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A stochastic cumulant GW method is presented, allowing us to map the evolution of photoemission spectra,
quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with
up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise
due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral
weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to
lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their
sizes and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of
the collective excitation and position of the satellites.
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Recent developments in Green’s function (GF) techniques
have allowed for the description of charge excitations, i.e.,
quasiparticles (QPs) [1,2], in the bulk over a wide range of
QP energies. Band edge excitations are well described by the
so-called G0W0 approximation [3–5], whereas at higher QP
energies corrections are required to account for charge-density
fluctuations and hole-plasmon coupling [5–8]. Photoemission
experiments on solids reveal significant QP lifetime shortening
and coupling to other collective excitations, manifested by
satellite structures in the photoemission spectra [6,9,10]. The
satellite structure and the QP lifetime shortening is often
captured by the cumulant expansion (CE) ansatz to G0W0

[6–8,10–14].
In confined systems, the QP spectrum near the band edge

is governed by the quantum confinement of electrons and
holes. Higher-energy satellite excitations are attributed to
simultaneous ionization and excitation of the valence electrons
(“shake-up” excitations) [13,15–18]. Transition and differ-
ences between the satellite spectral features of molecules
and nanostructures with shake-up signatures and bulk with
collective plasmon resonances have been difficult to assess as
they require many-body treatment of systems with hundreds
and thousands of electrons. In fact, the quantum confinement
effect on the satellite transitions has received little attention if
any.

In this Rapid Communication, we address this challenge by
combining the well-known CE ansatz [5,7–9,11,19,20] with
the recent stochastic GW approach (sGW [21,22]) to obtain
a nearly linear-scaling algorithm that reveals the changes in
the QP spectra from a single molecule to covalently bonded
nanocrystals (NCs) of unprecedented size (here up to 5288
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valence electrons). The formalism is presented and assessed for
the two size extremes (molecules and large bulklike systems),
followed by the study of the effects of quantum confinement
on the satellite structure in silicon NCs of different sizes
and shapes. In small NCs the satellite features are affected
by the changes in the plasmon energy. For large NCs, we
find observable quantum confinement effects on the satellite
features below the exciton Bohr radius where the position of
the satellite peak and the QP lifetime show small dependence
on the size of the system.

The central theoretical quantity for quasiparticles is the
spectral function, which in the sudden approximation is di-
rectly linked to the photoemission current [5,23,24]. The
spectral function of the ith QP state is Ai(ω) = 1

π
Im Gi(ω)

where the GF fulfills the Dyson equation Gi(ω) = G
(0)
i (ω) +

G
(0)
i (ω)�i(ω)G(0)

i (ω) + · · · , where G
(0)
i (ω) is the noninteract-

ing GF and �i is the self-energy. All the quantities are nonlocal
in space, and all the higher terms in the equation represent
a convolution integral, but for brevity we omit the spatial
dependence in the notation.

As usual, the noninteracting system is described by the
Kohn-Sham (KS) density functional theory (DFT) [25,26] (see
the details in Ref. [27]) with Troullier-Martins pseudopoten-
tials. The sGW approach is detailed in Refs. [21,22]). The self-
energy is then given in the diagonal G0W0 approximation as
[3]: �̃i(t) = i〈φi |G̃(0)

i (t)W̃ (t+)|φi〉, where t+ is infinitesimally
after t, φi is the KS eigenstate, W (ω) = ε−1(ω)vc, vc is the
Coulomb kernel, and ε−1(ω) is the inverse dielectric function.
Quantities in frequency and time domains (e.g., G and G̃) are
simply related by their Fourier transforms. From the calculated
�i(ω) the G0W0 spectral function is given by

AGW
i (ω) = 1

π

|Im �i(ω)|
[ω − εi − Re �i(ω) + vXC]2 + [Im �i(ω)]2

,

(1)
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where εi is the KS eigenstate energy and vXC is the expectation
value of the mean-field exchange-correlation potential. AGW

i

has peaks at the quasiparticle energies ε
qp

i that fulfill the fixed-
point equation,

ε
qp

i = εi + Re �i

(
ω = ε

qp

i

) − vXC. (2)

In this GW approximation, the inverse lifetime of the QP is
given by Im � at the peak. However, the actual plasmon-hole
coupled excitations are not in general represented by the
isolated poles in Eq. (1), and AGW (ω) thus does not yield a
proper description of satellite structures. In addition, spurious
secondary peaks arise if Eq. (2) has multiple solutions [6,7,20].

