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Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic
body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the 〈111〉 direction [S.
Han et al., Phys. Rev. B 66, 220101 (2002); D. Nguyen-Manh et al., ibid. 73, 020101 (2006); P. M. Derlet et al.,
ibid. 76, 054107 (2007); S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013)]. Elastic distortions, associated
with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops,
although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole
tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic
field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT
calculations, we parametrize dipole tensors of 〈111〉 defects for all the nonmagnetic bcc transition metals. This
enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that
in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between
a defect and all its images favor a 〈111〉 orientation of the defect.

DOI: 10.1103/PhysRevMaterials.2.033602

I. INTRODUCTION

Strongly anisotropic self-interstitial defect configurations
form spontaneously in body-centered-cubic metals such as
sodium [1] or tungsten [2–5] if an extra atom, identical to
the atoms of the host material, is inserted in the crystal lattice
and the resulting structure is relaxed into the lowest energy
configuration. Such anisotropic “crowdion” or “dumbbell”
defects are produced simultaneously with vacancies as Frenkel
pairs in high-energy collision cascade events [6,7]. The defects
have a recognizable anisotropic lattice strain associated with
them, illustrated in Fig. 1. The figure shows a self-interstitial
defect in tungsten, where the positions of atoms were derived
from a density functional theory (DFT) calculation.

Properties of self-interstitial atom (SIA) defects are sig-
nificantly different from those of vacancies. For example,
diffusion of vacancies is thermally activated and observed
only at relatively high temperatures, above 650 K in tungsten
[8], whereas in the same material the SIA crowdion defects
are mobile at temperatures that are as low as several degrees
Kelvin [9,10].

The equilibrium structure [3–5] and modes of Brownian
motion (diffusion) [10–13] of individual SIA defects in body-
centered transition metals are now well-established. Yet, there
is still no regular approach to the treatment of evolution of
ensembles of such defects, including the effect of elastic inter-
action between the defects. The difficulty appears fundamental,
illustrating the lack of a sufficiently general formalism linking
the discrete atomistic representation of structure of nanoscale
defects with continuum elasticity.
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Recently, we have derived tractable analytical expressions
[14] for the energy of elastic interaction between two disloca-
tion loops, and between a dislocation loop and a dilatation
center, for example a vacancy cluster. These equations use
the notion of an elastic dipole tensor of a dislocation loop,
expressed in terms of its Burgers vector, its area, and the unit
normal vector to the habit plane of the loop. However, the
analysis is based entirely on the treatment of dislocations in
elastic continuum, and it cannot be applied to point defects.

Here we aim to explore defects that are too small to
be treated using the notions of macroscopic elasticity [15].
Whereas it is in principle possible to describe elastic fields of
nanoscale defects using dipole tensors computed numerically
[16–20], in practice it is sometimes not convenient, as numer-
ical calculations have to be repeated every time when a defect
changes its configuration. For example, this occurs frequently
when a SIA defect migrates, as it alters the direction of its
motion [4,16]. The effect of applied strain on SIA defects in
α-Fe was explored using DFT recently in Ref. [17]. Below, we
show how to parametrize the dipole tensor of a defect using
certain invariant quantities, for example its elastic relaxation
volume, as opposed to dynamic variables that may evolve as
functions of time. Dynamic parameters here are the coordinates
of the defect [12,13] or the unit vector characterizing the
anisotropy of its structure.

We start by deriving an analytical expression for the dipole
tensor of a dislocation loop, and then considering the limit of an
infinitesimally small loop size. Surprisingly, we find that this
seemingly natural approach results in a prediction for the dipole
tensor of a point defect that does not agree with numerical
calculations even for defects in tungsten, a material that is
well described by isotropic elasticity theory. We then derive an
analytical representation for the dipole tensor of a defect using
a two-parameter tensorial form, which shows that in addition
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to a pure prismatic dislocation loop character, the elastic field
of a SIA defect also contains a significant isotropic dilatation
component. We also derive an analytical expression for the
energy of interaction between two SIA defects and between
a SIA defect and a dilatation center, for example a vacancy
cluster.

To illustrate applications of the new formalism, we evaluate
the energy of interaction between SIA defects ordered in
the form of a periodic superlattice encountered in a DFT
calculation. Surprisingly, we discover that the energy minimum
of such periodic configuration corresponds to an orientation of
the directional unit vector of the defect pointing in a 〈111〉
direction.

The analysis given below highlights the part that the
notion of elastic fields of point defects plays in the multiscale
treatment of microstructural evolution of materials exposed
to a flux of high-energy particles. On the one hand, point
defects are the elementary building blocks of dislocations and
vacancy clusters forming under irradiation. On the other hand,
the structure and properties of elementary point defects are
strongly influenced by the discreteness of the lattice, making
an elasticity-based treatment, which highlights similarities and
differences between defects and dislocations, critical to the
development of lattice-continuum multiscale models.

