
PHYSICAL REVIEW MATERIALS 2, 033402 (2018)

Phase-field model of vapor-liquid-solid nanowire growth
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We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid
(VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that
distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including
arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for
those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration
of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms
at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase
fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the
concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of
the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations
for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple
points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid
and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented
for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with
cusped minima corresponding to two sets of (10) and (11) facets. The simulations reproduce many of the salient
features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of
the side walls, transitions between different growth orientations, and crawling growth along the substrate. They
also reproduce different observed relationships between the nanowire growth velocity and radius depending on
the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists
of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main
facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for
faceted nanowire growth in two dimensions.
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I. INTRODUCTION

Semiconductor nanowires (NWs) have emerged as promis-
ing small building blocks for various nanotechnology ap-
plications ranging from nanoelectronics to sensors to solar
energy harvesting. The functional properties of these NWs
can be tuned by controlling their chemical composition and
growth morphologies, and hence a fundamental understanding
of the underlying crystal growth has been the subject of much
recent research [1–3]. A well-studied NW synthesis route is
vapor-liquid-solid (VLS) growth. In this process, small liquid
droplets of a metallic element (e.g., Au) are deposited on an
initially flat solid substrate of the NW element (e.g., Si). The
droplet surfaces act as preferential sites for the capture of
growth atoms by catalytic breakdown of a molecular gas (e.g.,
Si2H6). The bulk of the alloy droplet in turn acts as a conduit
of these atoms to the solid, thereby facilitating the growth of
solid regions capped by liquid droplets, which emerge as NWs
from the substrate.

VLS growth has been widely studied experimentally and
theoretically during the past decade. Experiments have re-
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vealed a wealth of interesting growth behaviors [4–6]. While
NWs commonly grow normal to the substrate along some
preferred crystallographic directions (e.g., 〈111〉 for Si), they
can also grow at an angle to the substrate [7,8], change growth
directions after emerging from the substrate following kinked
or more erratic trajectories, or crawl along the substrate [9].
Furthermore, NWs exhibit intricate solid-liquid and solid-
vapor interface morphologies [10]. The solid-liquid interface
typically consists of a main facet normal to the NW growth
direction, but also small side facets ending at a triple line
where vapor, liquid, and solid phases meet. The solid-vapor
interface that shapes the NW sidewalls consists of different
sets of facets that can be smooth or sawtooth-like [11]. There
has been theoretical progress to address various aspects of
NW growth using analytical [12–18], numerical continuum
models [19–27] and molecular dynamics simulations [28–30].
Some of those studies have shed light on the relationship of
the NW growth rate and radius under steady-state growth
conditions [13–15], the selection of the radius for prescribed
liquid catalyst volume [16], the stability and shape changes
of liquid droplets, the oscillatory behavior of side solid-liquid
facets, and the growth orientation selection [17,18,26,31].

Despite this progress, modeling NW growth quantitatively
on continuum scales remains a major challenge. A main

2475-9953/2018/2(3)/033402(23) 033402-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.2.033402&domain=pdf&date_stamp=2018-03-14
https://doi.org/10.1103/PhysRevMaterials.2.033402


NAN WANG, MONEESH UPMANYU, AND ALAIN KARMA PHYSICAL REVIEW MATERIALS 2, 033402 (2018)

difficulty is the fact that both solid-liquid and solid-vapor
interfaces are faceted and undergo complex shape changes
during NW formation. For example, as the NW first emerges
from the substrate, the equilibrium solid-liquid interface shape
changes from concave to convex and the solid-vapor interface
changes orientation as the NW develops a tapered shape.
Tracking the evolution of faceted solid-liquid and solid-vapor
interfaces under the constraint that different facets meet with
the isotropic liquid-vapor interface at the triple line is a
daunting task. To this end, Schwarz and Tersoff (ST) developed
a continuum model that tracks the evolution of anisotropic
nonfaceted interfaces, demonstrating the ability of this model
to simulate the complete evolution of a deposited droplet
into a NW [19–23]. They further extended this model to
faceted interfaces, reproducing qualitatively nontrivial growth
behaviors such as NW kinking and crawling. Despite its
success in reproducing a number of observed growth modes,
this approach relies on phenomenological parameters and
rules to model the energetics and dynamics of facet creation.
In addition, it tracks interfaces explicitly as sharp bound-
aries, which makes its extension to three dimensions (3D)
difficult.

Phase-field modeling provides an attractive alternative to
interface tracking methods to model VLS growth at the
continuum scale. This method is well known for its ability
to circumvent the difficulty of interface tracking by making
interfaces spatially diffuse [32–39]. Furthermore, by use of
more than one scalar order parameter, it can naturally distin-
guish several phases, thereby handling complex geometries
and changes of interface topology. However, the application
of the phase-field method to VLS growth remains limited to
date. One set of studies used a phase-field model with viscous
flow to investigate some dynamical aspects of liquid droplet
wetting and shape stability [25,26]. Another study introduced
a multiphase-field model that uses a nonstandard hybrid of
Ginzburg-Landau and Cahn-Hilliard dynamics to conserve the
volume of the liquid catalyst [27]. This model was used to
produce 3D NW growth morphologies that resemble observed
morphologies. However, the sharp-interface limit of this model
was not analyzed in detail and simulations were carried out
for analytical forms of crystalline anisotropy corresponding to
nonfaceted interfaces.

In this paper, we develop a phase-field model to simulate
quantitatively NW growth for realistic forms of crystalline
anisotropy corresponding to faceted interfaces. We carry out
a detailed asymptotic analysis of the model in the limit where
the interface thickness is small compared to the NW radius.
This analysis maps the phase-field dynamical equations onto
a well-defined set of sharp-interface equations, thereby allow-
ing us to relate phase-field model and materials parameters.
Furthermore, we present two-dimensional (2D) simulations
that illustrate how the model can reproduce salient features of
NW growth including tapered growth normal to the substrate,
kinking, and crawling. At a more quantitative level, we validate
the model by comparison of 2D phase-field simulations to
predictions of sharp-interface theory. This comparison is made
for the NW growth rate and radius as well as for the faceted
shape of the solid-liquid interface during steady-state growth
at constant velocity.

A. Phase-field formulation

We develop a multiphase-field formulation with three scalar
order parameters that distinguish the solid, liquid, and vapor
phases and with a free-energy form adapted from a previous
model of eutectic growth [40]. We derive relations that relate
this free-energy functional to energetic properties of various
interfaces, including arbitrary forms of anisotropic γ plots
for the solid-vapor and solid-liquid interfaces. The evolution
equations for those order parameters describe basic kinetic
processes including the rapid (quasi-instantaneous) equilibra-
tion of the liquid catalyst to a droplet shape with constant
mean curvature, the catalytic incorporation of growth atoms
at the droplet surface, and crystallization within the droplet.
The standard constraints that the sum of the phase fields
equals unity and the conservation of the number of catalyst
atoms, which relates the catalyst volume to the concentration
of growth atoms inside the droplet, are handled via separate
Lagrange multipliers.

Two physically distinct growth situations are modeled. The
first is the one considered by ST where the NW growth rate is
limited by the incorporation rate of growth atoms at the droplet
surface. In this situation, the change of the droplet volume is
governed by the balance of the fluxes of growth atoms into and
out of the droplet, assumed to contain a fixed number of catalyst
atoms. During steady-state growth, those two fluxes must
balance each other. The rate of incorporation of growth atoms
into the droplet is the product of the droplet surface area and a
constant surface flux J , defined as the number of growth atoms
incorporated per unit time per unit area of droplet surface, while
the incorporation rate into the solid scales as the product of the
NW growth rate V and solid-liquid interface area divided by
the atomic volume of solid �s . Since both the droplet surface
area and solid-liquid interface area scale as Rd−1 (where d is
the spatial dimension), V ∼ J�s is independent of NW radius
in this limit, as observed in some experiments [5]. The second
limit we consider is the one where growth is limited by the
solid-liquid interface kinetics and the chemical potential of
growth atoms can be assumed to be equal in the liquid and
vapor and constant in time; i.e., those two phases equilibrate
quickly on the time scale where the solid adds one additional
layer of atoms. In this case, the chemical driving force for
growth (difference of chemical potential between liquid and
solid) is reduced by interface curvature and the growth rate
depends on NW radius as predicted by some sharp-interface
theories and observed in other experiments [13,14].

B. Faceted interfaces

A general difficulty in modeling faceted interfaces is that
the γ plot exhibits cusps at faceted orientations. A cusp is
reflected in the anisotropy of the interface free energy, which
can be written near a facet in the form

γ (θ ) = γf (1 + δf |θ − θf | + · · · ), (1)

where θ denotes the angle of the normal to the interface with
respect to a fixed reference crystal axis, γf is the facet free
energy at angle θ = θf , and the above form is valid for a
vicinal interface where |θ − θf | � 1. Such an interface is
generally composed of steps spaced a distance d ≈ h/|θ − θf |,

033402-2



PHASE-FIELD MODEL OF VAPOR-LIQUID-SOLID … PHYSICAL REVIEW MATERIALS 2, 033402 (2018)

where h is the step height. The excess interface free energy
associated with step formation is therefore γs/d, where γs is
the isolated step free energy (with unit of energy per unit length
of step). It follows that the total excess free energy of the vicinal
interface is given by Eq. (1) with δf = γs/(γf h). Cusps make
the function γ (θ ) nondifferentiable. This poses a difficulty in
phase-field modeling where the evolution equation for a given
phase-field φ distinguishing two phases is derived from a first
variation of a free-energy functional that contains the function
γ (n̂) with the interface normal expressed as n̂ = −�∇φ/|∇φ|.
To overcome this difficulty, we follow the method previously
developed for faceted dendritic solidification that consists of
rounding the cusp over a small range of angle so as to make
γ (θ ) differentiable [41].

In this paper, cusp rounding is implemented by using
the function

√
ε2 + x2 that converges to the absolute value

function |x| in the limit ε → 0. This approach is conceptually
similar to the approach followed in Ref. [41], but easier
to implement computationally. Importantly, results do not
depend sensitively on cusp rounding for small values ε ∼ 10−2.
Furthermore, we consider a simple form of solid-liquid γ

plot with two sets of (10) and (11) facets. For a crystal seed
surrounded by liquid, this γ plot yields an octagonal faceted
equilibrium crystal shape with four facets of each type. This
shape is easily predicted by the standard Wulff construction.
For NW growth from a (10) substrate, this γ plot yields a
solid-liquid interface shape consisting of a main (10) facet
intersected by two truncated (1̄1) and (11) side facets ending
at triple points, which is qualitatively similar to the interface
shape observed experimentally and in MD simulations. In
this more complex geometry, the Wulff construction is not
sufficient to predict the interface shape because side facets end
at triple points. To predict this shape, we follow two equivalent
approaches within a sharp-interface picture.

The first approach is to apply the Wulff construction,
expressed in a parametric representation where the Cartesian
coordinates of the interface are functions of θ , together with the
anisotropic Young-Herring’s condition of thermomechanical
equilibrium at triple points [42]. This conditions is given by

γlv t̂lv + γsl t̂sl + γsv t̂sv + γ ′
sl n̂sl = 0, (2)

where γlv , γsl , and γsv are the liquid-vapor, solid-liquid, and
solid-vapor interfacial energies in Fig. 1, respectively, t̂αβ and
n̂αβ are the unit vectors tangent and perpendicular to the
αβ interface, respectively, and γ ′

sl ≡ ∂γsl/∂θ . This “torque”
term tends to rotate the solid-liquid interface toward a low-
energy faceted orientation. A similar term also applies to the
anisotropic solid-vapor interface but is omitted here since it
does not influence steady-state NW growth with vertical side
walls. Note that the torque term is uniquely determined when
the cusp is rounded and γsl(θ ) is differentiable. In this case,
the parametric equation for the interface shape together with
Eq. (2) uniquely determines this shape. Importantly, this shape
converges to a unique, physically desired, faceted shape in the
ε → 0 limit.

