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Assessing the anomalous superdiffusive heat transport in a single one-dimensional PEDOT chain
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We present a computational investigation on heat transport in a single polymer chain of poly-3,4-
ethylenedioxythiophene (PEDOT). By applying equilibrium and nonequilibrium molecular dynamics simulations
to evaluate the thermal conductivity, as well as by investigating how the polymer chain approaches equilibrium
upon a local thermal excitation, we provide a robust picture assessing the anomalous superdiffusive (i.e.,
intermediate between ballistic and diffusive) character of its thermal transport. This assessment is provided
by the present simulations showing that three scaling laws with unlike physical meaning and characterizing the
thermal energy transport in one-dimensional systems indeed occur in the very same polymer chain with consistent
critical exponents. In order to disentangle the effect of dimensionality, we perform a systematic comparison of
transport features for a single one-dimensional (1D) PEDOT chain and a three-dimensional (3D) PEDOT crystal.
Present simulations suggest that by increasing the dimensionality, the anomalous regime is completely removed
as due to the occurrence of strong interchains anharmonic interactions. Finally, we prove that thermal transport
in isolated single PEDOT chains belongs to a novel universality class of superdiffusion characterized by a critical

exponent 8 = 1/2.
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I. INTRODUCTION

Nonequilibrium diffusive heat transport is macroscopically
described by the Fourier law, lirlking the heat current vector J
to the applied thermal gradient VT through a phenomenologi-
cal constitutive equation as J = —« VT The thermal conduc-
tivity « is an intensive material property described by a scalar
constant in homogeneous and isotropic media. For insulating
systems the microscopic heat carriers are lattice vibrations and
the Fourier law is obeyed when the system is found close to
global equilibrium (i.e., VT is small enough) [1,2]. This state
of affairs breaks down in low-dimensional systems: many the-
oretical as well as experimental works reported an anomalous
(i.e., non-Fourier) heat conduction regime in quasi- 1D objects,
highlighting a strong dependence of thermal conductivity on
the system size. In particular, the nonintensive character of
k has been experimentally observed in 1D-like carbon and
boron-nitride nanotubes [3,4] as well as in SiGe nanowires [5],
while a similarly characterized anomalous heat conduction has
been theoretically shown to occur in 1D Fermi-Pasta-Ulam
[6] and diatomic Toda lattices [7]. Atomistic simulations as
well predict anomalous heat conduction in different 1D-like
materials, such as carbon nanotubes [8,9], silicon nanowires
[10], and polymer chains [11-14].

The search for anomalous features in heat transport is
actively ongoing since the physical background is partly
unclear. For instance, although the reduced dimensionality
is recognized to be a necessary condition for anomalous
transport, some theoretical works claimed that it is not the
only feature establishing such a regime [15,16]: normal heat
conduction (described by the ordinary Fourier law with an
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intensive « ) has been in fact observed for 1D lattices interacting
via Lennard-Jones, Morse, and Coulomb-like potentials [16],
thus making the issue still a matter of discussion.

Recently, a general picture on heat transport in 1D systems
has been presented [17], where it is discussed that anomalous
transport, if occurring, is highlighted by scaling laws, both in
time and space, characterized by interlaced critical exponents.
The synopsis of possible behaviors is as follows:

(1) The thermal conductivity k could depend on the system
length L, as

Kk o LE. D

Hereafter x will be assumed as the direction of heat transport.
Depending on the B value the following taxonomy holds
[17,18]: B =1 corresponds to a ballistic regime, where the
thermal conductivity is proportional to the length of the system;
0 < B < 1 corresponds to a superdiffusive regime character-
ized by a divergent thermal conductivity and a competition
between ballistic and normal transport; 8 = O corresponds to
a normal diffusion regime in which the system follows the
Fourier law; finally, 8 < 0 corresponds to a subdiffusive regime
with a vanishing thermal conductivity in the thermodynamic
limit. Among the systems showing superdiffusive regime, most
theoretical works agree that the actual 8 value should be lower
than 0.4 [17,19,20]. However the possible existence of a differ-
ent universality class of superdiffusion with 8 = 1/2 is largely
debated [21]. It has been proposed that such a 8 value should
occur only for even interaction potentials, i.e., symmetric with
respect to the equilibrium position. We emphasize that, up to
now, the existence of this regime has been only addressed by
considering “ideal” relatively simple model potentials (like
the Fermi-Pasta-Ulam one), while neither experiments nor
atomistic simulations using more realistic model potentials
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have been exploited to prove the existence of such a novel
universality class of transport.