II. ELASTIC DIPOLE TENSOR OF A DISLOCATION LOOP
AND A SIA DEFECT

The energy of interaction between a defect and external
homogeneous strain field εext

ij , according to Eq. (4.99) of
Ref. [18], is

E = −Pij ε
ext
ij . (1)

Here Pij is the elastic dipole tensor of the defect, and εext
ji

is a slowly varying function of spatial coordinates. Another
application of elastic dipole tensors is in a calculation of the
energy of elastic interaction between any two defects a and b,
given by

Eab
int = P a

ijP
b
kl

∂

∂xj

∂

∂xl

Gik(r), (2)

where P a
ij and P b

ij are the dipole tensors of the two defects, r =
ra − rb is a vector from defect b to a, and xi are the Cartesian
components of r. Equations (1) and (2) are consistent with the
fact that elastic strain far from a defect situated at the origin
equals

εij (r) = −Pkl

∂

∂xj

∂

∂xl

Gik(r). (3)

The Green’s function of elasticity equations Gik(r) in the
isotropic elasticity approximation has the form [21]

Gik(r) = 1

16πμ(1 − ν)r

[
(3 − 4ν)δik + xixk

r2

]
, (4)

where μ is the shear modulus and ν is the Poisson ratio.
In the limit in which the external strain field is homogeneous

and independent of spatial coordinates, Eq. (1) can be applied
not only to a small defect but also to a dislocation loop of
arbitrary size. In this limit, the dipole tensor of a dislocation

loop can be found by comparing (1) with Eq. (4–41) of
Ref. [15], namely

E = −
∫

biσ
ext
ij dAj , (5)

where b is the Burgers vector of the loop, σ ext
ij is the stress

tensor of the external elastic field, and integration over dAj is
performed over an arbitrary surface bounding the loop. Using
Hooke’s law,

σij = Cijklεkl, (6)

and combining Eqs. (5) and (1), we arrive at [14,22,23]

Pij = CijklbkAl, (7)

where Al is a Cartesian component of the vector area A of
the loop, which may be conveniently expressed as a contour
integral over the perimeter of the loop as [24]

A = 1

2

∮
(r × dl). (8)

In the isotropic elasticity approximation, where

Cijkl = μ
2ν

1 − 2ν
δij δkl + μ(δikδjl + δilδkj ), (9)

the elastic dipole tensor of a dislocation loop acquires the
form [14,22]

Pij = μ

[
(biAj + Aibj ) + 2ν

1 − 2ν
(b · A)δij

]
. (10)

The elastic relaxation volume 	rel, which is a quantity char-
acterizing the degree of macroscopic expansion or contraction
(swelling) of the material due to the presence of a defect in
it, in the isotropic elasticity approximation under traction-free
boundary conditions, equals

	rel = (1 − 2ν)

2μ(1 + ν)
TrPij . (11)

Substituting (10) into (11), we find the relaxation volume of a
dislocation loop [14,22,23]

	rel = (b · A) = 1

2

∮
b · (r × dl), (12)

where the contour integration is performed along the disloca-
tion line forming the perimeter of the loop.

Since the relaxation volume of a self-interstitial prismatic
dislocation loop is a positive quantity whereas the relaxation
volume of a vacancy loop is negative, Eq. (12) implies that
the Burgers vector b of a prismatic self-interstitial dislocation
loop points in the same direction as the surface area vector A.
There are two conventions in the academic literature defining
the direction of the Burgers vector, which differ in the sign of b;
see, for example, Figs. 1–22 by Hirth and Lothe [15] and Fig.
24 by Landau and Lifshitz [24]. This unfortunate inconsistency
in the definition of the sign of the most fundamental notion of
dislocation theory affects all the equations that contain odd
powers of b, including the formula for the relaxation volume
of a dislocation loop above. The definition of the relaxation
volume of a self-interstitial loop as a positive quantity appears
to imply that here we follow the definition by Landau and
Lifshitz; see Eq. (27.1) of Ref. [24]. Still, many of the equations
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given below are consistent with the results by Hirth and
Lothe [15].

The above equation for the relaxation volume remains valid
even if the material is elastically anisotropic. In the anisotropic
elasticity approximation, the elastic relaxation volume of a
defect is given by the trace of a tensor product [18],

	rel = SkkijPij , (13)

where Ŝ = Ĉ−1 is the tensor of elastic compliance [25].
Formula (12) for the relaxation volume of a dislocation loop
then follows from the substitution of (7) into (13).

The relaxation volume of a dislocation loop (12) does not
depend on elastic properties or the position of the loop in the
material. It is a purely geometric property of the dislocation
line forming the loop. In particular, the relaxation volume does
not depend on the distance between the dislocation loop and the
surface, and Eq. (12) remains valid irrespective of the shape of
the crystal, provided that the traction-free boundary conditions
are satisfied.