The second method to obtain the same shape, which serves
as an independent check, is to treat directly the case ε = 0
without cusp rounding, where γ ′

sl is not defined at θ = θf

because of the absolute value in Eq. (1). In this case, the shape is

lvγ

svγ

slγ

1θ2θ

2R

1R

FIG. 1. Definition of geometrical parameters used to characterize
steady-state NW growth. The NW (red region) and droplet catalyst
(yellow region) are shown together with the radius of curvature
of the solid-liquid (liquid-vapor) interface R1 (R2), the excess free
energies for the solid-liquid (γsl), liquid-vapor (γlv), and solid-vapor
(γsv) interfaces, and the corresponding dihedral angles determined by
Young’s condition at the three-phase junction, which are defined here
as the angle between a horizontal line and the solid-liquid interface
(θ1) and the liquid-vapor interface (θ2).

found by considering virtual displacements of facets and triple
points that leave the total free energy unchanged. Interestingly,
the condition obtained by considering the virtual displacement
of a triple point can also be obtained by projecting the Young-
Herring condition (2) onto two Cartesian axes parallel and
perpendicular to the NW growth direction, which yields two
equations. The solutions of those two equations for fixed
faceted orientations in turn yield the value undetermined of γ ′

sl

at θ = θf , which must physically be comprised in the interval
−γf δf < γ ′

sl < γf δf following Eq. (1), and a second equation
identical to the one obtained by considering a virtual displace-
ment of the triple point that extends the truncated side facet
of the solid-liquid interface. This latter condition determines
the dihedral angle between the liquid-vapor and solid-liquid
interfaces at the triple point. For this reason, in the ε → 0
limit, the rounded cusp treatment yields the same shape as the
one obtained by considering virtual displacements of facets
and triple points. We find that this faceted shape predicted
by sharp-interface theory is in good quantitative agreement
with the one obtained by phase-field simulations. Therefore,
in addition to validating our phase-field approach, our results
also clarify how sharp-interface theory should be formulated
to predict faceted interface shapes during NW growth.

C. Outline

This paper is organized as follows. In the next section,
we write down the set of sharp-interface equations used to
describe NW growth, which follow closely the model intro-
duced by Schwarz and Tersoff [19]. In Sec. III, we present our
multiphase-field model, which is formulated to reduce to the
sharp-interface equations of Sec. II. Various ingredients of the
model including the free-energy landscape, the description of
the driving force for NW growth, the treatment of Lagrange

033402-3



NAN WANG, MONEESH UPMANYU, AND ALAIN KARMA PHYSICAL REVIEW MATERIALS 2, 033402 (2018)

multipliers to satisfy constraints imposed on the droplet vol-
ume and the sum of phase fields, the evolution of the concen-
tration within the droplet, interface mobility, and interface free
energy are summarized in separate subsections. The equations
of the model are then summarized followed by a description
of the treatment of anisotropic interfaces in the last subsection.
Next, in Sec. IV, we analyze the sharp-interface limit of the
model. This analysis is used to pinpoint the conditions under
which this limit reduces to the desired set of sharp-interface
equations and to relate phase-field parameters to materials
parameters. Various numerical examples are then presented
in Sec. V. The dependence of the NW growth velocity on
radius is characterized in different limits for isotropic interface
energies and simulations of faceted growth are compared
to the predictions of sharp-interface theory. Conclusions are
presented in the last section.

II. SHARP-INTERFACE MODEL

VLS NW growth involves three steps essentially [13]:
(1) incorporation of Si precursors from the vapor at the vapor-
catalyst interface, (2) diffusion of Si atoms through Au catalyst
droplet, and (3) crystallization at the solid-liquid interface.
The ST sharp-interface (SI) model [19] ignores the diffusion
process in step 2 and uses a uniform chemical potential within
the catalyst droplet since diffusion through the nanoscale liquid
droplet is quickly compared to the NW growth rate.

The crystallization in step 3 is driven by oversaturation of
Si atoms in the catalyst. The NW growth rate vn is related to
the difference of chemical potential between the solid Si and
liquid catalyst as

vn = Msl

�s

(μl − μs), (3)

assuming a linear dependence. Here, Msl is the solid-liquid
interface mobility and �s is the atomic volume of Si atoms in
the solid. The liquid concentration is given by cl = Ng/(Nc +
Ng), where Ng is the number of Si growth atoms and Nc is the
number of catalyst atoms. The chemical potential in the liquid
is assumed to be directly related to the oversaturation cl − c0 as

μl = β(cl − c0) + �lγlvκlv, (4)

where c0 is the equilibrium concentration and the second term
on the right-hand side is the Gibbs-Thomson correction related
to the curvature κlv of the liquid-vapor surface with energy γlv .
�l is the atomic volume of Si atoms in the liquid and β ≡
∂μl/∂c. The chemical potential in the solid can be written as

μs = �s

[(
γsl + d2γsl

dθ2

)
κsl + p

]
. (5)

The first term is the generalized Gibbs-Thomson effect for
an anisotropic solid-liquid interfacial free energy γsl(θ ),
where θ is the local surface orientation angle and κsl is the
solid-liquid interface curvature. The second term is a normal
force on the solid coming from the liquid internal pressure
p = γlvκlv . In addition, thermomechanical equilibrium at the
triple junction of the three (solid, liquid, and vapor) phases
imposes a geometrical constraint on the dihedral angles
between the phase boundaries at this junction, which is given
by the anisotropic Young-Herring’s condition [Eq. (2)].

To calculate the liquid concentration, the number of Si
atomsNg in the catalyst is tracked during the growth. Assuming
a constant flux J on the catalyst surface (the number of Si atoms
incorporated at the liquid-vapor surface per unit area per unit
time), we have

dNg/dt =
∫

lv

J ds − �−1
s

∫
sl

vnds, (6)

where ds is the surface element and vn is the NW growth
velocity. The first integral covers the liquid-vapor surface
and accounts for the Si source flux in step 1, and the second
integral covers the solid-liquid surface and serves as a Si atoms
sink due to the crystallization in step 3. During steady-state
growth, dNg/dt in Eq. (6) vanishes and the two fluxes balance
each other.

III. PHASE-FIELD MODEL

A. Multiphase-field formulation

To model the VLS NW growth within the phase-field
(PF) framework, we build our model on the well-established
multiphase-field approach developed in the context of multi-
phase solidification [40]. We use three order parameters φ1,
φ2, and φ3 to distinguish the solid, vapor, and liquid phases,
respectively. φi is the fraction of the ith phase at a given point in
space [as depicted in Fig. 2(a)] with constraints φi ∈ [0,1] ∨ i

FIG. 2. Basic features of the multiphase-field model used in our
formulation. (a) Multiphase-field parameters in a Gibbs triangle.
Three bulk phases occupy the three vertices of the triangle. The
three edges correspond to the three binary interfaces in the model.
A point in the triangle is given by (φ1,φ2,φ3), where φi is the distance
from the given point to the j − k binary interface. (b) Free-energy
landscape of the potential term fp in Eq. (10) with ai = bi = 0. To
highlight the three free-energy minima, the plot range of (φ1,φ2,φ3)
is extended beyond [0,1] and thus outside the Gibbs triangle in panel
(a), reproduced as a thick black line. (c) Free-energy landscape of
the aif

i
a + bifb part in Eq. (10). By setting a nonzero a2, it forms an

additional barrier along the solid-liquid binary interface and leaves
the other two binary interfaces unchanged. bi controls the height of
the triple point (φ1 = φ2 = φ3 = 1/3). (d) The function gl given in
Eq. (12). It equals 1 in the liquid and smoothly decreases to 0 at the
solid-vapor binary interface.
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and
3∑

i=1

φi = 1. (7)

The Lyapounov functional representing the total free energy
of this multiphase system is chosen to have a similar form as
the Folch-Plapp model of eutectic solidification [40]

F =
∫ (σ

2
fk + hfp

)
dv, (8)

where σ and h are dimensional constants and dv is the volume
element. The first term

fk =
3∑

i=1

|∇φi |2 (9)

describes the free-energy cost associated with the spatial
variation of the phase-field within the interface regions. The
second term,

fp =
3∑

i=1

[
f i

d + aif
i
a + bifb

]
, (10)

corresponds to the bulk free-energy density with f i
d = φ2

i (1 −
φi)2, f i

a = φ2
j φ

2
k (2φjφk + 3φi), and fb = φ2

i φ
2
j φ

2
k . This form

yields three free-energy minima for the bulk phases with
tunable interphase barrier heights [Fig. 2(b)]. By choosing
different ai , the height of the free-energy barrier between
phases j and k can be modified, while leaving the i-j and
i-k barriers unaffected. Since this free-energy barrier is linked
to the interface energy in the PF model, one can tune the free
energy of any binary interface using this function as shown in
later sections. bi in the last term is multiplied by the square
of all three phases. It can be used to vary the height of the
three-phase junction (triple-point) region in the free-energy
landscape [Fig. 2(c)], with the constraint bi > 9ai/2 ensuring
that the triple point is not energetically favored over a binary
interface [40]. Increasing bi decreases the size of the triple-
point region. Different choices of this parameter only affect
the model behavior within this region but do not change the
sharp-interface limit of the model discussed in Sec. IV.

The advantage of the phase-field model is that it satisfies au-
tomatically the anisotropic Young-Herring condition that does
not need to be imposed as an additional constraint. However,
to track the NW growth, a few other conditions also need to be
taken into account. In addition to the constraint on the phase
fields

∑3
i=1 φi = 1, the catalyst volume change needs to be

considered during the NW growth. To incorporate that, a mod-
ified functional with a Lagrange multiplier λA is introduced:

F̃ = F − λAh

[∫
gl( �φ)dv − A(t)

]
. (11)

gl( �φ) is a function that varies smoothly from 1 in the liquid
to 0 in the other two phases [Fig. 2(d)] such that its integral
over space can be used as a measure of the catalyst size. This
additional term ensures that, at given time t , the catalyst area
in 2D (volume in 3D) is given by A(t). Specifically, the liquid
tilt function gl is chosen to be

gl = φ2
3

4

{
15(1 − φ3)[1 + φ3 − (φ2 − φ1)2] + φ3

(
9φ2

3 − 5
)}

.

(12)

From the modified energy functional F̃ , evolution equations
for φi are derived in a variational form

τ
∂φi

∂t
= −K( �φ)

h

δF̃

δφi

, (13)

where τ is a relaxation time constant and K( �φ) is a function that
can be directly related to the sharp-interface mobility (Sec. IV).

B. Driving force for crystallization

The variational formulation above is just a commonly
used scheme to derive PF evolution equations that drive a
multiphase system toward a global free-energy minimum. For
VLS growth, however, the growth is externally driven by a flux
of precursor atoms incorporated at the liquid-vapor interface.
This flux maintains a finite supersaturation in the droplet. This
supersaturation in turn drives the crystallization of growth
atoms at the solid-liquid interface. To account for the fact that
this driving force is localized at the solid-liquid interface, we
add to the right-hand side of Eq. (13) a term �μ�−1

s u(φ1,φ3)
for the evolution of φ1 and φ3 only. Physically, this additional
term can be interpreted as the difference of chemical potential
of Si atoms between the NW solid and liquid catalyst denoted
here by �μ where the additional factor of �−1

s converts
the unit of energy per atom of the chemical potential to
energy per volume in the PF model. We will derive later an
expression for �μ from the requirement that the evolution
of the growth atom concentration in the droplet is the same
in the phase-field and sharp-interface models. To localize the
driving force for NW growth at the solid-liquid interface,
�μ is multiplied by the function u(φ1,φ3) = 15φ2

1φ
2
3 . On the

binary solid-liquid interface, where φ3 = 1 − φ1 and φ2 = 0
in Fig. 3, this term can be derived variationally from the bulk
free-energy density term − ∫ dφ1u(φ1,1 − φ1), which is the
standard quintic polynomial used in phase-field models of
monophase solidification that lowers the free-energy of the
solid (φ1 = 1) with respect to the liquid (φ1 = 0) [43]. The
same quintic polynomial is used here to provide the driving

FIG. 3. Outline of the three binary interfaces involved in VLS NW
growth. The phase fields vary smoothly from 0 to 1 across a spatially
diffused interface region with φ1 = 1, φ2 = 1, and φ3 = 1 in solid,
vapor, and liquid, respectively.
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force for NW growth. However, because the driving force must
be physically localized at the solid-liquid interface, i.e., there is
no driving force for the solid to grow into the vapor phase, the
�μ�−1

s u(φ1,φ3) term is only added to the evolution equation
of φ1 and φ3 but not φ2. This procedure makes the phase-field
model globally nonvariational since multiphase-field equations
with a driving force localized on a specific binary interface
cannot be derived in the standard variational form of Eq. (13)
by simply adding a free-energy contribution to F that depends
on φ1, φ2, and φ3. However, previous studies have shown
that nonvariational and variational phase-field formulations
are equally well suited to model dendritic solidification as
long as they reduce to the desired sharp-interface limit [44].
Numerical examples presented in the results section confirm
that the nonvariational multiphase-field formulation developed
here yields physically realistic NW growth behaviors that can
be quantitatively related to sharp-interface theory.