(2) The time decay of the heat current autocorrelation
function (J(#)J(0)) could result to be not integrable, yielding
to a divergent value of the Green-Kubo integral and, therefore,
of the corresponding «:

Kk(t) =

t

e | oo, @
where V is the volume of the system, K is the Boltzmann
constant, T is the temperature of the system,  is the correlation
time, and the angular brackets denote ensemble averages. In
particular, it has been shown [17,20] that in an anomalous
regime the heat current autocorrelation function displays a
nonintegrable power law decay:

(J()J(0)) ot A3)

with 0 < § < 1 for t — 00. Accordingly, the thermal con-
ductivity k(¢) should diverge in time as

k(1) o 1%, “4)

with § = 8.
(3) The broadening o of a local energy perturbation could
evolve in time as [9,10]

LEi(1) = Eol(i(1) — 70)?
o’(t) = Z S RGO —E] )

where E;(t) and 7;(t) are the energy and the position of atom
i at time ¢, while ry and Ej are, respectively, the position
of an energy pulse at = 0 and the energy per atom for the
unperturbed equilibrium configuration. In the 1D case, the time
evolution of o follows the equation [17]

(1) o 1%, (6)

where 8 = « — 1. This relation describes the physical connec-
tion between energy diffusion and thermal conductivity. Thus,
in normal diffusion & = 1 and correspondingly 8 = 0, which
means that the thermal conductivity is a size-independent
constant: thermal transport is diffusive and the Fourier law
is valid. In the opposite case, i.e., in the ballistic regime, we
have o = 2, and thus 8 = 1, namely the thermal conductivity
of the system is infinite in the thermodynamic limit.

Although the outlined theoretical picture is general and
robust, we remark that we still miss a validation (either
experimental or based on atomistic simulations) that the above
threefold set of scaling laws is in fact occurring on the very
same system in the specific case of non-Fourier transport.
As a matter of fact, basically all reports on anomalous heat
transfer have been so far based on the observation of just
one among the three signatures provided by Egs. (1), (4), and
(6), respectively. Moreover, as mentioned above, none of the
previous experimental or computational works identified the
occurrence of a novel universality class within the superdiffu-
sive regime (corresponding to 8 = 1/2), whose existence have
been theoretically predicted.

This motivates our present investigation, which is addressed
to assess possible anomalous heat transport in realistic quasi-
1D systems. More specifically, our goal is threefold, namely
(i) to provide evidence of the consistent occurrence of different

scaling behaviours (i.e., scaling laws must hold and the corre-
sponding critical exponents must fulfill the predicted mutual
relationships), (ii) to investigate the role of dimensionality in
determining the actual transport regime, and (iii) investigate
the possible existence of a novel universality class within the
superdiffusive thermal transport regime.

Our investigation is based on atomistic simulations (which
allow us to set up thermal situations precisely matching the
constitutive hypotheses underlying the above scaling laws) and
addressed single polymer chains (which represent a realistic
1D system). We believe this achievement is helpful in improv-
ing our fundamental understanding of heat transport in low-
dimensional systems as well as valuable for practical appli-
cations of polymers in current nanotechnologies. We focused
in particular on poly(3,4-ethylenedioxythiophene) (PEDOT),
a prototypical conjugated polymer extensively investigated in
literature due to its tunable high electrical conductivity, air
stability, and transparency [22]. PEDOT is currently used in
its doped state as the hole injection/transport layer in organic
(opto)electronic devices. Moreover, the combination of high
electrical conductivity and low thermal conductivity makes
doped PEDOT a very promising candidate for thermoelectric
applications [23-25].