It is also useful to derive an expression for the rate of
variation of the relaxation volume of a dislocation loop as a
function of time. The derivative of the relaxation volume of
the loop is [this formula can be derived from Eq. (12) or by
differentiating Eq. (4–2) of Hirth and Lothe [15] with respect
to time]

d	rel

dt
=

∮
v · (dl × b) =

∮
b · (v × dl), (14)

where v is the velocity of a dislocation segment dl at the
loop perimeter. If a dislocation loop evolves through self-
climb [26] or undergoes thermally activated stochastic glide
in the direction of its Burgers vector [27,28,46], the relaxation
volume remains constant and d	rel/dt = 0. On the other hand,
under the conditions of vacancy-mediated climb, the rate of
variation of relaxation volume can be positive or negative,
depending on the vacancy or self-interstitial nature of the
loop [29].

The elastic field of an isotropic point defect, for example
a vacancy, is characterized by only one parameter, namely
the elastic relaxation volume. The elastic dipole tensor of an
isotropic point defect can be written as

Pij = 	rel

3
Cijklδkl . (15)

In a cubic crystal this can be simplified further. Using the Voigt
notations [25], from (15) we find

Pij = 	rel

3
(C11 + 2C12)δij , (16)

which in the isotropic elasticity limit, where C11 = 2μ(1 −
ν)/(1 − 2ν) and C12 = 2μν/(1 − 2ν), becomes [14]

Pij = 2μ	rel

3

1 + ν

1 − 2ν
δij . (17)

To describe a linear anisotropic defect structure, such as the
SIA defect shown in Fig. 1, we define a vector n characterizing
the orientation of the axis of the defect, and we write

Pij = Cijkl

(
	(1)nknl + 	(2)

3
δkl

)
. (18)

FIG. 1. Atomic structure of a self-interstitial atom defect in
tungsten, where the orientation of the axis of the defect is close to
the [111] direction. Atomic bonds are shown for the atoms that are
significantly closer to each other than atoms in a perfect lattice.

The above expression is a generalization of (7) and (15) to
the case in which the structure of the defect is characterized
by a unit vector n, out of which we construct a symmetric
two-index tensor nknl , entering the expression for the dipole
tensor analogously to how the Kronecker symbol δkl enters
Eq. (15).

Substituting (18) into (13), we see that the total relaxation
volume of a point defect is

	rel = 	(1) + 	(2). (19)

The two parameters 	(1) and 	(2) are measures of the relative
weight of anisotropic and isotropic components of the elastic
field of a defect. In the isotropic elasticity limit, where tensor
Cijkl is given by Eq. (9), formula (18) becomes

Pij = 2μ	(1)ninj+2μ

[
ν

1 − 2ν
	(1) + 1

3

(
1 + ν

1 − 2ν

)
	(2)

]
δij .

(20)

It is instructive to compare Eq. (20) for the elastic dipole
tensor of a SIA defect, and Eq. (10) for the elastic dipole tensor
of a dislocation loop. In the pure prismatic loop limit, where
the Burgers vector of the loop b is collinear with the loop area
vector A, Eq. (10) can be written as

Pij = 2μbA

[
ninj + ν

1 − 2ν
δij

]
. (21)

Here, unit vector n defines the direction of both b and A.
While the similarity between (21) and (20) is apparent, there
is also a fundamental difference between the two cases. The
dipole tensor of a pure prismatic dislocation loop (21) is fully
defined by a single parameter, the product bA, which in this
case is the relaxation volume of the loop. On the other hand,
defining the elastic dipole tensor (18) of a SIA defect requires
two parameters, where parameter 	(2) describes the dilatation

033602-3



S. L. DUDAREV AND PUI-WAI MA PHYSICAL REVIEW MATERIALS 2, 033602 (2018)

component of the elastic field of the defect, absent in the case
of a pure prismatic dislocation loop. Numerical calculations of
elastic dipole tensors of point defects in various bcc transition
metals summarized in the next section show that the dilatation
component of elastic fields of defects is non-negligible, sug-
gesting that a SIA defect is an entity fundamentally dissimilar
from an infinitesimally small dislocation loop.

III. DENSITY FUNCTIONAL THEORY EVALUATION OF
ELASTIC DIPOLE TENSORS

The dipole tensor of a defect can be computed using DFT
calculations, or empirical interatomic potentials, by evaluating
the response of a simulation cell to external applied strain,
namely [30,31]

Pij = Vcell
(
Cijklε

app
kl − σ ij

)
. (22)

Here Vcell is the volume of the simulation cell, ε
app
ij is the

external applied strain, and σ ij is the average homogeneous
macroscopic stress associated with the simulation box. Note
that the right-hand side of (22) vanishes in accordance with
Hooke’s law if the cell contains no defect.