The evolution equations that incorporate the catalyst vol-
ume change and this localized driving force for crystallization
can be written in the compact form

τ
∂φi

∂t
= −K( �φ)

h

δ̂F̃

δ̂φi

, (14)

with

δ̂F̃

δ̂φi

= δ̂F

δ̂φi

− λAh
∂gl

∂φi

, (15)

which incorporates the change of catalyst volume, and

δ̂F

δ̂φ1
= δF

δφ1
− �μ�−1

s u(φ1,φ3), (16)

δ̂F

δ̂φ2
= δF

δφ2
, (17)

δ̂F

δ̂φ3
= δF

δφ3
+ �μ�−1

s u(φ1,φ3), (18)

which incorporate the driving force for crystallization only
at the solid-liquid interface. In an earlier version [24] of
the present NW growth phase-field model, the driving force
for crystallization was formulated as in the multiphase-field
Folch-Plapp model of eutectic solidification [40]. When this
formulation is used in a NW growth context, the solid is
thermodynamically driven to grow into both the liquid and
vapor phases. While growth into the vapor phase can be
kinetically suppressed by making the solid-vapor interface
mobility vanishingly small, the mobility remains finite in the
spatially diffuse triple point region, thereby yielding a slow
convergence to the sharp-interface limit (i.e., nanowires in the
phase-field model have a radius larger than the one predicted by
sharp-interface theory for computationally tractable choices of
interface thickness [24]). This artifact is removed in the present
formulation of the driving force for crystallization that drives
the growth of the solid into only the liquid phase, which is
the conduit of growth atoms, but not into the vapor phase.
As a result, the phase-field model yields a much improved
convergence to the sharp-interface limit as discussed later in
Sec. V C.

C. Lagrange multipliers and constraints

The equations above control the catalyst volume through
the Lagrange multiplier λA but have not yet included the phase
fraction condition

∑3
i=1 φi = 1. It has been shown previously

[40] that such a condition is satisfied by writing the equations
of motion as

τ
∂φi

∂t
= −K( �φ)

h

(
δ̂F̃

δ̂φi

− 1

3

3∑
i=1

δ̂F̃

δ̂φi

)
for i = 1,2, (19)

and

φ3 = 1 − φ1 − φ2. (20)

The expression of the Lagrange multiplier λA derived in
Appendix A is given by

λA =
∫

Kh−1∑2
i=1

δ̂F

δ̂φi

∂g̃l

∂φi
dv − 1

3

∫
Kh−1∑2

i=1
∂g̃l

∂φi

∑3
j=1

δ̂F

δ̂φj
dv + Ȧτ∫

K
∑2

i=1

(
∂g̃l

∂φi

)2
dv − 1

3

∫
K
(∑2

i=1
∂g̃l

∂φi

)2
dv

, (21)

where g̃l is a modified gl function with φ3 replaced by 1 − φ1 −
φ2, and Ȧ ≡ dA/dt is related to the evolution of the droplet
concentration in the next subsection.

D. Droplet concentration evolution

The driving force �μ at the solid-liquid interface generally
depends on the oversaturation in the catalyst and the liquid-
vapor interface curvature. To calculate the oversaturation part,
a PF analog of Eq. (6) for the evolution of the number of growth
atoms Ng in the catalyst needs to be included in the model.
In terms of the PF variables, this evolution equation can be
expressed as

dNg

dt
= J

η

∫
φ2φ3dv − 1

�s

∫
∂tgs( �φ)dv, (22)

where η in the first flux is a normalization constant with unit
of length chosen such that η−1

∫
dvφ2φ3 = ∫

lv
ds in the sharp-

interface limit. Using a solid measuring function (similar to gl

in measuring liquid size)

gs = φ2
1

4

{
15(1 − φ1)[1 + φ1 − (φ3 − φ2)2] + φ1

(
9φ2

1 − 5
)}

,

(23)

time derivative of the gs integral [the second term on the right-
hand side of Eq. (22)] corresponds to the increasing rate of
solid (i.e., the crystallization of Si atoms). During steady-state
growth, those two fluxes must balance each other. With cl =
Ng/(Nc + Ng), the contribution of the oversaturation to the
driving force is then given by β(cl − c0), and the total driving
force can be written as

�μ = −[β(cl − c0) − λAh�l], (24)
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where the first term is the oversaturation contribution and the
second term is the Lagrange multiplier which can be reduced
to the liquid-vapor curvature effect as shown later in the sharp-
interface asymptotics. The droplet volume A = �lNg + Ac,
where Ac is the volume contribution of catalyst atoms, is
assumed to remain constant. The rate of change of the volume
in Eq. (21) is then given by

Ȧ = �l

dNg

dt
, (25)

where dNg/dt is given by Eq. (22). Also, at any time, the
catalyst volume can be expressed as

A = A0
1 − c0

1 − cl

, (26)

where A0 is the catalyst size at cl = c0. In the limit of small
supersaturation (cl close to c0), A ≈ A0.

E. Interface mobility

While the liquid-vapor interface relaxes rapidly to a shape
with constant mean curvature, NW growth is a comparatively
much slower process controlled in different limits by the
crystallization kinetics or the incorporation of Si atoms from
the vapor phase. In addition, the evolution of the solid-vapor
interface by surface diffusion is essentially frozen on the time
scale of NW growth. Accordingly, the mobility function K( �φ)
should be chosen such that the solid-vapor interface mobility
vanishes far from the triple junctions while the liquid-vapor
interface mobility Mlv is much larger than the solid-liquid
interface mobility Msl . We use the form

K( �φ) = (1 − 4φ1φ2)(1 + αφ2φ3), (27)

where α is chosen such that∫ 1
0 φ2(1 − φ2)

√
1 + a2φ2(1 − φ2)dφ2∫ 1

0 φ1(1 − φ1)
√

1 + a1φ1(1 − φ1)K−1dφ1

= Mlv/Msl.

(28)

This integral condition will become clearer after we derive the
sharp-interface limit of the PF equations.

F. Interface free energy

The three binary interfaces involved in NW growth
generally have different excess free energy. The excess free
energy of the interface between phases where φj = 1 and
φk = 1 is given by an integral of the free-energy density across
the interface [40]

γjk = 2
√

2Wh

∫ 1

0
p(1 − p)

√
1 + aip(1 − p)dp, (29)

where W = √
σ/h, p is either φj or φk (since φj = 1 − φk

along the j -k interface) and ai is the coefficient appearing in
Eq. (10). This expression can be used to incorporate experi-
mentally relevant surface energies for the solid-liquid, solid-
vapor, and liquid-vapor interfaces into this model by using
different coeffficients ai , aj , and ak to vary the free-energy
barriers between the j -k, i-k, and i-j phases, respectively. The
expression above is limited to isotropic interfaces and the in-
corporation of crystalline anisotropy will be discussed later on.

G. Summary of phase-field model equations

We summarize here the PF model equations presented in the
previous subsections. Even though some formulas are derived
in the subsequent sharp-interface analysis, this self-contained
summary is intended to facilitate the numerical implementation
of the model. In the ST sharp-interface model, NW growth
is governed by the growth law of Eq. (3) and the droplet
concentration evolution of Eq. (6). In the PF model, the growth
law is embodied in Eqs. (19) and (20), which can be explicitly
written as

τ
∂φ1

∂t
= K( �φ)

[
W 2∇2φ1 − 2φ1(1 − φ1)(1 − 2φ1)

−
3∑

i=1

∂
(
aif

i
a + bifb

)
∂φ1

+ �μ̃u(φ1,φ3)

+λA

∂gl

∂φ1
− 1

3
λφ

]
, (30)

τ
∂φ2

∂t
= K( �φ)

[
W 2∇2φ2 − 2φ2(1 − φ2)(1 − 2φ2)

−
3∑

i=1

∂
(
aif

i
a + bifb

)
∂φ2

+ λA

∂gl

∂φ2
− 1

3
λφ

]
, (31)

φ3 = 1 − φ1 − φ2, (32)

with u(φ1,φ3) = 15φ2
1φ

2
3 ,

�μ̃ = �μ/(h�s), (33)

λφ =
3∑

j=1

[
W 2∇2φj − 2φj (1 − φj )(1 − 2φj )

−
3∑

i=1

∂
(
aif

i
a + bifb

)
∂φj

+ λA

∂gl

∂φj

]
(34)

and

λA = I1 − I2 + Ȧτ

I3 − I4
, (35)

where

I1 =
∫

Kh−1
2∑

i=1

δ̂F

δ̂φi

∂g̃l

∂φi

dv, (36)

I2 = 1

3

∫
Kh−1

2∑
i=1

∂g̃l

∂φi

3∑
j=1

δ̂F

δ̂φj

dv, (37)

I3 =
∫

K

2∑
i=1

(
∂g̃l

∂φi

)2

dv, (38)

I4 = 1

3

∫
K

(
2∑

i=1

∂g̃l

∂φi

)2

dv, (39)

with (δ̂F )/(δ̂φi) defined by Eqs. (16)–(18) and g̃l obtained by
replacing φ3 with 1 − φ1 − φ2 in Eq. (12). As we will see later
in the sharp-interface analysis, the equations above can recover
exactly the growth law in the ST model [Eq. (3)]. The droplet
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concentration evolution in the PF model is given by Eq. (22)

dNg

dt
= J

η

∫
φ2φ3dv − 1

�s

∫
∂tgs( �φ)dv, (40)

where J is the incorporation flux at the liquid-vapor interface, η
is a constant with unit of length chosen such that η−1

∫
dvφ2φ3

gives the liquid-vapor surface area, and gs is the function
given in Eq. (24). With this definition η = ∫

dnφ2(n)φ3(n),
where n is the coordinate normal to the liquid-vapor interface
and φ2 and φ3 = 1 − φ2 are the stationary one-dimensional
phase-field profiles corresponding to an equilibrium interface.
The value of η is given in the numerics section. In addition,
�μ̃ is related to the Si atom concentration in the droplet
cl = Ng/(Nc + Ng) and λA by

�μ̃ = −
[
β(cl − c0)

h�s

− λA

�l

�s

]
, (41)

and the catalyst volume evolution is included by replacing Ȧ

in Eq. (35) with Eq. (25)

dA

dt
= �l

dNg

dt
. (42)

The interfacial free energies are given by

γsl = 2
√

2Wh

∫ 1

0
p(1 − p)

√
1 + a2p(1 − p)dp, (43)

γsv = 2
√

2Wh

∫ 1

0
p(1 − p)

√
1 + a3p(1 − p)dp, (44)

γlv = 2
√

2Wh

∫ 1

0
p(1 − p)

√
1 + a1p(1 − p)dp. (45)

The solid-liquid interface mobility is

Msl = W 2

τγsl

. (46)

The last parameter we need to specify is related to the implicit
assumption in the sharp-interface model that the liquid-vapor
interface relaxes quasi-instantaneously to an equilibrium shape
on the time scale of NW growth. This limit can be modeled by
choosing α in the expression for the mobility

K( �φ) = (1 − 4φ1φ2)(1 + αφ2φ3), (47)

such that the condition∫ 1
0 p(1 − p)

√
1 + a2p(1 − p)dp∫ 1

0 p(1 − p)
√

1 + a1p(1 − p)K−1dp
= Mlv

Msl

� 1 (48)

is satisfied where K = 1 + αp(1 − p) in the above expression
where K( �φ) is evaluated at the liquid-vapor interface with
φ1 = 0, φ2 = p, and φ3 = 1 − p, and the value of α is given
in the numerical implementation part in Sec. V.

H. Incorporation of crystalline anisotropy and facets

The incorporation of crystalline anisotropy in monophase
solidification models has been treated in various studies for
atomically rough interfaces without [45–47] and with [48]
missing orientations as well as for faceted interfaces [41]. To
incorporate the anisotropy of the solid-liquid interface excess
free energy in a multiphase system, an extension to the original

Folch-Plapp model [40] needs to be developed. Because
of the phase fraction condition

∑
i φi = 1, incorporation of

anisotropy through orientation-dependent gradient terms, as in
monophase solidification, is problematic. Therefore, we follow
an alternate approach that consists of making the free-energy
barrier height between the solid and liquid phases orientation
dependent. Details of this approach are given in Appendix C
and only the main results are summarized here. The functional
derivatives are modified as

1

h

δF

δφi

= ∂f i
d

∂φi

− W 2∇2φi +
3∑

l=1

[
al

∂f l
a

∂φi

+ bl

∂fb

∂φi

+ ∂

∂x

(
φi,y

|∇φi |2 f l
aal,i

)
− ∂

∂y

(
φi,x

|∇φi |2 f l
aal,i

)]
,

(49)

with φi,x = ∂φi/∂x. Anisotropy is introduced using the
orientation-dependent coefficient

ai(θ ) = [
1
2ai(θj ) + 1

2ai(θk)
]
, (50)

where θ is the angle between the interface normal and a
reference crystal axis, and

al,i = 1

2

∂al(θi)

∂θi

. (51)

Since the orientation angle of the j -k binary interface can be
calculated by either

sin θj = −∂yφj/

√
(∂yφj )2 + (∂xφj )2 (52)

or

sin θk = −∂yφk/

√
(∂yφk)2 + (∂xφk)2, (53)

Eq. (50) combines the contributions from both θj and θk

equally. To quantitatively incorporate an experimentally rel-
evant anisotropic surface energy, the coefficient ai(θ ), which
adjusts the height of the free-energy barrier between phases j

and k, can be directly related to γjk(θ ) by the relation derived
in Appendix C,

ai(θ ) = B0 + B1
γjk(θ )

Wh
+ B2

(
γjk(θ )

Wh

)2

, (54)

with B0 = −4.86349, B1 = −0.693313, and B2 = 23.3564.