We developed a series of proof-of-concept simulations
based on equilibrium (E) and nonequilibrium (NE) classical
molecular dynamics (MD). In particular, we perform approach
to equilibrium molecular dynamics (AEMD) simulations to
investigate the thermal conductivity dependence on the chain
length as expressed in Eq. (1), EMD simulations to investigate
the time dependence of the Green-Kubo integral as expressed
in Eq. (4), and NEMD simulations to investigate the broadening
of an energy perturbation during the approach to equilibrium as
expressed in Eq. (6). AEMD, EMD, and NEMD simulations
are outlined in Fig. 1. We considered single PEDOT chains
with a maximum length of ~7.5 um. Moreover, we performed
a systematic comparison between heat transport in 1D single
PEDOT chains vs 3D crystalline PEDOT samples in order to
better focus on the role played by dimensionality. The paper
is organized in a section dedicated to the Methods (Sec. II),
where the interaction potential and the simulation protocols are
carefully described, and in a section where results are presented
and discussed (Sec. III). General conclusions are eventually
drawn.

II. METHODS

All MD simulations have been performed by using the
LAMMPS code [26] and the AMBER force field [27]:

Eow =Y Kr —reg + Y Ko(0 — Og)’

bonds angles
qi4;
+ Z “[1+cos(ng) —yl+ Y
dihedrals i<j Fij
o 12 o 6
s (ZL) (22 |, 7
[ I N

including three bonding terms (respectively involving bonds,
angles, and dihedrals) and two nonbonding Coulomb and van
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AEMD simulation

Green-Kubo simulation

ESR R e

Energy perturbation simulation

FIG. 1. Schematic layout for the simulation setup of approach
to equilibrium MD simulations (top), Green-Kubo equilibrium MD
simulations (middle), and time evolution of alocal energy perturbation
(bottom) performed in this work. The color code represents the initial
temperature distribution: blue, orange, and red color corresponds to
lower than, equal to, and higher than room temperature, respectively.
Over the PEDOT chain (represented by stick-and-ball) it has been
initially set as a steplike profile in AEMD, a uniform distribution in
Green-Kubo calculations, and a local thermal excitation in the last
case.

der Waals (vdW) contributions, respectively, given by the last
two sums in Eq. (7) The torsion term can also include so-called
“improper” torsions, where the four atoms defining the angle
are not all connected by covalent bonds. The parameters
occurring in the bonding terms (i.e., K, req, Kg, 6cq, Vi, 1,
and y) and in the VAW term (i.e., 0;; and ¢;;) have been
taken from the GAFF database [28]. Atomic partial charges
are estimated with the restrained electrostatic potential (RESP)
method [29] using an HF/6-31G* QM calculation to generate
the electrostatic potential. The AMBER represents a realistic
force field which is currently used to study many properties
of different organic materials such as polymers [30], proteins
[31], as well as single molecules [32].

The velocity-Verlet algorithm with a time step of 0.5 fs
was used to solve the equations of motion. A particle-particle
particle-mesh solver is used for the long-range electrostatic
forces, and the vdW interactions are cut off at 0.1 nm. The
Nosé-Hoover thermostat with corresponding relaxation time
equal to 10 fs controlled on-the-fly the temperature. Periodic
boundary conditions were imposed along the chain direction
X, 1.e., the polymer chain length and the simulation cell length
L, coincide.

The « vs L, dependence was investigated by means of the
AEMD method [33,34], in which the system is studied in a
transient regime coupling an initial nonequilibrium condition
to a final equilibrium state. By considering the heat equation
in one dimension:

aT 9’1

o~ ox? ©
(where i = k/pc, is the thermal diffusivity of the system with
mass density p and specific heat ¢, ), we impose an initial step-
like temperature profile along the simulation cell. In particular,
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FIG. 2. Thermal conductivity as a function of the system length
L, for a 1D PEDOT chain (black squares) and a 3D PEDOT crystal
(blue dots). The red (green) line corresponds to Eq. (1).

inthe semicell 0 < x < L, /2theinitial temperatureis To(x) =
Ty, while in the semicell L, /2 < x < L, itis To(x) = T», with
T\ > T». The configuration is then aged by microcanonical
molecular dynamics, and the initial steplike temperature profile
is smoothed out toward a uniform temperature.