To rationalize formula (22), we note that the elastic strain
energy of a defect in an infinite medium is given by the volume
integral

ED = 1

2

∫
V

σij εij dV, (23)

= 1

2

∫
V

Cijklεklεij dV, (24)

where integration is performed over the entire space. In the
presence of infinitesimal external strain εext

ij , ED can be written
in the linear approximation in εext

ij as

ED

(
εext
ij

) = ED

(
εext
ij = 0

) +
(

δED

δεext
ij

)
εext
ij =0

εext
ij . (25)

Comparing this with Eq. (1), we find

Pij = −
(

δED

δεext
ij

)
εext
ij =0

(26)

= −
∫

V

Cijklε
D
kl dV = −

∫
V

σD
ij dV, (27)

where εD
ij is the strain and σD

ij is the stress resulting from the
presence of a defect in an infinite medium. The dipole tensor
equals the negative of the volume integral of stress induced by
the defect.

Numerical simulations often involve the use of periodic
boundary conditions. In effect, the use of periodic boundary
conditions amounts to simulating an infinite number of defects,
each occupying a volume element equivalent to the volume of
the simulation cell. The dipole tensor can be computed from
the macrostress σ ij associated with the simulation cell, namely

Pij = −
∫

Vcell

σij dV = −Vcellσ ij . (28)

Equations (27) and (28) are equivalent in the linear elasticity
approximation. This can be proven as follows.

Assume that N identical defects are distributed in an infinite
medium. In the limit N → ∞, the total stress is the same as
the total stress induced by a defect plus its periodic images,

N

∫
V

σD
ij dV =

∫
V

σD
ij dV +

∑
n

∫
V

σ
I,n
ij dV, (29)

where σ
I,n
ij is the stress induced by the nth periodic image of

the defect. Dividing both sides of the above equation by N , we
find

∫
V

σD
ij dV = 1

N

∫
V

(
σD

ij +
∑

n

σ
I,n
ij

)
dV, (30)

=
∫

Vcell

σij dV . (31)

This is because stress in a simulation cell is equivalent to stress
in any periodically translated cell, and the stress within the
cell is a linear sum of stresses induced by the defect and all its
images.

Concluding this section, we would like to direct the inter-
ested reader to several recent publications [32–34], where a
number of fundamental aspects of the dipole tensor formalism
are explored in considerable detail.

IV. NUMERICAL RESULTS

To evaluate elastic dipole tensors, we performed ab initio
simulations of the most stable SIA defect configurations in
vanadium, niobium, tantalum, molybdenum, and tungsten. In
all the nonmagnetic bcc transition metals, the 〈111〉 dumbbell
configuration has the lowest formation energy in comparison
to other SIA defect configurations [4].

Ab initio calculations were performed using the Vienna
Ab initio Simulation Package (VASP) [35–38] and the AM05
[39–41] exchange-correlation functional. The plane-wave en-
ergy cutoff was 450 eV. To investigate the cell size effect, we
performed simulations using simulation cells of different size.
For simulation cells containing 4 × 4 × 4 bcc unit cells, we
used 5 × 5 × 5 k-points. In simulations involving 4 × 4 × 5
bcc unit cells, we used a 5 × 5 × 4 k-point mesh.

First, perfect lattice simulation cells, containing 128 or
160 atoms, were fully relaxed. Then, we created cells contain-
ing 129 or 161 atoms, with a SIA defect in a 〈111〉 dumbbell
configuration. Atomic positions were then relaxed, but the cell
size and shape were kept the same as in the perfect lattice case.
Elastic dipole tensors for all the metals were computed from
macrostresses, using Eq. (28). Results are given in Table I.

We have also computed defect dipole tensors using Eq. (22).
Simulation cells containing a 〈111〉 dumbbell were fully re-
laxed, leading to vanishing macrostresses σij = 0. Simulation
cell size is now different from the perfect lattice case, and
the deformation of the cell is the same as that resulting
from the application of external strain. Numerical results are
summarized in Table II. Elastic constants Cijkl were evaluated
following the method proposed by Le Page and Saxe [42],
using a two-atom cell with 30 × 30 × 30 k-points. Values of
elastic constants are given in Table III in Voigt notations.

The convergence of ab initio results has been verified
using molecular statics calculations performed for tungsten
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TABLE I. Elastic dipole tensors of 〈111〉 SIA dumbbell configu-
rations in W, Mo, Nb, Ta, and V, illustrated in Fig. 2. Dipole tensors
were computed using ab initio simulations with no volume or shape
relaxation of the simulation cells. Matrix elements Pij are given in eV.