The CE formulation is required to account for the effect of
hole-plasmon coupling. For the ith occupied state, the GF in
the CE ansatz reads [5,9,19]

G̃i(t) = −ieiεi t eCi (t)θ (−t) = −ieiεi t+C
qp

i (t)eCs
i (t)θ (−t), (3)

where Ci is the cumulant, obtained from the Dyson series
expansion. Furthermore, following Ref. [6] the cumulant
contribution is separated into two components. The first is a
QP cumulant C

qp

i , derived explicitly in Ref. [6] and associated
with a portion of the spectral function describing the main QP
peak,

A
qp

i (ω) = Zi

π

∣∣Im �
(
ε

qp

i

)∣∣
(
ω − ε

qp

i

)2 + [
Im �

(
ε

qp

i

)]2 , (4)

where the renormalization factor due to redistribution of the
spectral weight into the satellite peaks is Zi = eαi with αi =
∂�(ω)

∂ω
|
ω=εi

. The lifetime of the QP is 1/|Im �(εqp

i )|.
By itself, A

qp

i (ω) does not include any satellite
contributions—it is a single Lorentzian-shaped peak around
the QP energy. The satellite peaks stem from resonances
identified as poles in W (ω) [i.e., zeros of ε(ω)] and appear as
strong maxima in the imaginary part of the self-energy; they
are introduced by eCs

i (t) [Eq. (3)] that derives from the spectral
representation of �P [6,9,19],

Cs
i (t) = 1

π
lim
η→0

∫ μ

−∞

Im �P (ω)e−i(ω−εi+iη)t

(ω − εi + iη)2
dω. (5)

We solve for Cs
i (t) within the stochastic framework using �P ,

which is obtained from the stochastic G0W0 calculation in the
time domain. This is distinct from the previous calculations
that either employed time-dependent DFT for core electrons
[28] or employed the G0W0 approximation for the cumulant
in the frequency domain. Due to computational cost, the latter
is limited to small periodic systems, and Cs

i (t) was in many
cases further approximated by a single excitation pole in �P .
Here, the self-energy is obtained in a high-frequency resolution
(<0.01Eh) on a wide range of frequencies ±60Eh; no further
approximation is introduced.

The computed satellite cumulant Cs
i (t) is inserted into

Eq. (3), which is Fourier transformed to yield Gi(ω) and
thereby Ai(ω) = Im[Gi(ω)] [29].

We next verify our approach using a large NC Si705H300, that
is close to the bulk limit. Figure 1 shows the spectral function

FIG. 1. Top: Spectral function for the bottom valence-band (VB)
Ab(ω) for a bulk solid from Ref. [10] and for the Si705H300 NC. The
G0W0 + cumulant spectral function (red) has an asymmetric satellite
peak at the maximum of Im �(ω). The G0W0 prediction (black) has an
artificial second maximum at low energies due to a spurious additional
solution of Eq. (2). The inset plots the structure of the nanocrystal and
orbital density isosurface (red; Si and H are the blue and white circles).
Bottom: Graphical solutions to the QP equation, marked with red
circles, are found at the intersection of the red curve [ε + Re �(ω) −
v̄XC] with the diagonal ω line.

of the bottom of the valence band (VB—denoted AGW
b ) with

a pronounced QP peak at −17.5 eV. If a cumulant expansion
is not used, AGW

b shows an additional maximum at −39.8 eV.
This is in excellent agreement with previous GW calculations
for bulk systems but is not observed experimentally and
is attributed to spurious secondary solutions to Eq. (2) [6–
8,10,11].

