented by M2

x,y/M
2
z ) for effective

mass fits with different considerations of the transport velocity
direction in Eq. (28), assuming an isotropic collision time or mean
free path. The normalized standard deviation δ, as defined in Eq. (B3),
is given for each fit. Experimental values of the resistivity ratio are
also presented for different temperatures.

Isotropic
Transport quantity M2

x,y/M
2
z δ

Fit vx τ 0.71 0.6
l0 0.69 0.6

vz τ 2.00 1.2
l0 2.51 1.2

vt τ 1.14 1.3
(θ = φ = π/4) l0 1.31 1.5

Temperature (K) ρx-y/ρz

Expt. [34] 100 1.33
200 1.32
300 1.31
400 1.29
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conduction band anisotropy and proportional to M2
x,y/M

2
z in

the effective mass model, is strongly dependent on the transport
direction under consideration. When considering an in-plane or
out-of-plane transport direction, the obtained ratios do not
agree with the experimental resistivity ratios. Satisfactory
agreement was obtained when considering transport along
the (x = 1, y = 1, z = 1) direction (or equivalently, θ = φ =
π/4), however, with an almost perfect match when assuming
bulk scattering with isotropic mean free path. We suspect that
a projection of the Fermi surface velocities on this transport
direction optimally retains the essential transport properties of
the complicated Ru Fermi surface. We have therefore adopted

the effective mass fit with the consideration of v2
t (θ = φ =

π/4) for the comparison with experimental data in Sec. III.
The normalized standard deviation δ, defined as

δ ≡ 1

σ bulk
x

√∑N
i=1

[
σ EMA

x (θi,φi) − σ bulk
x (θi,φi)

]2

N − 1
, (B3)

was evaluated for each of these fits. These values are significant
and one can therefore not expect the in-plane averaged direc-
tional conductivity that originates from ab initio data to agree
quantitatively with that of an ellipsoidal energy-momentum
relation for arbitrary angles.
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