129 atoms P11 P22 P33 P12 P23 P31

W 53.84 53.84 53.84 13.23 13.23 13.23
Mo 40.37 40.37 40.37 7.814 7.814 7.814
Ta 34.68 34.68 34.68 6.645 6.645 6.645
Nb 31.69 31.69 31.69 3.001 3.001 3.001
V 21.28 21.28 21.28 −0.162 −0.162 −0.162

161 atoms P11 P22 P33 P12 P23 P31

W 52.97 52.97 54.78 12.73 13.07 13.07
Mo 39.60 39.60 41.29 7.213 7.758 7.758
Ta 34.61 34.61 34.22 6.081 6.152 6.152
Nb 32.00 32.00 31.77 2.099 2.023 2.023
V 16.93 16.93 17.47 0.154 −0.132 −0.132

(see Fig. 2). Calculations were performed using LAMMPS [43]
and the interatomic tungsten potential (EAM4) developed by
Marinica et al. [44]. We have followed a procedure similar
to that outlined above. First, we have relaxed a number of
perfect lattice simulation cells containing various numbers of
atoms. Then, we produced an SIA defect in a 〈111〉 dumbbell
configuration, and we relaxed the atomic positions without
relaxing the simulation cell itself. Results are summarized in
Table IV. Values of elastic constants characterizing the chosen
interatomic potential are given in Ref. [44]. They are C11 =
523 GPa, C12 = 202 GPa, and C44 = 161 GPa. The equilib-
rium lattice parameter for the EAM4 potential is 3.143 39 Å.
Results given in the table show that achieving full convergence
requires using relatively large simulation cells, exceeding
approximately by a factor of 2 the dimensions presently
accessible to a DFT calculation. Still, even with relatively
small simulation cells, it is possible to compute the elements
of dipole tensors at approximately ∼5% accuracy, sufficient
for applications. This assessment of accuracy is confirmed by
the analysis of solutions of the Frenkel-Kontorova model for
the 〈111〉 defects given in [47] and illustrated in Fig. 3.

V. ELASTIC FIELDS AND INTERACTIONS INVOLVING
SELF-INTERSTITIAL ATOM DEFECTS

The energy of elastic interaction between two defects with
elastic dipole tensors P a

ij and P b
kl in the isotropic elasticity

approximation is given by Eq. (2), where the second derivative

TABLE II. Elastic dipole tensors of 〈111〉 SIA dumbbell con-
figurations in W, Mo, Nb, Ta, and V. Dipole tensors were computed
using ab initio simulations with full relaxation of the simulation cells.
Matrix elements Pij are given in eV.

129 atoms P11 P22 P33 P12 P23 P31

W 53.75 53.75 53.75 13.39 13.39 13.39
Mo 40.35 40.35 40.35 7.709 7.709 7.709
Ta 34.37 34.37 34.37 6.069 6.069 6.069
Nb 31.15 31.15 31.15 2.027 2.027 2.027
V 18.13 18.13 18.13 −0.179 −0.179 −0.179

TABLE III. Lattice parameters (in angstroms) and elastic con-
stants (in GPa) of W, Mo, Nb, Ta, and V, evaluated following
the method by Le Page and Saxe [42], using a two-atom cell and
30 × 30 × 30 k-points.

a0 C11 C12 C44

W 3.149 569.73 211.52 157.16
Mo 3.124 505.43 175.26 108.04
Ta 3.278 293.44 168.18 82.08
Nb 3.282 273.54 143.06 23.62
V 2.956 308.53 147.96 31.31

of the elastic Green’s function (4) is

∂

∂xj

∂

∂xl

Gik(r) = 1

16πμ(1 − ν)r3
[(3 − 4ν)δik(3ηlηj − δlj )

+ 15ηiηjηkηl − 3(δij ηkηl + δilηjηk

+ δjlηiηk + δkjηiηl + δklηiηj )

+ (δilδkj + δij δkl)]. (32)

In the above equation, ηi is a component of the radial unit
vector η = r/r . Using expression (20) for the elastic dipole
tensors of interacting defects, from (2) we find

Eint = μ(	(1))2

4π (1 − ν)r3
[−12ν(η · e)(η · n)(e · n)

+ 2(2ν − 1)(e · n)2 + 15(η · e)2(η · n)2

+ 1 − 3(η · e)2 − 3(η · n)2]

+ μ

2π (1 − ν)r3
	(1)

[
ν	(1) + (1 + ν)

3
	(2)

]

×{[3(η · e)2 − 1] + [3(η · n)2 − 1]}, (33)

where vectors n and e define orientations of the axes of the
two interacting anisotropic SIA defects. Note that the above
expression for the energy is quadratic in n and e and hence the
choice of the specific direction of either of the two vectors is
immaterial. It is sufficient to define the orientation of the axes
of the defects and the relative position of defects to compute
the energy of elastic interaction between them.