IV. SHARP-INTERFACE LIMIT OF PHASE-FIELD MODEL

In this section, we carry out an asymptotic analysis to relate
the PF and sharp-interface models. In the present context, this
analysis consists of deriving from the PF model the evolution
equations for the solid-liquid and solid-vapor interfaces in the
limit where the thickness of those spatially diffuse interfaces is
small compared to the macroscopic scale of the system that is
set by the NW radius, itself determined by the catalyst volume.
The solid-vapor interface is assumed to have a vanishing
mobility, consistent with the fact that surface diffusion is too
slow to lead to a significant reconfiguration of this interface
shape on the time scale of NW growth.

The present analysis is simpler than the thin interface limit
of solidification models insofar as interface motion is not
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coupled to a long-range diffusion field such as temperature
[43] or alloy concentration [38,40]; i.e., the concentration of
growth atom is assumed to be spatially uniform inside the
catalyst. However, the analysis is made more complicated
than the thin interface limit of solidification models by the
introduction of a Lagrange multiplier λA to control the catalyst
volume [Eq. (11)]. In order to first understand the effect of
this Lagrange multiplier in the simplest possible two-phase
configuration, we analyze in Appendix B the shape evolution
of an isolated liquid droplet in a vapor phase, which can
be described by a single order parameter φ. We show that
this evolution is governed in the sharp-interface limit by the
equation

V = M

(
−κγ + γ

∫
κds∫
ds

+ Ȧ∫
ds

)
, (55)

where V is the normal interface velocity, M is an interface
mobility, κ the is the interface curvature, s is the arclength
coordinate along the interface such that

∫
ds, evaluated along

the closed interface contour surrounding the droplet, represents
the total interface length, and Ȧ = dA(t)/dt , where A(t) is
the droplet area. Equation (55) is simplest to interpret in the
limit where the droplet area is constant (Ȧ = 0). In this case, it
implies that an arbitrarily shaped droplet will relax to a circle
while preserving the droplet area since Ȧ = ∫

V ds = 0. The
motion involves both a local term −Mκγ , equivalent to motion
by mean curvature, and an area-preserving nonlocal term
Mγ

∫
κds/

∫
ds. If Ȧ �= 0, Eq. (55) implies that relaxation

to a circle will occur concurrently with a change of droplet
area since

∫
V ds = Ȧ in this case.

In this section, we extend the sharp-interface analysis to
the multiphase-field model, which describes the more complex
three-phase configuration where different regions of the liquid
droplet surface are in contact with the vapor and solid phases.
In this case, Eq. (55) takes on a more complex form that
couples the evolution of the solid-liquid and liquid-vapor
interfaces to Ȧ, which only vanishes in the steady-state growth
regime. Importantly, this evolution equation can be simplified
and interpreted physically in the limit where the liquid-vapor
interface mobility is much larger than the solid-liquid interface
mobility. We show that, in this experimentally relevant limit
where the droplet maintains a circular shape during growth,
the Lagrange multiplier λA reduces to the term corresponding
to the Laplace pressure inside the droplet in the sharp-interface
model, and the desired evolution equation for the solid-liquid
interface dynamics can be obtained by a suitable choice of
driving force (chemical potential difference �μ) in the PF
model.

To carry out the sharp-interface analysis, the essential
equations in the PF model are reviewed here. The basic
equations of motion [Eqs. (30) and (31)] are

τ
∂φ1

∂t
= K( �φ)

[
W 2∇2φ1 − ∂fp

∂φ1

+�μ̃u(φ1,φ3) + λA

∂gl

∂φ1
− 1

3
λφ

]
, (56)

τ
∂φ2

∂t
= K( �φ)

[
W 2∇2φ2 − ∂fp

∂φ2
+ λA

∂gl

∂φ2
− 1

3
λφ

]
, (57)

with

�μ̃ = �μ/(h�s), (58)

λφ =
3∑

j=1

[
W 2∇2φj − ∂fp

∂φj

+ λA

∂gl

∂φj

]
, (59)

where we have used the expression of fp in Eq. (10). The
Lagrange multiplier λA is

λA = I1 − I2 + Ȧτ

I3 − I4
, (60)

with the integrals I1,2,3,4 defined in Eqs. (36)–(39).
At the liquid-vapor binary interface, Eqs. (56) and (57) are

reduced to

τ
∂φ1

∂t
= 0, (61)

τ
∂φ2

∂t
= Klv

(
W 2∇2φ2 − 1

2

∂f̃ lv
p

∂φ2
+ 1

2
λA

∂g̃l

∂φ2

)
, (62)

where f̃ lv
p and Klv are fp and K( �φ) evaluated at the liquid-

vapor interface (φ1 = 0, φ3 = 1 − φ2). The second term in the
parentheses on the right of Eq. (62) is obtained by summing
the ∂fp/∂φ2 term in Eq. (57) with all the ∂fp/∂φi terms in λφ .
The third term is obtained in the same way.

At the solid-liquid interface, the PF equations of motion
become

τ
∂φ1

∂t
= Ksl

[
W 2∇2φ1 − 1

2

∂f̃ sl
p

∂φ1
− 1

2
�μ̃

∂g̃l

∂φ1
+ 1

2
λA

∂g̃l

∂φ1

]
,

(63)

τ
∂φ2

∂t
= 0, (64)

where f̃ sl
p and Ksl are fp and K( �φ) evaluated at the solid-liquid

interface. For the �μ̃ term, u(φ1,φ3) is reduced to − 1
2

∂g̃l

∂φ1
at

the solid-liquid interface. Other terms are obtained in the same
way as in the liquid-vapor equation [Eq. (62)].

The sharp-interface asymptotics of these equations can be
taken directly from Appendix B by matching the PF terms
in Eqs. (62) and (63) to the single PF equation [Eq. (B4)] and
taking the corresponding asymptotics from the single PF result
[Eq. (B20)]. For the solid-liquid interface, the sharp-interface
equation is

vsl = −κ0
slγ

0
sl + 1

2

(
λ1

A − �μ̃
)

Qsl

, (65)

with

γ 0
sl =

∫ +∞

−∞

(
φ0

1,z1

)2
dz1, (66)

Qsl =
∫ +∞

−∞
αsl
(
φ0

1,z1

)2
dz1. (67)

Here, φ0 is the equilibrium PF boundary profile, φ0
i,z is the

derivative of φ0
i with respect to z, αsl = τD/(W 2Ksl), κ0

sl is
the scaled solid-liquid interface curvature, λ1

A is the reduced
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Lagrange multiplier, and the direction of interface normal
coordinate z1 points to the liquid phase (see Appendix B for
details). Similarly, the liquid-vapor equation is

vlv = κ0
lvγ

0
lv + 1

2λ1
A

Qlv

, (68)

with

γ 0
lv =

∫ +∞

−∞

(
φ0

2,z2

)2
dz2, (69)

Qlv =
∫ +∞

−∞
αlv
(
φ0

2,z2

)2
dz2. (70)

κ0
lv is the scaled liquid-vapor interface curvature, αlv =

τD/(W 2Klv), and the direction of interface normal coordi-
nate z2 points to the liquid phase. Since this sharp-interface
equation is based on the vapor phase φ2 which has a negative
curvature in the NW growth geometry, the minus sign in front
of the curvature term is removed to keep consistency with
the positive curvature convention in the ST sharp-interface
model.

By replacing v and κ0 with their unscaled dimensional
form v = V lc/D, κ0 = lcκ for both the solid-liquid and
the liquid-vapor interfaces, and using the dimensional in-
terfacial energy γ (see Appendix B), Eqs. (65) and (68)
become

Vsl = Msl

(−κslγsl + λAh − �μ�−1
s

)
, (71)

Vlv = Mlv(κlvγlv + λAh), (72)

with the solid-liquid interface curvature κsl , the liquid-vapor
curvature κlv and interfacial energies

γlv = 2Wh

∫ +∞

−∞

(
∂φ0

2

∂z2

)2

dz2, (73)

γsl = 2Wh

∫ +∞

−∞

(
∂φ0

1

∂z1

)2

dz1. (74)

These two interfacial energy equations are reduced to
Eqs. (43) and (45) with the well-known equipartition relations
(∂φ0

1/∂z1)2 = 1
2 f̃ sl

p and (∂φ0
2/∂z2)2 = 1

2 f̃ lv
p , and the interface

mobilities are given by

Mlv = W

τh

1

2
∫ +∞
−∞

( ∂φ0
2

∂z2

)2
K−1

lv dz2

, (75)

Msl = W

τh

1

2
∫ +∞
−∞

( ∂φ0
1

∂z1

)2
K−1

sl dz1

. (76)

The result in Eq. (46) is obtained by substituting in the
expression of K [Eq. (27)] at a given binary interface into
Eq. (76). The mobility ratio in Eq. (28) is also derived from
here using the equipartition relations.

The sharp-interface counterpart of the Lagrange multiplier
λA is derived following the procedure demonstrated in Ap-
pendix B [Eqs. (B23)–(B26)]. The catalyst volume condition
in Eq. (A5) can be separated into two parts which cover
the solid-liquid and liquid-vapor interfaces separately as the

following:

Ȧ =
∫ 2∑

i=1

(
∂g̃l

∂φi

∂φi

∂t

)
dv

=
∫

sl

−Vsl

∂g̃l

∂φ1

∂φ1

∂z1
dsdz1 +

∫
lv

−Vlv

∂g̃l

∂φ2

∂φ2

∂z2
dsdz2.

(77)

This is the multiphase-field equivalent of the single phase-field
PF model in Eq. (B25). Replacing the interface velocities in
Eq. (78) with Eqs. (71) and (72) and solving for the Lagrange
multiplier λA gives

λAh = Ȧ − γlvκlvMlvSlv + (
γslκsl + �μ�−1

s

)
MslSsl

MlvSlv + MslSsl

,

(78)

which is the multiphase-field version of Eq. (B26) with
interface lengths Slv and Ssl defined by

Slv =
∫

lv

ds, (79)

Ssl =
∫

sl

ds. (80)

In addition, the solid-liquid and liquid-vapor interface curva-
tures are assumed to be constant in the derivation of Eq. (78).

Inserting Eq. (78) into Eqs. (71) and (72) gives the sharp-
interface equations of motion for the solid-liquid and liquid-
vapor interfaces

Vsl = −Mslκslγsl − Msl�μ�−1
s

+Msl

−κlvγlvMlvSlv + (
κslγsl + �μ�−1

s

)
MslSsl + Ȧ

MlvSlv + MslSsl

=
−�μ�−1

s − κslγsl − κlvγlv + Ȧ
MlvSlv(

1
Msl

+ Ssl

Slv

1
Mlv

) , (81)

Vlv = Mlvκlvγlv

+Mlv

−κlvγlvMlvSlv + (
κslγsl + �μ�−1

s

)
MslSsl + Ȧ

MlvSlv + MslSsl

=
�μ�−1

s + κslγsl + κlvγlv + Ȧ
MslSsl(

Slv

Ssl

1
Msl

+ 1
Mlv

) . (82)

These expressions can be further simplified in the
limit Mlv � Msl where the liquid droplet relaxes quasi-
instantaneously to an equilibrium shape during growth. When
we neglect the volume change contribution Ȧ, which is typ-
ically small and vanishes in the steady-state growth regime,
Eq. (78) reduces in this limit to

λAh ≈ −κlvγlv, (83)

which corresponds to the Laplace pressure of the droplet.
The sharp-interface limit of the solid-liquid interface motion
becomes

vn = Vsl = Msl

(
−κslγsl − �μ

�s

− κlvγlv

)
. (84)

We note that with the volume change factor Ȧ included, the
expression for the Lagrange multiplier contains an additional
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contribution

λAh ≈ Ȧ

MlvSlv

− κlvγlv. (85)

However, the same solid-liquid interface equation of motion
[Eq. (84)] is obtained since Ȧ represents a high-order contri-
bution in the limit where Msl/Mlv � 1. As a result, the rapid
volume change mediated by the motion of the liquid-vapor
interface has a negligibly small effect on the NW growth rate
in this limit, as physically desired.

Finally, Eq. (84) can be readily seen to have the same form as
the equation for the normal velocity of the solid-liquid interface
in the sharp-interface model, which is obtained by combining
Eqs. (3)–(5)

vn = Msl

[
β(cl − c0)

�s

+ κlvγlv

�l

�s

− κslγsl − κlvγlv

]
, (86)

if �μ is chosen in the PF model as

�μ = −[β(cl − c0) + κlvγlv�l]

= −[β(cl − c0) − λAh�l], (87)

where Eq. (83) is used in the second equality. By the same
argument given above, this �μ expression remains valid when
Ȧ �= 0 since the slow catalyst volume change has a negligible
effect on the solid-liquid interface dynamics in the rapid
droplet-shape relaxation limit Msl/Mlv � 1.