With the cumulant GW [Eq. (3)] the spectrum changes
drastically, and an additional peak is obtained at −32.3 eV
in excellent agreement with a result for bulk Si [10]. This peak
is physically meaningful as it corresponds to the maximum of
Im �(ω) associated with a collective excitation of the valence
electrons (plasmon). The appearance of the satellite structure
is accompanied by a reduction of the intensity of the main QP
peak so that the renormalization factor is Z = 0.61, i.e., 39%
of the intensity is transferred to the satellites. The additional
shoulder in the satellite peak is due to the difference between
the effective masses of the QP and the plasmon [12]. The
pronounced transfer of the spectral weight to the plasmon
satellite for the bottom valence excitations is a consequence of
their high energy and spatial extent (leading to large overlaps
with other states). An isosurface of the bottom valence orbital
of Si705H300 indeed exhibits spherical symmetry and lacks
nodal planes as seen from the inset in Fig. 1.
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FIG. 2. Spectral functions (the red line) from stochastic G0W0 +
CE for C2H2, PH3, and NH3. The spectral weight loss from the bottom
valence state to the satellites is shown above the peak. Symmetry-
adapted-cluster configuration-interaction (SAC-CI) [30,31] results
are shown by the vertical black lines with height proportional to
the relative intensities; the colored areas refer to the experimental
photoemission spectra for two relative azimuthal angles [31,32].

To further test our approach on finite systems, we applied
(Fig. 2) the stochastic G0W0 approximation with CE to a series
of small molecules for which experimental photoemission
spectra are available. The results in Fig. 2 were further scaled
so that the bottom valence state peak has the same intensity as
the G0W0 + CE curve. The G0W0 + CE description relies on
the concept of a plasmon associated with charge excitations in
extended systems. Yet, Eq. (5) is applicable to small systems
and yields good results. The stochastic GW with damped
real-time propagation of the exited state [21,22] is in quali-
tative agreement with experiment and with high level SAC-CI
calculations, computationally feasible for small molecules
[33]. We note that:

(i) The QP energies at the top valence band are captured
well by G0W0. This is the energy region where DFT is a
good starting point. But G0W0 fails to reproduce the bottom
VB where it underestimates the position of the peaks by a
significant amount of 2 eV. For these states, DFT is not a
good starting point, and the “single-shot” G0W0 procedure is
inaccurate.

(ii) Most importantly, the G0W0 + CE description captures
the satellite overall decay although without the fine-structure
peaks in the satellite region. The pronounced satellite spectral
weight comes at the expense of the QP peaks which transfer up
to 51% of their intensity to the satellite tails. The broadening of
the satellite peaks observed in G0W0 + CE is a consequence of
an intrinsic decay of the density-density correlation function
in time (τ ). The peak width is independent of the maximal
time used to simulate the screening (varied between 1 and

FIG. 3. Spectral functions for silicon nanocrystals, a platelet
(middle panel: red) and a silane molecule. Satellite contributions to the
spectral function are shown by a blue shaded area. Spectral functions
are divided by the number of electrons Ne.

24 fs without affecting the lifetime). An infinite propagation
time would result in the presence of many sharp poles due
to recurrences in the correlation function. As clearly can be
seen in Fig. 2, finite τ yields a photoelectron spectrum in good
agreement with experiment, likely due to other mechanisms
suppressing the recurrences in photoelectron spectroscopy.

Furthermore, the G0W0 + CE spectral function has maxima
that are shifted with respect to the G0W0 QP energies. The
shift is large for the bottom VB; e.g., for NH3 the G0W0

peak is at −25.0 eV, whereas the G0W0 + CE maximum is
at −25.7 eV. The 0.7-eV difference is significant as it is 17%
of the GW correction to the LDA energy (−20.8 eV). Thus,
the usual practice where G0W0 results are directly compared to
the photoionization experiment is problematic, especially for
low-energy states as it does not include the coupling of these
states to the shake-up excitations.

In the next main part of this Rapid Communication we
investigate the evolution of the spectral function with system
size; the results for a series of Si NCs are shown in Fig. 3.
All NCs exhibit a discrete and narrow spectrum near the top
of the VB. Due to the quantum confinement effect, the top
of the VB shifts to higher energies with increasing size; the
highest occupied state has energies of −8.1 and −6.4 eV
for Si35H36 and for Si1201H484, respectively. For deeper hole
excitations, the sharp features merge into a semicontinuous
spectral response with significant lifetime shortening. This is
accompanied by significant spectral weight transfer (∼50%)
to the satellites. The bottom of the VB depends weakly on the
system size, spanning an energy between −17.3 and −17.7 eV
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FIG. 4. Results for the bottom VB of Si nanocrystals of different
sizes: The upper lines (above E = 0) show the imaginary part of the
self-energy. The lower curves below E = 0 give the shifted real part
of the self-energy and represent the graphical solution to Eq. (2) (the
QP energy is the intersection with the frequency line in black). The
average energy of the plasmon resonance (ωp) is shown in the inset
with error bars indicating a dispersion of the values between bottom
and top valence states; the experimental value of the bulk plasmon
(Ref. [35]) is indicated by a black horizontal line.