If the unit vectors of the two defects are collinear, n‖e,
formula (33) acquires a simple form,

Eint = μ(	(1))2

4π (1 − ν)r3
[15(η · n)4 − 6(η · n)2 − 1]

+ μ	(1)	(2)

3πr3

(1 + ν)

(1 − ν)
[3(η · n)2 − 1]. (34)

There is a similarity between this equation and equations de-
scribing elastic interaction between two prismatic dislocation
loops and between a prismatic dislocations loop and a dilatation
center, for example a vacancy or a vacancy cluster. The first
term in (34) is identical to Eq. (18) of Ref. [46], and its angular
part is the same as that found by Foreman and Eshelby [48,49].
The second term in (34) is similar to Eq. (16) of Ref. [14].
The energy of elastic interaction between anisotropic defects
(33) is strongly angularly dependent, and is maximum for the
orientations where the vector n is parallel to η.
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TABLE IV. Dipole tensors of 〈111〉 dumbbell configurations in
W computed using the Marinica EAM4 potential [44]. Pij values are
found using molecular statics assuming no relaxation of simulation
cells. All the values are given in eV. Note the difference between Pij

values computed using empirical potentials and ab initio calculations.
The predicted relaxation volumes of SIA defects vary from 	rel =
1.235	0 computed using a 4 × 4 × 4 cell to 	rel = 1.241	0 com-
puted using a 100 × 100 × 110 cell. These values differ significantly
from the relaxation volume of a SIA defect in tungsten 	rel = 1.67	0

predicted by DFT calculations [45].

Box size P11 P22 P33 P12 P23 P31

4 × 4 × 4 36.99 36.99 36.99 17.35 17.35 17.35
4 × 4 × 5 37.76 37.76 37.18 17.33 16.96 16.96
5 × 5 × 5 38.71 38.71 38.71 18.26 18.26 18.26
5 × 5 × 6 37.80 37.80 37.85 17.10 16.91 16.91
7 × 7 × 7 37.54 37.54 37.54 16.68 16.68 16.68
7 × 7 × 8 37.48 37.48 37.51 16.66 16.61 16.61
10 × 10 × 10 37.32 37.32 37.32 16.58 16.58 16.58
10 × 10 × 11 37.30 37.30 37.31 16.58 16.57 16.57
20 × 20 × 20 37.19 37.19 37.19 16.58 16.58 16.58
20 × 20 × 22 37.19 37.19 37.19 16.59 16.58 16.58
50 × 50 × 50 37.17 37.17 37.17 16.59 16.59 16.59
50 × 50 × 55 37.17 37.17 37.17 16.59 16.59 16.59
100 × 100 × 110 37.16 37.16 37.16 16.59 16.59 16.59

VI. ELASTIC ENERGY OF A PERIODIC ARRAY OF
DEFECTS

In applications, particularly in density functional theory
calculations performed using periodic boundary conditions,

FIG. 2. Atomic structure of a self-interstitial atom defect in
vanadium, where the orientation of the axis of the defect is close
to the [111] direction. Atomic bonds are shown for the atoms that
are significantly closer to each other than atoms in a perfect lattice,
similarly to the case of tungsten illustrated in Fig. 1. Note that the
strain field of a defect in vanadium is less localized than the strain
field of tungsten.
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FIG. 3. Distances between atoms in the 〈111〉 most strongly
distorted atomic strings in a simulation cell containing an SIA defect in
vanadium (top) and tungsten (bottom). Continuous lines are solutions
of the Frenkel-Kontorova model [47]; points are interatomic distances
derived from DFT simulations. In agreement with the data given in
Table IV, solutions of the Frenkel-Kontorova model show that to
achieve convergence, atomistic calculations require simulation cells
with linear dimensions approximately twice those of the cells typically
used in DFT calculations.

it is desirable to evaluate the energy of elastic interaction
between a defect structure situated in a simulation cell and the
images of the same structure effectively periodically translated
through space. If the original simulation cell is defined by the
condition r ∈ Vcell, and the cell translation vectors are Rn =
a1n1 + a2n2 + a3n3, then the energy of elastic interaction
between the defect structure in the original simulation cell and
all its images equals [31]

Etotal
int = 1

2

∑
n	=0

PijPkl

∂

∂xj

∂

∂xl

Gik(Rn). (35)
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For example, if we are interested in evaluating the elastic
energy of interaction between a crowdion and its periodic
images, we could use the analytical equation (33) and evaluate
the above sum explicitly. However, a closer examination of the
sum shows that this problem is not particularly well posed,
as the sum (35) is only conditionally convergent. In other
words, the result depends on the order of summation of the
terms in the series [31,50]. This may appear as an unphysical
oddity since the expression for the energy of interaction
between two crowdions (33) is perfectly bona fide and can
be used, for example, in dynamic simulations of Brownian
motion of interacting defects [46].