V. NUMERICAL EXAMPLES AND COMPARISON
WITH SHARP-INTERFACE THEORY

In this section, we discuss the numerical implementation of
the phase-field model. We then present results of simulations
that illustrate the ability of the model to reproduce basic
features of NW growth. We consider first the simpler case of
an isotropic solid-liquid interface and then consider the more
realistic case of a faceted solid-liquid interface. The quanti-
tative validity of the approach is tested by comparisons with
sharp-interface theory for the NW growth shape and velocity.

A. Numerical implementation

The PF equations are first written in dimensionless form by
introducing the dimensionless time t̄ = t/τ and dimensionless
length x̄ = x/W as well as the corresponding dimensionless
derivative operator ∇̄ = W∇, volume element dv̄ = dv/W 2,
and catalyst size Ā = A/W 2. The functional derivatives that
include the driving force for crystallization become

1

h

δ̂F

δ̂φ1
= −

[
∇̄2φ1 − 2φ1(1 − φ1)(1 − 2φ1)

−
3∑

i=1

∂
(
aif

i
a + bifb

)
∂φ1

+ �μ̃u(φ1,φ3)

]
, (88)

1

h

δ̂F

δ̂φ2
= −

[
∇̄2φ2 − 2φ2(1 − φ2)(1 − 2φ2)

−
3∑

i=1

∂
(
aif

i
a + bifb

)
∂φ2

]
, (89)

1

h

δ̂F

δ̂φ3
= −

[
∇̄2φ3 − 2φ3(1 − φ3)(1 − 2φ3)

−
3∑

i=1

∂
(
aif

i
a + bifb

)
∂φ3

− �μ̃u(φ1,φ3)

]
, (90)

with

�μ̃ = −
[

β

h�s

(cl − c0) − λA

�l

�s

]
. (91)

Using Eqs. (88)–(90), the Lagrange multiplier λA can be
evaluated as

λA = I1 − I2 + ∂Ā
∂t̄

I3 − I4
, (92)

where

I1 =
∫

Kh−1
2∑

i=1

δ̂F

δ̂φi

∂g̃l

∂φi

dv̄, (93)

I2 = 1

3

∫
Kh−1

2∑
i=1

∂g̃l

∂φi

3∑
j=1

δ̂F

δ̂φj

dv̄, (94)

I3 =
∫

K

2∑
i=1

(
∂g̃l

∂φi

)2

dv̄, (95)

I4 = 1

3

∫
K

(
2∑

i=1

∂g̃l

∂φi

)2

dv̄. (96)

The phase-field evolution equations are

∂φj

∂t̄
= −K( �φ)

h

(
δ̂F̃

δ̂φj

− 1

3

3∑
i=1

δ̂F̃

δ̂φi

)
, (97)

for j = 1 and 2 with

1

h

δ̂F̃

δ̂φi

= 1

h

δ̂F

δ̂φi

− λA

∂gl

∂φi

(98)

and

φ3 = 1 − φ1 − φ2. (99)

The evolution equations for the catalyst concentration cl =
(Nc + Ng)/Nc and catalyst volume (area in 2D) are determined
by

dNg

dt̄
= JWτ

η̄

∫
φ2φ3dv̄ − W 2

�s

∫
∂gs

∂t̄
dv̄, (100)

which determines the evolution of cl at fixed number of catalyst
atoms Nc, and

dĀ

dt̄
= �l

W 2

dNg

dt̄
, (101)

respectively, where η̄ = η/W and in 2D the incorporation flux
J has the unit of atoms per length per time.
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To model an anisotropic surface energy, the ∂(aif
i
a +bifb)
∂φj

term
in Eqs. (88)–(90) is replaced by the form defined by Eq. (49),

3∑
i=1

∂
(
aif

i
a + bifb

)
∂φj

→
3∑

i=1

[
ai

∂f i
a

∂φj

+ bi

∂fb

∂φj

+ ∂

∂x

(
φj,y

|∇φj |2 f i
aai,j

)

− ∂

∂y

(
φj,x

|∇φj |2 f i
aai,j

)]
. (102)

The constant barrier parameter ai in the isotropic model
becomes orientation-dependent ai(θ ) in the anisotropic model.
The orientation-dependent barrier parameter ai and its deriva-
tive ai,j are defined in Eqs. (50) and (51). To model a given
anisotropic solid-liquid interfacial energy γ (θ ), ai(θ ) needs to
be calculated numerically using Eq. (C9).

The phase-field evolution equations [Eq. (97)] are stepped
forward in time with an explicit Euler scheme with centered
finite difference approximations of the spatial derivatives.
The evolution equations for the concentration [Eq. (100)]
and catalyst volume [Eq. (101)] are also stepped forward in
time with an explicit Euler scheme with parameters c0 =
0.45, β�−1

s h−1 = 2.0, and �s/W 2 = �l/W 2 = 1.0 unless
explicitly specified otherwise. Space and time discretizations
are chosen to be �x/W = �y/W = 0.4 and �t/τ = 0.001.
To keep the numerics tractable, we use a mobility ratio
Mlv/Msl ≈ 20, corresponding to α ≈ 110 in the expression
of K( �φ) [Eq. (47)], which is sufficiently large for the liquid-
vapor interface to relax to a circular equilibrium shape on
the characteristic time scale of NW growth. The liquid-vapor
surface energy is isotropic and given by a1 = 0. The scaling
factor in Eq. (100) η̄ = 0.71. The other two surface energy
parameters (a2 and a3) are computed using Eq. (C9) to match
desired ratios of interfacial free energies. The parameter bi in
the potential function fp is set to 80 to reduce the triple junction
size. To increase performance, only grid points near the liquid
phase are computed.

B. From droplet to nanowire

Here we first demonstrate some basic features of this PF
NW growth model based on isotropic interfacial free energies.
For the silicon-gold system, we use the values γsv = 1.2 Jm−2,
γsl = 0.8 Jm−2, and γlv = 1.0 Jm−2, which are similar to
those given in previous studies [16]. The initial configuration
is a substrate-vapor system. By seeding a catalyst droplet of
a specified volume on the substrate with cl = c0, without Si
incorporation at the liquid-vapor interface, the catalyst relaxes
to an equilibrium shape given by Young’s condition. Once the
flux of Si atom is switched on at the liquid-vapor interface, the
NW grows vertically, as demonstrated in Fig. 4.

The catalyst concentration and volume during growth
are shown in Figs. 5 and 6, respectively. The catalyst is
undersaturated at the start of growth due to the Gibbs-
Thompson effect associated with the curvature of the liquid-
vapor surface and becomes oversaturated as growth atoms
become incorporated in the catalyst droplet. Finally, the growth

cl ~ 0.44-

FIG. 4. PF simulation with isotropic interfaces illustrating the
evolution from droplet to NW. Outlines of solid are shown as red
lines at different times and the solid-liquid and liquid-vapor interfaces
bounding the catalyst droplet are only shown together for clarity as a
thicker blue line at the latest time. The top right inset shows interfaces
more closely spaced in time during the initial growth stage. Simulation
parameters are A0/W 2 = 313, JWτ = 0.007. The lower right inset
shows the equilibrium configuration on the substrate before growth
(J = 0).

velocity and droplet concentration reach constant values during
steady-state growth. For a given catalyst size, the volume
evolution described by Eq. (25) is also accurately reproduced
as shown in Fig. 6.

C. Nanowire radius for steady-state growth

We now compare the steady-state NW growth shape to
the prediction of sharp-interface theory. The steady-state NW
radius predicted by sharp-interface theory, denoted here as Rsi ,
is determined by the three interfacial free energies together
with the size of the catalyst (as shown in Fig. 1). For isotropic
interfaces, the Young-Herring condition reduces to Young’s
condition at the triple-phase junction. For a vertical sidewall,
the projection of the capillary forces on the vertical and

 0.43

 0.44

 0.45

 0.46

 0.47

 0  5000  10000  15000

c l

t/τ

FIG. 5. Droplet concentration vs time scaled by the phase-field
relaxation time τ during NW growth for the same parameters as Fig. 4.
Insets show morphologies during initial growth, tapering, and steady-
state growth.
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PF measured

FIG. 6. Catalyst area A scaled by the area of an equilibrium
droplet A0 before growth vs dimensionless time t/τ with A analyti-
cally predicted by Eq. (26) with cl from the PF simulation of Fig. 5
(solid line) and with A computed from the same simulation using∫

gl( �φ)dv that defines the catalyst area in Eq. (11) (open circles).
Simulation parameters are the same as in Figs. 4 and 5.

horizontal directions yield the relations

γsv = γsl sin θ1 + γlv sin θ2 (103)

and

γsl cos θ1 = γlv cos θ2, (104)

respectively.
In Fig. 1, the radius of curvature of the solid-liquid (R1) and

the liquid-vapor (R2) interfaces are related to the NW radius
Rsi by

R1 = Rsi/ sin θ1, R2 = Rsi/ sin θ2, (105)

from which we obtain the expression for the catalyst area

A = πR2
2 − θ2R

2
2 + R2

2 sin θ2 cos θ2 − θ1R
2
1

+R2
1 sin θ1 cos θ1. (106)

This expression can be further reduced to

A1/2 = Rsi

(
π − θ2

sin2 θ2
− θ1

sin2 θ1
+ cot θ1 + cot θ2

)1/2

, (107)

which predicts that the sharp-interface NW radius Rsi is
proportional to the square root of the catalyst area. As shown
in Fig. 7, this prediction is in very good quantitative agreement
with PF simulations where the catalyst area was varied over a
very broad range.

D. Steady-state nanowire growth rate

The dependence of the NW growth rate on radius has
been extensively studied experimentally [5,13–15]. Both size-
dependent and size-independent growth rates have been re-
ported in different experimental settings. In this section, we
examine the convergence of the NW growth rate in the PF
model to its sharp-interface asymptotics. We consider two
physically distinct growth regimes. The first is the one where
growth is limited by the solid-liquid interface kinetics and the
chemical potential of growth atoms can be assumed to be equal
in the liquid and vapor and constant in time; i.e., those two

 0

 20

 40

 60

 0  20  40  60

2R
/W

A1/2/W

sharp-interface

phase-field

FIG. 7. NW diameter 2R normalized by the interface thickness
W vs dimensionless catalyst size defined as A1/2/W , where A is
the steady-state value of the catalyst area. The analytical prediction
of the sharp-interface model [Eq. (107) and red line] is compared
to the results of PF simulations (open green circles). A constant flux
JWτ = 0.0014 is used and other parameters are the same as in Fig. 4.

phases equilibrate quickly on the time scale where the solid
adds one additional layer of atoms. In this regime, the growth
rate depends on catalyst size. The second is the one considered
by ST where the NW growth rate is limited by the incorporation
rate of growth atoms at the droplet surface. Since the total
number of incorporated Si atoms is proportional to the droplet
surface area which is geometrically related to NW radius,
the growth rate in this case becomes size independent and is
controlled only by the droplet incorporation rate.

For the first interface-kinetics-dominated regime, the
growth rate is determined by Eq. (84) derived in the sharp-
interface analysis of our PF model (Sec. IV) with a constant
�μ. This equation implies that the NW growth rate vanishes
at a critical driving force �μ∗ = −(κslγsl + κlvγlv)�s . Using
Eq. (105) for the radii of curvature and Eq. (103), this critical
driving force can be simplified to

�μ∗ = −γsv�s/Rsi . (108)

With a given �μ, the growth rate is then proportional to
�μ∗ − �μ. Such a growth law can be easily tested in our
PF model by carrying out simulations that run long enough to
reach the steady-state growth regime with �μ held constant.
Since the concentration dynamics described in Eqs. (22), (24),
and (25) is not needed in these constant �μ simulations,
catalyst volumes are set to A = A0. PF simulation results
shown in Fig. 8 confirm the predicted linear dependence of
the NW growth rate on �μ∗ − �μ.

NWs of different size are then grown using this model in
the interface-kinetics-dominated regime by seeding the growth
with different catalyst sizes. Since the critical driving force
for NW growth depends on the solid-liquid and liquid-vapor
curvatures, the growth rate becomes size dependent, as shown
in Fig. 9.