for the range of NCs studied. The QP peak also overlaps with
the emerging satellite, which is already well developed into
its bulk shape for Si35H36 and found in the range typical for
bulk silicon [7]. This result is rather surprising since both the
QP spectrum near the band edge and the plasmonic excitations
are sensitive to the system size. We further observe that the
dimensionality does not strongly affect the main QP peaks:
The silicon platelet has ∼60% of the Si atoms on the surface,
yet its spectral function is similar to the NCs.

On closer inspection, we observe that the satellite maximum
exhibits nonmonotonic shifts: First it shows a strong decrease
in energy for systems from Si35H36 to Si705H300 (from −22.5 to
−26.1 eV, respectively), which is followed by a slight move
back to higher energies by 0.6 eV. The initial regime stems
from the decrease in the plasmon resonance frequency (ωp)
discussed below in detail. Once ωp converges, the satellite
maximum follows the changes in the QP density of states of
the valence states governed by quantum confinement, i.e., the
spectrum moves to higher energies (cf., Fig. 3).

In Fig. 4 we show Im �P (ω) together with the graphical
solution to Eq. (2) (which also depicts spurious secondary
solutions found already for Si35H36 at −36 eV). The plasmon
peak in the Im �P (ω) curve changes until the asymptotic limit
is reached; ultimately the curves for NCs with 3120 electrons
(Si705H300) and 5288 electrons (Si1201H484) have practically
identical heights, widths, and positions. The distance between
the maximum of Im �P (ω) and the QP energy corresponds to
ωp coupled to the bottom valence hole; for the largest system

ωp = 15.3 eV. Convergence of ωp with system size is shown
in the inset for the top and the bottom VBs.

Unlike in solids, the holes in finite systems couple to two
types of plasmon resonances: low-energy surface plasmons and
high-energy bulk plasmons. For small NCs, both contribute
and lead to a broad peak in Im �P (ω). The surface plas-
mon resonances also strongly contribute in low-dimensional
structures—the plasmon satellite of the platelet has a maximum
at −22.6 eV, which is almost identical to the smallest NC
(Si35H36). A similar strong shift of satellites and enhancement
of surface plasmon signatures in low-dimensional systems
were demonstrated experimentally [34]. For big systems, the
hole becomes more localized inside the NC (cf., the inset of
Fig. 1), and the coupling to the bulk plasmon dominates, lead-
ing to larger ωp’s. The distribution of the resonances becomes
narrower, and the peak in Im �P (ω) decreases in width.

To summarize, our work presents first principle theoret-
ical predictions of the photoemission spectra, quasiparticle
energies, and lifetimes covering the wide region between
molecules and bulklike systems. The calculations show that
the QP energies gradually increase with system size, and this
is accompanied by changes in the position of the satellite peaks
which correspond to a simultaneous ionization of the system
and creation of a collective (shake-up or plasmon) excitation.
The characteristic frequency of the plasmon has a narrower
energy distribution in comparison to the shake-up, but both are
similar in nature and significantly alter the spectrum at low
energies. Furthermore, we have shown that for small systems
the satellite region merges with the QP peak and shifts the
apparent photoemission peak maximum to lower energies. The
QP energies and photoemission maxima thus differ for the
systems studied by as much as 0.6 eV.

The position of the satellite region is dictated by the QP
energies and the frequency of the collective excitation. For
small and low-dimensional systems, surface and bulk plas-
mon resonances contribute to the satellites. With increasing
size the higher-energy bulk-plasmon coupling dominates. For
small and intermediate systems, the maximum of the satellite
decreases in energy and is affected by the plasmon resonance
energy. For big systems, the maximum shows a slight increase
due to changes in the main part of the QP spectrum.
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