The problem comes from the infinite number of defects in
the material, interacting via long-range elastic forces, which
in effect changes the very nature of the ground state of the
system. This is evident from the fact that not only the energy
of elastic interaction (35), but even the strain generated by
the periodically translated images of a defect structure is
effectively undefined. Indeed, the strain in the simulation cell
produced by all the periodically translated images is

ε
images
ij (r) = −

∑
n	=0

Pkl

∂

∂xj

∂

∂xl

Gik(r − Rn), (36)

where r ∈ Vcell. Since at large distances Gik(r) ∼ r−1, the
total strain in the cell, given by Eq. (36), is a conditionally
convergent quantity at any point r in the cell.

Naturally, this conditional convergence, or, in other words,
the lack of a well-defined value of the sum (36), is not
compatible with the requirement that under the condition of no
overall relaxation of the simulation cell the total macroscopic
strain should vanish,

1

Vcell

∫
Vcell

[
ε

(0)
ij (r) + ε

images
ij (r)

]
dV = 0. (37)

Here ε
(0)
ij (r) is the strain associated with the defect structure

situated in the cell itself. Under the condition of no relaxation
of boundaries of the simulation cell, there is average non-
vanishing stress in the cell, related to the dipole tensor through
Eq. (28). Noting the relation between atomic displacements
u(r) and the strain tensor εij (r) = (1/2)(∂ui/∂xj + ∂uj/∂xi),
we see that the above condition is consistent with the constraint
that the field of atomic displacements is periodic, u(r) =
u(r + Rn) ∀ Rn. Hence enforcing condition (37) may help to
solve the conditional convergence problem for the strain as
well as for the energy of interaction between a defect and its
periodic images [50].

To ensure that elastic strain generated by the images of
defect structures associated with periodically translated cells
satisfies condition (37), we subtract from strain given by
(36) its spatially average value, defining the regularized strain
generated by the periodic images in the simulation cell as

ε
images
ij (r)

∣∣∣
reg

= ε
images
ij (r) − 1

Vcell

∫
Vcell

ε
images
ij (r)dV. (38)

Given that subtracting a constant term from the strain tensor
is equivalent to subtracting a term that is linear in spatial
coordinates from the field of atomic displacements, the above

TABLE V. Equilibrium atomic volume 	0 = a3
0/2, parameters

	(1) and 	(2) of the elastic dipole tensor of a defect (18), the total elas-
tic relaxation volume of the defect, and the same quantity expressed as
a fraction of equilibrium atomic volume. All the dimensional values
are given in cubic angstroms. The first row for each metal shows values
computed using the zero strain method, while the second row gives
values computed using the zero stress method. The elastic relaxation
volume of a self-interstitial defect in tungsten given in the table agrees
almost exactly with the value found earlier in Ref. [45].

	0 	(1) 	(2) 	rel 	rel/	0

W 15.61 20.23 5.84 26.07 1.67
15.61 20.48 5.55 26.02 1.67

Mo 15.61 17.38 5.29 22.67 1.45
15.61 17.15 5.51 22.66 1.45

Ta 17.62 19.46 7.01 26.47 1.50
17.62 17.77 8.46 26.23 1.49

Nb 17.68 30.46 -3.24 27.22 1.54
17.68 20.57 6.18 26.75 1.51

V 12.91 −1.24 18.17 16.92 1.31
12.91 −1.37 15.79 14.42 1.12

procedure is fully equivalent to the conditional summation reg-
ularization procedure proposed in Ref. [50]. When evaluating
the total real strain in the cell, we should also replace ε

(0)
ij (r) in

(37) by

ε
(0)
ij (r) − 1

Vcell

∫
Vcell

ε
(0)
ij (r)dV,

but since this renormalization has no effect on the conditional
convergence of the sum (36), in what follows we are not going
to discuss this point.

The energy of elastic interaction between a defect and its
periodically translated images is linear in elastic strain. Hence,
using (38), we find that the absolutely convergent expression
for the energy of interaction between a defect and its periodic
images is

Eint = 1

2
PijPkl

∑
n	=0

Gik,j l(Rn)

− 1

2Vcell
PijPkl

∫
Vcell

∑
n	=0

Gik,j l(Rn − r)dV. (39)

Both sums in the above expression are conditionally conver-
gent as separate entities, but the sum of the two is convergent
in the absolute sense if we perform the summation on a
term-by-term basis. Indeed, by writing the above equation as

Eint = 1

2
PijPkl

∑
n	=0

[
Gik,j l(Rn)

− 1

Vcell

∫
Vcell

Gik,j l(Rn − r)dV

]
, (40)

we see that in the limit |Rn| → ∞, the difference between the
two terms in square brackets is a quantity of order O(R−4

n ),
ensuring the absolute convergence of the result.