For the second incorporation-rate-dominated regime, a
simple relation between the steady-state NW growth rate V and
the incorporation flux J can be derived from the wire geometry
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FIG. 8. Comparison of steady-state NW growth rate vs driving
force in PF simulations and predicted by sharp-interface theory for an
initial catalyst area A0 = 1254 W 2. By calculating the critical driving
force using Eq. (108), the growth rate [Eq. (84) is well reproduced in
PF simulations as shown by sharp-interface (SI) radius data points.
This comparison is very sensitive to the NW radius. The growth rate
computed by replacing Rsi in Eq. (108) by the slightly different PF
radius shown in Fig. 7 (PF radius points) produces a noticeable shift
of the growth threshold.

shown in Fig. 1 and the flux balance condition [Eq. (6)],

V = J�s

π − θ2

sin θ2
, (109)

The PF results agrees well with the prediction in Eq. (109)
as shown in Fig. 10. Equation (109) can also be used to
calculate the steady-state concentration in the catalyst droplet
by equating the growth velocity in Eq. (109) to the sharp-
interface velocity in Eq. (86). Assuming �l = �s and using
the solid-liquid interface mobility in Eq. (46) together with
Eq. (105), the catalyst concentration is related to the sharp-

 0
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SI growth rate

FIG. 9. Scaled NW growth length as a function of scaled time
for different catalyst sizes in the interface-kinetics-dominated regime
where the droplet chemical potential is held constant (here �μ̃ =
−0.14) instead of being determined by Eqs. (22), (24), and (25). The
results of PF simulations (symbols) agree well with the prediction of
sharp-interface (SI) theory based on Eq. (84) (lines).
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FIG. 10. Comparison of the PF steady-state growth rate with the
sharp-interface prediction [Eq. (109)]. The inset is a comparison of
the PF steady-state catalyst concentration with the sharp-interface
prediction [Eq. (110)]. The catalyst size is A0/W 2 = 313.

interface NW radius Rsi by

β(cl − c0) = J
γslτ�2

s

W 2

π − θ2

sin θ2
+ �s

γsl sin θ1

Rsi

. (110)

Combining Eq. (110) with the radius-volume relation in
Eq. (107) and the volume-concentration relation in Eq. (26),
one can predict the catalyst concentration as a function of the
incorporation flux J as shown in the inset of Fig. 10.

NWs of different size are also grown in this incorporation-
rate-dominated regime using the full Ng dynamics described
in Eqs. (22), (24), and (25). Since the number of incorporated
growth atoms into the droplet is the product of the droplet
surface area and a constant current density J , the rate of
incorporation of growth atoms into the solid scales as the
product of the NW growth rate V and solid-liquid interface
area divided by the atomic volume of solid �s . Both the droplet
surface area and solid-interface area scale as Rd−1 (where d is
the spatial dimension), and V ∼ J�s becomes independent of
the NW radius in this limit, as shown in our numerical results
in Fig. 11.
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FIG. 11. NW length L as a function of time for different catalyst
sizes in the incorporation-rate-dominated regime. Other parameters
are the same as in Fig. 4. The steady-state line is based on predicted
growth rate from Eq. (109).
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E. Faceted nanowire growth

In this part, we present results for faceted NW growth
based on the anisotropic PF model introduced in Sec. III H.
For simplicity, we consider a solid-liquid anisotropy with γ

plot of the form

γsl(θ ) = γ 0
sl

1 + δa| sin 2θ | + δb| cos 2θ |
1 + min(δa,δb)

, (111)

which has cusps at orientations θ = 0,±π/2,π and θ =
±π/4,±3π/4 corresponding to (10) and (11) facets, respec-
tively. A similar γ plot has been measured experimentally
for Si [49] and computed for the Si-Au system by atomistic
simulations [29]. For the liquid-vapor and the solid-vapor
interfaces, we use isotropic form γlv = γ 0

lv and γsv = γ 0
sv .

To make γsl(θ ) differentiable, we round the cusps by
replacing the absolute value function |x| by a smooth function√

ε2 + x2, which transforms Eq. (111) into a regularized form

γsl(θ ) = γ 0
sl

1 + δa

√
sin2 2θ + ε2 + δb

√
cos2 2θ + ε2

1 + min(δa,δb)
.

(112)

This form is implemented in the PF model using the procedure
outlined in Sec. III H and further detailed in Appendix C. Sim-
ulations are carried out with γ 0

sv = 1.2 Jm−2, γ 0
lv = 1.0 Jm−2,

γ 0
sl = 0.8 Jm−2, and ε = 0.01.

In principle, the anisotropy parameters δa and δb can
be varied independently. For some regions of the (δa , δb)
parameter space, the solid-liquid interface stiffness γsl +
d2γsl/dθ2 becomes negative over a range of θ corresponding
to thermodynamically unstable orientations that are excluded
from the equilibrium crystal shape. Those so-called “missing
orientations,” defined by γsl + d2γsl/dθ2 < 0, are completely
unrelated to faceted orientations that, in contrast, correspond to
large positive extremal values of the stiffness in the regularized
γ plot of the form of Eq. (112). A γ plot, such as the one
considered here and other more general forms, can generally
yield equilibrium shapes with missing orientations and no
facets, no missing orientations and facets, or a mix of both
facets and missing orientations. While various methods have
been developed to handle missing orientations in the PF model
[48,50], we restrict our attention here to a region of the (δa,δb)
parameter space that yields solid-liquid equilibrium shapes
without missing orientations. For this purpose, we choose to
constrain δa and δb by the relation 3δa =

√
1 − 9δ2

b , which is
obtained by requiring that the minimum value of the stiffness
over all angles equals zero and hence that the stiffness is always
equal to zero or positive for 0 � θ � 2π . For δa = δb = √

2/6,
the equilibrium shape is octagonal and completely faceted with
(10) and (11) facets of equal lengths in the ε → 0 limit, while
for δa �= δb, the equilibrium shape consists of facets of unequal
lengths and rough parts with finite positive stiffness. In the
latter case, (10) facets have lower energy and are longer than
(11) facets in the equilibrium shape for δa > δb and vice versa
for δa < δb.

Examples of NW growth from a (10) substrate are shown in
Fig. 12. When (10) facets are energetically favored (δa > δb),
simulations reproduce the standard mode of tapered growth
normal to the substrate [Fig. 12(a)]. In contrast, when (11)

FIG. 12. NW morphologies. Three phases are colored as red
(vapor), yellow (liquid), and black (solid). Catalyst size is A0/W 2 =
1254. (a) δa = 0.3179,δb = 0.1, JWτ = 0.0035. (b) δa = 0.1,δb =
0.3179, JWτ = 0.0035. (c) δa = 0.1,δb = 0.3179, JWτ = 0.0007.

facets are energetically favored (δa < δb), growth normal to the
substrate becomes unstable. For large enough flux of growth
atoms (measured in our 2D simulations by the dimensionless
product JWτ ), the NW first emerges normal to the substrate
but then kinks toward another direction after a finite growth dis-
tance, which corresponds to (11) in the example of Fig. 12(b).
In contrast, for small flux, the NW is not able to emerge from the
substrate before kinking and instead crawls along the substrate
as seen in Fig. 12(c).

Those simulations illustrate that NW growth is controlled
by a subtle balance of interface energetics and growth kinetics.
A more exhaustive study of NW growth behavior as a function
of the interface anisotropy parameters space, including solid-
vapor anisotropy that has been neglected here for simplicity,
will be presented elsewhere. In the rest of this section, we focus
on comparing the facetted NW tip shape obtained in phase-field
simulations to the one predicted by sharp-interface theory.
For this purpose, we focus on the case δa = δb that yields a
completely faceted octagonal solid-liquid equilibrium crystal
shape with (10) and (11) facets of equal energies and equal
lengths. However, during NW growth from a (10) substrate,
the side facets (i.e., (1̄1) and (11) facets) are truncated to a
shorter length than the main (10) facet, as illustrated by the
phase-field simulation in Fig. 13. This raises the question of
how to predict the length of truncated facets in the NW growth
geometry. Before addressing this question, we note that in
the simulation of Fig. 13, growth normal to the substrate is
unstable with isotropic solid-vapor interface. For this case,
normal growth was therefore enforced by imposing zero flux
boundary conditions on all phase fields about a vertical axis
that splits the NW into two equal mirror symmetric parts. The
result of this simulation is shown in Fig. 13. However, normal
growth can also be obtained in a more physical way without
imposing mirror symmetry by making the solid-vapor interface
faceted. This is illustrated in the bottom right inset of Fig. 13
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FIG. 13. Phase-field simulation of NW growth from a (10)
substrate for δa = δb = √

2/6, JWτ = 0.0028, and droplet size
A0/W 2 = 1254. Outlines of solid are shown at different stages of
morphological development in the left panel (as red line). The blue
lines depict the liquid-vapor and solid-liquid interfaces at the latest
time where the NW is growing in steady state. The phase-field
solid-liquid interface shapes are compared to the prediction of sharp-
interface theory (green dashed lines) during steady-state NW growth
(top right inset) and for an equilibrium droplet on the substrate (middle
right inset). PF interfaces are shown as red lines in the top two right
panels. The three phases are labeled using their corresponding capital
letter. A NW stabilized by solid-vapor facets (bottom right inset) with
the same anisotropy parameters for the solid-vapor and solid-liquid
interfaces.

that shows the results of a phase-field simulation where the
same anisotropic γ plot [Eq. (112)] was used for both the
solid-liquid and solid-vapor interfaces.

The first approach is to apply the geometrical Wulff con-
struction of the equilibrium crystal shape. The latter can be
expressed in an equivalent parametric representation where the
Cartesian coordinates of the interface are functions of θ given
by [51]

x(θ ) = γ̃sl(θ ) sin θ + γ̃ ′
sl(θ ) cos θ, (113)

y(θ ) = γ̃sl(θ ) cos θ − γ̃ ′
sl(θ ) sin θ, (114)

where we have defined the dimensionless solid-liquid interface
energy γ̃sl(θ ) = γsl(θ )/γ 0

lv . Here x and y are taken to be dimen-
sionless since the entire NW shape scales proportionally to
the NW diameter itself ∼√

A. This parametric representation
is obtained as a solution of the equilibrium Gibbs-Thomson
condition

[γ̃sl(θ ) + γ̃ ′′
sl(θ )]κ(θ ) = C, (115)

where κ(θ ) is the interface curvature and C is constant.
Equations (113) and (114) over the interval 0 � θ � 2π

define the equilibrium shape that is an octagon for a crystal
seed surrounded by liquid as shown in the left panel of
Fig. 14. To compute the shape in the NW geometry, we apply
the anisotropic Young-Herring condition (2) at triple points.

FIG. 14. Computed solid-liquid interface shapes for a crystal seed
surrounded by liquid (left) and for the steady-state tip shape of a
growing NW in contact with a liquid droplet (right) where the side
facets end at triple points. The parameters are δa = δb = √

2/6, ε =
0.01, γ 0

sl/γ
0
lv = 0.8, and γ 0

sv/γ
0
lv = 1.2.

Projected onto the x and y axes, this condition yields two
independent equations

γ̃sl(θf ) cos θf = cos ψ + γ̃ ′
sl(θf ) sin θf , (116)

γ̃sl(θf ) sin θf + γ̃ ′
sl(θf ) cos θf + sin ψ = γ̃ 0

sv, (117)

respectively, where γ̃ 0
sv ≡ γ 0

sv/γ
0
lv . In addition, θf and ψ are the

angles of the solid-liquid and solid-vapor interfaces measured
with respect to the horizontal axis as defined in Fig. 15(a). The
numerical solution of Eqs. (116) and (117) with γ̃sl ≡ γsl/γ

0
lv

defined by Eq. (112) uniquely determines θf and ψ . The
solid-liquid interface during NW growth is then the parametric
shape defined by Eqs. (116) and (117) for −θf � θ � θf .
This shape is shown in the right panel of Fig. 14. It is also
superimposed as a green dashed line in the top right panel of

FIG. 15. Schematic representation of (a) steady-state NW growth
shape with a main facet of length LA and two truncated facets of
lengthLB , (b) virtual displacements of main and right truncated facets,
(c) virtual displacement of right triple point, and (d) equilibrium
droplet on substrate.
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Fig. 13 and is seen to agree well with the steady-state shape
with truncated facets predicted by phase-field simulations.
Importantly, θf and ψ converge to unique values in the sharp
cusp ε → 0 limit. For ε = 0.01, those values are almost
reached. In particular, θf ≈ 0.783 is almost π/4 expected of
(11) facets and ψ ≈ 0.832 is also very close to its ε → 0
limit derived below. A similar calculation is straightforward
to carry out for an equilibrium droplet on a (10) substrate. The
predicted shape is also in good quantitative agreement with
the phase-field droplet equilibrium shape in the bottom right
panel of Fig. 13 and qualitative agreement with experimental
observations showing dissolution of the substrate below the
droplet [10].