By considering the solution of Eq. (8), we define the average
temperature in the two regions (7}), (T>) and, therefore, the
time-dependent average temperature difference

AT(1) = (T1) — (Ts) = Y Cpe %", ©)
n=1

where «, =2nn/L, and the coefficients C, = 8(T} —
Ty)[cos(ayLy/2) — 11*/a2L? are determined by the initial
conditions. The AT () temperature difference, computed dur-
ing the MD simulation, can be fitted by Eq. (9) in order to
determine both the thermal diffusivity ¥ and conductivity «
through ¥ = «/pc,.

We considered single PEDOT chains with a total number
of monomers 500 < N, < 10000 corresponding to 0.376 <
L, < 7.526 pm. In order to estimate the system mass density
we need to provide its volume Vipain. To this aim Vg, iS
defined as the length of the simulation cell L, multiplied for

the cross-sectional area (36 Az) of crystalline PEDOT unit cell
obtained in Ref. [25].

III. RESULTS AND DISCUSSION

Figure 2 shows the thermal conductivity as a function of
L, together with the corresponding fitting function x = cL?
with 8 = 0.49 £ 0.02. As previously pointed out, the resulting
B value indicates an anomalous behavior (more specifically,
superdiffusive) [17]. Similar 8 values were previously deter-
mined by NEMD simulations for different polymeric species
[11]. However, we remark that all previous investigations have
been addressed to systems containing no more than 10* atoms:
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therefore size effects are indeed expected [21]. The present
results are obtained for systems containing as many as ~10°
atoms; this feature guarantees full convergence in the 8 values
here reported.

In order to understand whether such an anomalous be-
havior is affected by dimensionality, we performed the same
AEMD simulations on a PEDOT crystal with 0.0789 < L, <
0.789 um, obtained according to the procedure described in
[25] and containing up to 624 x 10* atoms. As shown in
Fig. 2, the thermal conductivity of the PEDOT crystal shows
a dramatic reduction with respect to single chains, resulting
in an almost constant for L, > 0.5 um (8 ~ 0). This result
confirms that the dimensionality rules over heat conduction.
Consistently with Ref. [13], we argue that the unlike behavior
of 1D and 3D PEDOT systems can be attributed to the
occurrence of strong anharmonic interactions between chains
which provide an increased scattering among heat carriers.

The Green-Kubo integral and, therefore, the correspond-
ing « value was calculated by EMD in a single PEDOT
chain with N,, = 1000, previously equilibrated for 100 ps at
T = 300 K. The autocorrelation function of the heat current
vector (J(¢)J(0)) was then sampled during a 4-ns-long mi-
crocanonical simulation. The maximum value chosen for the
correlation time was 0.7 ns. In order to improve the statistics,
we considered ten different trajectories where different initial
conditions for the atomic velocity distributions were imposed.
As expected, the only nonzero component of the integral in
Eq. (2) was corresponding to the chain direction. Depending
on the assigned initial velocities, we observed that the Green-
Kubo integral differently evolved in time: therefore, for some
trajectories (actually 6 out of 10) the Green-Kubo integral
was eventually found to reach a constant value, while for
the remaining ones we observe an overall divergence. The
diverging behavior and its chaotic dependence on the initial
conditions was previously observed in different single polymer
chains [12-14]. A similar behavior has been also observed in
2D graphene subjected to a uniaxial strain [35]. The chaotic
behavior has been identified in the seminal Fermi-Pasta-
Ulam paper [36]. Mode-coupling theory [37] attributed such
anomalous behavior to the presence of long tails in the heat
current correlation function and extremely slow decay toward
equipartition, a feature that we have in fact found in our present
calculations.