Using values of parameters 	(1) and 	(2) taken from
Table V, we have evaluated matrix elements of Pij as functions

033602-7



S. L. DUDAREV AND PUI-WAI MA PHYSICAL REVIEW MATERIALS 2, 033602 (2018)

FIG. 4. Energy of elastic interaction between a SIA crowdion de-
fect and its periodic images in tungsten as a function of the orientation
of vector n computed in the isotropic elasticity approximation using
data taken from Table V.

of the orientation of directional unit vector n of the defect.
Figure 4 shows the energy of elastic interaction between an
SIA defect and its periodic images in tungsten, computed
using isotropic elasticity for a 4 × 4 × 4 set of unit cells.
The curve shown in the figure was computed assuming μ =
159 GPa and ν = 0.278. Summation over the neighboring
cells was performed within a sphere of radius ten times
the linear dimension of a simulation cell. Elastic energy is
minimum for the azimuthal angle φ = 45◦ and the polar angle
θ = 54.7356◦ = cos−1(1/

√
3), which correspond to the [111]

crystallographic direction.
We have verified the convergence of Eint using various

numerical implementations of the procedure for the evaluation
of derivatives of the elastic Green’s function [51]. Volume inte-
gration was performed using a nine-point Gaussian quadrature
in each spatial dimension. Its convergence has been verified
by comparing the results with calculations performed using an
eleven-point Gaussian quadrature, and showing that the com-
puted values do not change up to four significant figures. We
have also checked the convergence of the sum by performing
summation over a sphere of radius three times larger. Again,
no change was found within four significant figures. In Fig. 5
we show that although Etotal

int is conditionally convergent, Eint

is absolutely convergent and has the same value irrespective of
how the terms in (40) are added numerically.

The figure illustrates the case of crowdions interacting in
elastically isotopic tungsten, with the crowdion axis direction
n lying in the plane φ = 0. Sums (35) and (40) were evaluated
using (i) summation over neighboring cells within a sphere
of radius 10 times the linear cell size, (ii) summation over
a cube with dimensions 30 times the linear cell size, and
(iii) summation over an ellipsoid where the three principal
axes are 10, 15, and 20 times the linear cell size, respectively.
Values of Eint computed using all the above summation pro-
cedures remain the same. A curious point that we discovered
when comparing the conditionally convergent and absolutely
convergent expressions for the energy of elastic interaction
between periodically translated defects is that the correction

FIG. 5. Energy of elastic interaction between a SIA defect and
its periodically translated images in tungsten in the plane φ = 0. The
curves were computed performing summation over (i) a sphere with
radius 10 times the linear cell size, (ii) a cube with dimensions 30 times
the linear cell size, and (iii) an ellipsoid where the three principal axes
are 10, 15, and 20 times the linear cell size, respectively.

term in Eq. (40) can be effectively ignored if the summation is
performed using cubes of gradually increasing size.

We have also computed the energy of elastic interaction
Eint between a defect and its periodically translated images
in the anisotropic elasticity approximation, using Eq. (40)
and evaluating the second derivatives of the elastic Green’s
function numerically [51]. In all the bcc transition metals,
the most elastically stable configuration of a SIA defect,
computed assuming periodically translated cubic simulation
cells, corresponds to the 〈111〉 orientation of the axis of the
defect; see Fig. 6. This finding can be explained by noting
that in a simple cubic lattice of defects, the closest nearest
neighbors are situated at (±L,0,0), (0,±L,0), and (0,0,±L),
where L is the dimension of the simulation cell. Equation (34)
suggests that the elastic energy should be maximum when the
direction of the axis of the defect is close to a 〈001〉 direction,
in agreement with the data shown in Fig. 6.

Concluding this section, we note that while the variation
of the total elastic energy as a function of the orientation of
crowdion defects computed above for a periodic arrangement
of defects agrees with results derived using the computer
program given in Ref. [31], the absolute values of elastic energy
per defect computed using the two numerical procedures, i.e.,
the one outlined above and the one developed in Ref. [31],
differ. The difference amounts to a constant factor, and it does
not affect the conclusion about the 〈111〉 crowdion defect
representing the lowest elastic energy configuration, both in
isotropic and anisotropic elasticity approximations.

VII. SUMMARY AND CONCLUSIONS

We have derived analytical formulas for the matrix elements
of elastic dipole tensors of self-interstitial atom defects, using
isotropic and anisotropic elasticity approximations. The equa-
tions show that, in addition to the prismatic dislocation looplike
character, the elastic field of a SIA defect has a significant
isotropic dilatation component. Using DFT calculations, we
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FIG. 6. The energy of elastic interaction between a 〈111〉 SIA defect and its periodic images as a function of the orientation of vector n,
computed in the full anisotropic elasticity approximation for tungsten, molybdenum, tantalum, niobium, and vanadium.

have parametrized dipole tensors of 〈111〉 defects for all the
nonmagnetic bcc transition metals. We then used the data to
evaluate the energy of elastic interaction between defects, and
we found that in a periodic three-dimensional arrangement
of defects, long-range elastic interactions favor the 〈111〉
orientation of their axes, an effect resulting from the interaction
between a defect and all its images in a simulation involving
periodic boundary conditions.
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