We now derive analytically the steady-state NW growth
shape in the sharp cusp limit (ε = 0). In this limit, the truncated
(1̄1) and (11) facets have fixed orientations such that θf = π/4
is no longer an unknown. The unknowns are ψ and the ratio
LB/LA of the truncated and main facet lengths. To determine
those unknowns, we consider small virtual displacements of
individual facets of fixed orientations and one of the triple
points that leave the total free-energy unchanged, as depicted
in Fig. 15. The total free-energy change resulting from a virtual
displacement of the main (10) facet a distance h along the
direction normal to the facet [Fig. 15(b)] is the sum of bulk
and interface contributions given by

�f LAh + 2γBh

sin θf

− 2γAh

tan θf

= 0, (118)

where �f < 0 is the difference of free-energy density between
solid and liquid, γA ≡ γsl(0) and γB ≡ γsl(π/4) are the facet
free energies, and the second and third terms correspond to the
change of interface free-energy resulting from the lengthening
of the side (1̄1) and (11) facets and the shortening of the main
(10) facet, respectively. Similarly, the total free-energy change
resulting from the virtual displacement of the (11) facet normal
to itself [Fig. 15(b)] is given by

�f LBh + γAh

sin θf

− γBh

tan θf

+
(
γ 0

sv − γ 0
lv sin ψ

)
h

sin
(

π
2 − θf

) − γBh

tan
(

π
2 − θf

) = 0 (119)

and contains contributions from the changes of length of the
(10) and (11) facets as well as the solid-vapor and liquid-vapor
interfaces. The virtual displacement of the right triple point
[Fig. 15(c)] yields in turn

−γ 0
svh sin θf + γBh − h cos(θf + ψ)γ 0

lv = 0. (120)

Eliminating �f between Eqs. (118) and (119) yields the
prediction of the ratio of facet length

LB

LA

= γA cos θf − γB + (
γ 0

sv − γ 0
lv sin ψ

)
sin θf

2 cos θf (γB − γA cos θf )
(121)

with

ψ = cos−1

(
γB − γ 0

sv sin θf

γ 0
sv

)
− θf , (122)

obtained from Eq. (120). For the parameters of the simulations
γA = γB = γ 0

sl , γ 0
sl/γ

0
lv = 0.8, γ 0

sv/γ
0
lv = 1.2, and θf = π/4,

Eq. (122) predicts ψ ≈ 0.826, which is close to the value
ψ ≈ 0.832 predicted by the rounded-cusp approximation with
ε = 0.01. In addition, Eq. (121) predicts LB/LA ≈ 0.285 that
agrees well quantitatively with both phase-field simulations
and sharp interface theory with the rounded cusp approxima-
tion.

Finally, the method of virtual displacement can also be used
to derive analogous analytical expressions for the ratio of facet
lengths and ψ for an equilibrium droplet on a substrate, with
ψ defined in Fig. 15(d). The calculation is straightforward and
we only give here the final results,

LB

LA

= γA + γ 0
lv cos ψ − γ 0

sv

2(γB − γA cos θf )
(123)

with

ψ = cos−1

(
γ 0

sv cos θf − γB

γ 0
lv

)
− θf . (124)

VI. DISCUSSION AND CONCLUSIONS

In summary, we have developed a multiphase-field model to
describe quantitatively NW growth by the vapor-liquid-solid
(VLS) process. This model uses a free-energy landscape sim-
ilar to the one used previously to model eutectic solidification
[40] and introduces several new features to adapt this model to
the VLS system:

(1) The change of catalyst droplet volume, which is as-
sociated with the change of concentration of growth atoms
inside the droplet, is described using a Lagrange multiplier,
in addition to the Lagrange multiplier commonly used to
constrain the sum of the phase fields to unity.

(2) The physically relevant limit of rapid equilibration of
the liquid catalyst to a droplet shape of constant mean curvature
on the characteristic time scale of NW growth is achieved
by choosing the liquid-vapor interface mobility to be much
larger than the solid-liquid interface mobility. In this limit, the
Lagrange multiplier used to constrain the volume of the catalyst
reduces to the Laplace pressure inside the droplet, thereby
providing a thermodynamically consistent description of the
VLS system without the computational burden of treating the
catalyst as a real fluid.

(3) The driving force for growth is incorporated by adding
a nonvariational term localized at the solid-liquid interface to
the evolution equation for the solid and liquid phase fields,
which is equivalent to lowering the free energy of the solid
with respect to the liquid on this binary interface.

(4) Anisotropy of the excess interfacial free energy is
introduced by making the free-energy barrier height between
two phases dependent on interface orientation.

We have presented a detailed asymptotic analysis of the
model in the limit where the interface thickness is much smaller
than the NW radius and shown that phase-field equations
reduce in this limit to a previously proposed sharp-interface
model of NW growth by Schwarz and Tersoff [19]. The
simulations reproduce the complex evolution of the interfaces
from a droplet on a substrate to steady-state NW growth normal
to the substrate with tapering of the side walls. Furthermore, the
model can describe different experimentally observed growth
regimes including the regime where the growth rate is limited
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by the solid-liquid interface kinetics, in which case the growth
rate depends on the NW radius, and the opposite regime where
the growth rate is limited by the incorporation rate of growth
atoms at the catalyst surface, in which case the growth rate is
independent of radius.

With the incorporation of an anisotropic solid-liquid γ

plot that contains faceted interfaces, the model can also
reproduce the characteristic solid-liquid interface NW tip
shape consisting of a main facet intersected by two truncated
side facets ending at triple points, as well as more complex
growth behaviors including NW kinking and crawling. Finally,
we have developed a sharp-interface theory to predict the
length of the main facet and truncated facet and shown
that the predictions are in good agreement with phase-field
simulations.

One limitation of the present phase-field model is that,
like the sharp-interface ST model [19], it assumes a simple
linear relationship [Eq. (3)] between the solid-liquid inter-
face velocity vn and the thermodynamic driving force for
crystallization �μcryst ≡ μl − μs , which is controlled by the
supersaturation of growth atoms inside the liquid catalyst.
While such a linear growth law is generally thought to describe
well the growth of atomically rough interfaces, the velocity is
expected to depend nonlinearly on driving force when facet
growth is limited by the nucleation of new terraces [52]. When
the facet is spatially extended, classical nucleation theory
predicts that vn ∼ exp(−C/�μcryst), where C is a constant
related to the excess step free-energy [52]. However, when the
main growth facet is connected to rough interfaces, the NW
growth rate is both theoretically predicted and measured in MD
simulations of pure Si crystallization to be linear with driving
force in the limit of small driving force, albeit with a radius-
dependent interface mobility [28]. The fundamental reason for
this difference is that, in a NW geometry, growth is controlled
by the competition of two thermally activated processes cor-
responding to nucleation of a new terrace and shrinkage of
an existing terrace [28], which exactly balance each other in
the quasiequilibrium configuration where the NW growth rate
vanishes. We also expect the NW growth rate to vary linearly
with driving force in the limit of small driving force when
the main growth facet is terminated by truncated side facets,
and growth is similarly controlled by the balance of terrace
nucleation and shrinkage. In an MD study of NW growth in the
Au-Si system [29], the growth rate of the main facet was found
to vary nonlinearly with driving force while the growth rate
of the truncated facets was found to vary linearly with driving
force. Those simulations, however, were performed for growth
rates of the order of mm/s to cm/s, which are several orders of
magnitude larger than typical experimental growth rates of the
order of nm/s. Hence, they do not access the small driving
force limit where terrace nucleation and shrinkage occurs
numerous times on the characteristic time scale of growth
of one layer, and the rates of those processes almost balance
each other. While the NW growth rate has been extensively
measured experimentally under varied conditions, the droplet
supersaturation is hard to access. Hence, it is generally difficult
to infer the velocity-supersaturation relation experimentally.
Periodic variations of truncated facet size have been sug-
gested to originate from periodic changes of supersaturation
resulting from different kinetic growth laws for the main and

truncated facets [31], but such oscillations are not always
observed.

While the ST model and the present phase-field model
can produce a NW growth rate that varies linearly with
driving force, those models may not quantitatively predict
the dependence of the NW growth rate on NW radius since
an explicit description of terrace nucleation and shrinkage
is required to capture a radius-dependent interface mobility
[28]. This constitutes a potential limitation of those models
to describe the regime where the NW growth rate is limited
by the kinetics of the solid-liquid interface. However, we
expect the use of a linear growth law [Eq. (3)] to be adequate
to model the opposite regime where the NW growth rate is
limited by the incorporation of growth atoms at the catalyst
surface. In this regime, the growth rate is independent of
radius as experimentally observed in the Au-Si system [5] and
reproduced by the present phase-field simulations that describe
this regime (Fig. 11). Furthermore, in this regime, the solid-
liquid interface is expected to adopt a faceted shape that can
be predicted by assuming local thermodynamic equilibrium
at the interface (negligible effect of interface kinetics), as
suggested by the very good agreement of main and truncated
facet sizes predicted by SI theory and measured in phase-field
simulations when growth is limited by the flux of growth
atoms at the catalyst surface. This NW growth regime is
analogous to the slow growth regime of faceted dendritic
solidification, which has been experimentally studied [53]
and quantitatively modeled by sharp-interface [54–56] and
phase-field [41] models in the limit of local equilibrium at
the solid-liquid interface where the facet kinetic growth law
does not influence the growth rate and interface shape.

In summary, the present phase-field model is expected to
describe reasonably well NW growth in the limit where the
NW growth rate is limited by the incorporation rate of growth
atoms at the catalyst surface and the solid-liquid interface can
be assumed to be in quasilocal thermodynamic equilibrium.
However, future extensions of the model to incorporate differ-
ent kinetic growth laws on the main and truncated facets may
be necessary to describe more complex phenomena, such as an
oscillatory behavior of the truncated facet size [31]. In addition,
while the simulations presented in this paper were restricted
to two dimensions, the present PF model can be readily
implemented in three dimensions to carry out a quantitative
comparison with experimentally observed NW growth shapes.
Three-dimensional simulation results in the Si-Au VLS system
will be presented elsewhere. Another interesting prospect is
to extend the proposed theoretical description of faceted NW
growth shape to three dimensions.
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APPENDIX A: DERIVATION OF THE LAGRANGE
MULTIPLIER CONTROLLING THE CATALYST VOLUME

In this PF NW growth model, the catalyst size constraint is
incorporated by adding a Lagrange multiplier λA to the original
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free-energy functional F

F̃ = F − λAh

[∫
gl( �φ)dv − A(t)

]
, (A1)

where A is the droplet volume at time t and gl is a function given
in the main text that varies smoothly between 1 in the liquid
and 0 in other phases such that

∫
gl( �φ)dv measures the total

droplet volume. Minimization of F̃ with respect to φ gives a
configuration where the total catalyst volume (measured by the
integral of gl) is constrained to be A(t). The evolution equation
derived from F̃ is

τ
∂φi

∂t
= −K̄( �φ)h−1

(
δ̂F

δ̂φi

− λAh
∂gl

∂φi

)
, (A2)

where the modified functional derivative δ̂F

δ̂φi
are defined by

Eqs. (16) to (18). The other constraint
∑3

i=1 φi = 1 can be
included by adding a summation term to the equation of motion
[40]

τ
∂φi

∂t
= −K( �φ)h−1

⎛
⎝ δ̂F̃

δ̂φi

− 1

3

3∑
j=1

δ̂F̃

δ̂φj

⎞
⎠. (A3)

A given droplet volume evolution

dA

dt
= d

dt

∫
gl( �φ)dv = Ȧ (A4)

can be written as

∫
∂gl( �φ)

∂t
dv =

∫ 2∑
i=1

(
∂g̃l

∂φi

∂φi

∂t

)
dv (A5)

by moving the time derivative inside the integral. Since
the phase fraction condition

∑3
i=1 φi = 1 is enforced in the

dynamics, gl is replaced by g̃l that depends only on two phase
fields. Using ∂φi/∂t in Eq. (A3), one can rewrite Eq. (A5) as

Ȧτ = −
∫

Kh−1

⎧⎨
⎩

2∑
i=1

δ̂F

δ̂φi

∂g̃l

∂φi

− 1

3

2∑
i=1

∂g̃l

∂φi

3∑
j=1

δ̂F

δ̂φj

−λAh

⎡
⎣ 2∑

i=1

(
∂g̃l

∂φi

)2

− 1

3

(
2∑

i=1

∂g̃l

∂φi

)2
⎤
⎦
⎫⎬
⎭dv, (A6)

where gl in F̃ is also replaced by g̃l . Solving for λA using
Eq. (A6) gives

λA = I1 − I2 + Ȧτ

I3 − I4
, (A7)

with

I1 =
∫

Kh−1
2∑

i=1

δ̂F

δ̂φi

∂g̃l

∂φi

dv, (A8)

I2 = 1

3

∫
Kh−1

2∑
i=1

∂g̃l

∂φi

3∑
j=1

δ̂F

δ̂φj

dv, (A9)

I3 =
∫

K

2∑
i=1

(
∂g̃l

∂φi

)2

dv, (A10)

I4 = 1

3

∫
K

(
2∑

i=1

∂g̃l

∂φi

)2

dv. (A11)

APPENDIX B: SHARP-INTERFACE LIMIT FOR AN
ISOLATED DROPLET WITH VOLUME CONSTRAINT

The sharp-interface limit of a single order parameter
PF model with a volume-controlling Lagrange multiplier is
worked out in this section. This case corresponds physically
to an isolated liquid droplet inside the vapor phase. The
main purpose of this appendix is to understand the role
of this Lagrange multiplier λA in this simpler setting. The
same formulation is used to control the catalyst size in our
multiphase-field VLS NW growth model. The sharp-interface
limit of this model is examined in Sec. IV using results derived
in this Appendix.