As suggested by Lepri et al. [20], such a slow decay gives
rise to the power law provided in Eq. (3) and, correspondingly,
to the divergence in «. In order to test this hypothesis we
calculated the overall thermal conductivity from Eq. (2) by
first averaging the heat flux autocorrelation function over all ten
trajectories and then by performing the time integration. Ac-
cordingly, we fitted « by Eq. (4) (see Fig. 3 red line) obtaining
6 = 0.497 £ 0.002. Interesting enough, from the present MD
simulations, it results in § = 8 as predicted by theory [17]. Ac-
cording to the results so far obtained, the superdiffusive regime
is again found for the PEDOT single extended chain. Also in
this case, we compared 1D vs 3D PEDOT: Fig. 3 shows « vs
t (blue line) which is clearly convergent to a value very close
to the one previously calculated by AEMD (dashed blue line).

Finally, we investigated the broadening in time o2(t) of
a local energy perturbation. In order to estimate o2(t), we
considered a single PEDOT chain with N,, = 1000 previously
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FIG. 3. Black (blue) line: « calculated for a single PEDOT chain
(a3D PEDOT crystal) with N,, = 1000. Full lines (red and green line,
respectively) correspond to Eq. (4). The blue dashed line indicates the
thermal conductivity computed using AEMD for a 3D PEDOT crystal.

thermalized to an equilibrium state with temperature Ty =
300 K (corresponding to Ey) for 100 ps. We mimicked a local
energy perturbation by thermostatting the central part of the
chain (corresponding to 100 monomers) to a target temperature
T, =500 K (corresponding to an energy E;) for 100 ps.
Then, we aged the system in a microcanonical run eventually
estimating the time evolution given in Eq. (5). To suppress
statistical fluctuations, an average of over 500 realizations was
performed. In Fig. 4 (black line) we show o2(t) before the
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FIG. 4. Time evolution of the broadening of a local energy
perturbation o%(¢) [see Eq. (5)] in a single 1D PEDOT chain (black
line) and a 3D PEDOT crystal (blue line). The red and green lines
represent the fitting by Eq. (6).
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occurrence of any turning boundary reflection. By fitting o (¢)?
by Eq. (6) (see Fig. 4, red line), we obtain o = 1.49 4+ 0.03
which very accurately fulfills the § = o — 1 relation provided
by theory. This result further corroborates the conclusion
that thermal transport in single extended PEDOT chains is
characterized by a superdiffusive behavior. Also in this case,
we perform the same simulation for a 3D PEDOT crystal.
Figure 4 (blue line) shows the corresponding time evolution
of o(t) which clearly shows a quasidiffusive behavior with
o = 1.04 + 0.03; once again this confirms that the increase of
PEDOT dimensionality is able to suppress anomalous thermal
transport.

IV. CONCLUSION

In conclusion, we developed a computational procedure
able to supply a thorough characterization of anomalous
thermal transport in single PEDOT chains by assessing the
occurrence of three scaling laws with unlike physical meaning
and showing consistent critical exponents, i.e., highlighting
the universality class for different phenomena related to heat
transport. We performed a systematic comparison between heat
transport in single 1D PEDOT chains vs perfect 3D PEDOT
crystals showing that PEDOT single chains exhibit superdiffu-
sive thermal transport while, by increasing the dimensionality
to 3D PEDOT crystals, all the anomalies are completely
suppressed. On top of providing robust evidence about the
actual anomalous superdiffusive character of thermal transport
in 1D PEDOT chains, the estimated values for the critical

exponent show that thermal transport for this system belong to a
novel universality class of superdiffusion characterized by 8 =
1/2. The existence of this regime has never been proven so far
neither by experiments nor by atomistic MD simulations based
on realistic force fields to describe the interatomic interactions.
In this perspective, the class I AMBER model potential used in
this work represents an accurate force field for the description
of conjugated polymers being its functional form composed
by bonding terms (bonds, angles, and dihedrals) as well as
nonbonding contributions (Coulomb and van der Waals).

Another important aspect of the present result, is strictly
related to the actual functional form of the model potential
used to describe the interatomic interactions. It has been pro-
posed that the value of 8 = 1/2 should occur for interatomic
potentials that are symmetric (even) when expanded about their
minimum. However, in this case the AMBER model potential
used for PEDOT is definitely nonsymmetric with respect to the
equilibrium position. This unexpected feature stands for the
occurrence of superdiffusion characterized by 8 = 1/2 also in
force fields that are strictly nonsymmetric with respect to the
equilibrium positions.
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