The free energy is given by

F1 =
∫

h

[
W 2

2
|∇φ|2 + f (φ)

]
dv, (B1)

with f (φ) being a double-well potential which has two minima
at φ = 0 and φ = 1 corresponding to the vapor and liquid
phases, respectively. The evolution equation for the phase field
φ is

τ
∂φ

∂t
= −K1(φ)h−1

(
δF1

δφ
− λA

∂g

∂φ

)
, (B2)

whereg is a smooth tilt function (similar togl in the multiphase-
field model) that varies smoothly between 0 and 1, K1(φ) is the
dimensionless mobility (similar toK( �φ) in the multiphase-field
model), and

λA =
∫

K1(φ)h−1 δF1
δφ

∂g

∂φ
dv + Ȧτ∫

K1
(

∂g

∂φ

)2
dv

(B3)

is a volume-controlling Lagrange multiplier, which is derived
using the approach outlined in Appendix A. Using Eqs. (B1)
and (B2) becomes

τ
∂φ

∂t
= K1

[
W 2∇2φ − ∂f

∂φ
+ λA

∂g

∂φ

]
. (B4)

To get the corresponding sharp-interface limit of Eq. (B4),
a sharp-interface analysis is carried out in the following.
Unlike the method used in the sharp-interface expansion of PF
solidification models where both outer and inner expansions
are performed [38,43], only an inner expansion on the scale
of the interface thickness is needed here since the interface
dynamics is not controlled by a long-range diffusion field.

In order to characterize the motion of the interface, we
define the local curvilinear coordinate system (r,s), where
r(x,y,t) and s(x,y,t) measure the position along a direction
r̂ normal to the interface (where r̂ points to the φ = 0 phase)
and along a direction t̂ parallel to constant φ contours (along
the interface) in a frame moving at the normal velocity of the
interface. In this coordinate system, the ∇2φ term in Eq. (B4)

033402-19



NAN WANG, MONEESH UPMANYU, AND ALAIN KARMA PHYSICAL REVIEW MATERIALS 2, 033402 (2018)

reduces to

∇2φ = ∂2φ

∂r2
+ κ

∂φ

∂r
+ (∇s)2 ∂2φ

∂s2
+ ∇2s

∂φ

∂s
, (B5)

where ∇2r = κ and |∇r| = 1 are used in derivation. Since
(r,s) are defined in a moving frame, the time derivative ∂φ/∂t

in Eq. (B4) is replaced by

∂φ

∂t
→ ∂φ

∂t
+ ∂r

∂t

∂φ

∂r
+ ∂s

∂t

∂φ

∂s
. (B6)

To study the motion of φ in the sharp-interface limit, a
mesoscopic length lc is introduced such that the interface
thickness W is small comparing with lc or p = W/lc → 0.
Rescaling Eq. (B4) with length scale lc and time scale l2

c /D

(where D has the dimension of interface mobility M times the
surface energy γ ), we obtain

αp2 ∂φ

∂t
= p2∇2φ − ∂f

∂φ
+ λA

∂g

∂φ
, (B7)

where α = τD/(W 2K1). Using Eqs. (B5) and (B6), Eq. (B7)
becomes

αp2

(
∂φ

∂t
− ∂φ

∂r
v + ∂φ

∂s

∂s

∂t

)

= p2

[
∂2φ

∂r2
+ κ0 ∂φ

∂r
+ (∇s)2 ∂2φ

∂s2
+ ∇2s

∂φ

∂s

]

− ∂f

∂φ
+ λA

∂g

∂φ
, (B8)

where v = −∂r/∂t and κ0 = κlc is the scaled curvature. Next,
a stretched variable z = r/p is introduced such that it maps the
interface region into (−∞,+∞) in z. Using this new variable
z, Eq. (B8) becomes

αp2

(
∂φ

∂t
− 1

p

∂φ

∂z
v + ∂φ

∂s

∂s

∂t

)

= p2

[
1

p2

∂2φ

∂z2
+ κ0 1

p

∂φ

∂z
+ (∇s)2 ∂2φ

∂s2
+ ∇2s

∂φ

∂s

]

− ∂f

∂φ
+ λA

∂g

∂φ
. (B9)

Keeping only O(p) terms, Eq. (B9) is reduced to

−αpφzv = φzz + pκ0φz − q(φ) + λA

∂g

∂φ
, (B10)

where φz and φzz are the first and the second derivatives of φ

with respect to z, and q(φ) = ∂f/∂φ. All s related terms are
dropped since they are all of O(p2). The phase field φ can also
be expanded in the small parameter p

φ = φ0 + pφ1 + p2φ2 + · · · . (B11)

With this expansion, Eq. (B10) is further reduced to

−αpφ0
z v = φ0

zz + pφ1
zz + pκ0φ0

z − q(φ0) − q ′(φ0)pφ1

+ λAg′(φ0), (B12)

where q ′ and g′ denote the derivatives of q and g with respect
to φ, respectively. Since the interface velocity v only appears
in the O(p) term on the left-hand side of Eq. (B12), stationary
interface properties of the model are given by O(1) terms in
Eq. (B12). Since, furthermore, the Lagrange multiplier λA

is used to control liquid volume in dynamics, it should only
appear at the same (or higher) order of the interface velocity,
i.e., λA = pλ1

A + O(p2). To O(1), Eq. (B12) becomes

φ0
zz − q(φ0) = 0, (B13)

where f = φ2(1 − φ)2 gives q(φ) = 2φ(1 − φ)(1 − 2φ). So-
lution of Eq. (B13) gives the stationary phase boundary
profile

φ0(z) = 1

2

[
1 − tanh

(
z√
2

)]
. (B14)

To O(p), Eq. (B12) is

−(αv + κ0)φ0
z − λ1

Ag′(φ0) = φ1
zz − q ′(φ0)φ1. (B15)

When we define a linear operator

L ≡ ∂2

∂z2
− q ′(φ0), (B16)

Eq. (B15) can be rewritten as

Lφ1 = −(αv + κ0)φ0
z − λ1

Ag′(φ0). (B17)

Equation (B13) implies that φ0
z is a zero mode of the linear

operator L (eigenfunction with zero eigenvalue) since

Lφ0
z = φ0

zzz − q ′(φ0)φ0
z = 0. (B18)

Furthermore, since L is self-adjoint, the right-hand side of
Eq. (B17) must be orthogonal to the null space of L for a
nontrivial solution of Eq. (B17) to exist, which yields the
standard solvability condition

∫ +∞

−∞
φ0

z

[−(αv + κ0)φ0
z − λ1

Ag′(φ0)
]
dz = 0, (B19)

which can be further simplified to

v = −κ0γ 0 + λ1
A

Q
, (B20)

with γ 0 = ∫ +∞
−∞ (φ0

z )2dz and Q = ∫ +∞
−∞ α(φ0

z )2dz. By replac-
ing v and κ0 with their unscaled dimensional form v =
V lc/D, κ0 = lcκ , and using the dimensional surface energy
γ = Whγ 0, Eq. (B20) becomes

V = M(−κγ + λAh), (B21)

with mobility

M = W

τh

1∫ +∞
−∞

(
φ0

z

)2
K−1

1 dz
. (B22)

Up to now, the sharp interface expression of λA is still
unknown. Using the volume control condition [Eq. (A4)]
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with gl( �φ) replaced by g(φ) and the coordinate transform in
Eq. (B6), we have∫

g′
(

∂φ

∂t
− V

∂φ

∂r
+ ∂φ

∂s

∂s

∂t

)
dsdr = Ȧ, (B23)

where the volume integral has been replaced by

dv → dsdr, (B24)

with elements of arc length and radial coordinates ds and
dr , respectively. It is important to note that the dimensional
velocity V is used here since time and space are not rescaled.
With the stretched coordinate transform z = r/p, keeping only
the leading-order terms on the left-hand side gives

−
∫

g′φzV dsdz = Ȧ. (B25)

Replacing V with Eq. (B21), the Lagrange multiplier is then

λAh = Ȧ

MS
+ γ

∫
κds

S
, (B26)

where S = ∫
ds is the length of the interface. Using Eq. (B26),

Eq. (B21) becomes

V = M

(
−κγ + γ

∫
κds

S

)
+ Ȧ

S
, (B27)

which is the droplet evolution, Eq. (55).

APPENDIX C: INCORPORATION OF ANISOTROPIC
SOLID-LIQUID INTERFACIAL FREE-ENERGY

AND FACETS

We consider a solid-liquid γ plot of the form energy
function

γsl(θ ) = γ 0[1 + δa| sin 2θ | + δb| cos 2θ |], (C1)

where θ is the angle of the interface normal direction with
respect to a reference crystal axis. According to the Wulff
construction, this γ plot yields an equilibrium crystal shape
with two sets of (10) and (11) facets at that are shown in the
left of Fig. 14.

To incorporate the interface free-energy anisotropy in
Eq. (C1) into the multiphase-field model, we treat ai in Eq. (29)
as an orientation-dependent parameter ai(θ ), where θ is the
interface orientation angle. Since there are two PF variables
(φj and φk) involved at a binary interface in this model, the
interface orientation can be expressed using either

sin θj = −∂yφj/|∇φj | (C2)

or

sin θk = −∂yφk/|∇φk|. (C3)

Since the barrier term f i
a is symmetric under the exchange of

φj and φk , the same property should hold for ai(θ ). A simple
choice is then

ai(θ ) = [
1
2ai(θj ) + 1

2ai(θk)
]
, (C4)

which averages the contribution from both φj and φk . From
here, the functional derivative is given by

1

h

δF

δφi

= ∂f i
d

∂φi

− W 2∇2φi +
3∑

l=1

[
al

∂f l
a

∂φi

+ bl

∂fb

∂φi

+ ∂

∂x

(
φi,y

|∇φi |2 f l
aal,i

)
− ∂

∂y

(
φi,x

|∇φi |2 f l
aal,i

)]
,

(C5)

where we have defined

al,i = 1

2

∂al(θi)

∂θi

, φi,x = ∂φi

∂x
. (C6)

In the numerical implementation, the orientation-dependent
terms are only calculated in the interface region that is defined
by |∇φi | < εi where εi is a small cutoff.

In general, ai(θ ) needs to be computed to quantitatively re-
produce a prescribed form of interface free-energy anisotropy.
For this, we start from the relation between ai(θ ) and γjk(θ )
given by

γjk(θ )

Wh
≡ γ̃jk = 2

√
2
∫ 1

0
p(1 − p)

√
1 + ai(θ )p(1 − p)dp,

(C7)
which can be reduced to

γ̃jk

= 2
√

2
2
√

ai(4 + 3ai) + (4 + ai)(3ai − 4) cot−1(2/
√

ai)

64a
3/2
i

,

(C8)

by carrying out the integral. Equation (C8) is a transcendental
equation and cannot be inverted analytically to find ai as a
function of γ̃jk . However, a plot of ai versus γ̃jk using Eq. (C8)
shows that the inverse function ai(γ̃jk) is very accurately fitted
over a wide range of ai up to 100 by a simple quadratic

-2

 0

 2

 4

 6

 0.8  1  1.2  1.4

a i

γ/γlv

original

inversion

FIG. 16. Comparison of free-energy barrier height parameter ai

vs dimensionless interface energy γ /γlv computed using the inversion
formula Eq. (C9) (green line), which predicts ai as a function of γ /γlv ,
and Eq. (C8) (red square), which predicts γ /γlv as a function of ai .
The inversion formula can be used to choose ai in the PF model to
reproduce an arbitrary form of interface energy anisotropy.
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γ/
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θ

FIG. 17. Regularization of the γ plot near a cusp with δa = δb =√
2/6 and ε = 0.01. The solid line is the original γ plot given by

Eq. (C1). The dashed line is the regularized γ plot given by Eq. (C10).

polynomial,

ai = B0 + B1γ̃jk + B2γ̃
2
jk, (C9)

with B0 = −4.86349, B1 = −0.693313, and B2 = 23.3564.
For the γ range we used in this work, accuracy of the quadratic
inversion formula is shown in Fig. 16.

The anisotropic surface energy in Eq. (C1) also needs to be
regularized since dγ /dθ becomes infinite at a sharp cusp. A
simple regularized form is

γ (θ ) = γ 0[1 + δa

√
sin2 2θ + ε2 + δb

√
cos2 2θ + ε2],

(C10)

which is compared to the form of γ with sharp cusps in Fig. 17.
The regularization parameter ε = 0.01 and interface cutoff
Wεi = 10−5 are used in all the numerical simulations with
the anisotropic model.
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