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Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2
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Based on first-principles calculations and effective model analysis, a Dirac nodal-net semimetal state is
recognized in AlB2-type TiB2 and ZrB2 when spin-orbit coupling (SOC) is ignored. Taking TiB2 as an example,
several topological novel states have been found in this nodal-net structure including triple point, nexus, and
nodal link, which are protected by the coexistence of spatial-inversion symmetry and time-reversal symmetry.
In addition, linearly and quadratically dispersed two-dimensional surface Dirac points have been identified as
getting on the B-terminated and Ti-terminated (001) surfaces of TiB2, respectively, which are analogous to those
of monolayer and bilayer graphene.
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I. INTRODUCTION

Based on the solid band theory, the nodal point represents
the point connecting the conduction band and the valence
band near the Fermi level. One way to classify nodal points
is based on their dimensionality [1–4], which accordingly
can be divided into three categories. The first one is zero-
dimensional (0D) nodal points, which includes Weyl points
[5–10], Dirac points [11–14], triple points [15–17], and other
higher degeneracy nodal points [18]. The second one is one-
dimensional (1D) nodal-line systems, which includes nodal
rings [19,20], nodal chains [2,21], and nodal nets [2]. The third
one is two-dimensional (2D) nodal surfaces [22]. A semimetal
with such nodal points is called a topological semimetal (TS),
such as Weyl semimetal (WSM), Dirac semimetal (DSM),
Dirac nodal-line semimetal (DNLSM), nodal-chain semimetal,
etc.

The 0D nodal point system has been extensively studied
during the past decade, due to its nontrivial topological
properties and its exotic transport properties. For example,
Dirac semimetals have been predicted to be good candidates
for quantum devices because of their massless Dirac fermion
properties [11–13,23], Weyl semimetals have chiral anomaly,
which leads to a chiral magnetic effect [24,25], i.e., an electric
current parallel to an external magnetic field [26–31], and a
triple point metals could have topological Lifshitz transitions
[15].

Investigations of 1D nodal-line systems have been de-
veloping in the last few years, due to their great potential
in diverse developments in materials science. A nodal-line
system has a nontrivial π Berry phase around the nodal line,
which would shift the Landau level index by 1/2 [32,33],
and leads to drumhead surface states (SSs) [34,35]. There
are many types of nodal-line systems, such as single and
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multiple Dirac nodal-line (DNL) systems in the absence of
spin-orbit coupling (SOC) [4,20,22,36–39], nexus [15,40,41],
nodal chain with SOC [2], and other crossing nodal lines
[3,21,33,38,42–45]. All the proposed nodal-line systems are
protected by crystallographic symmetry. Some are protected
by the coexistence of time-reversal symmetry T and spatial-
inversion symmetry P , namely, PT symmetry [20,22,37,38].
Some are protected by mirror symmetry or glide symmetry
[2,46].

In this work, based on first-principles calculations, we
theoretically study a new type of nodal structure, namely
nodal net, in two AlB2-type diborides, TiB2 and ZrB2, which
present a unique combination of properties such as high bond
strengths, high melting points, high thermal conductivities, low
electrical resistance, and low work functions, and can be easily
synthesized in the laboratory [47–50]. To better understand this
complex nodal-net structure, we find it includes four classes of
nodal-line structures: A, nodal ring in kz = 0 plane surrounding
K point; B, nodal line in three vertical mirror planes σv1, σv2,
and σv3 (see definition on p. 273 of Ref. [51]); C, nodal line
along �-A starting from a triple point; D, a single isolated
nodal ring at kz = 0.5 plane surrounding A point. Furthermore,
class-A and class-B nodal lines will cross at a k point along
the �-K direction. All three class-B nodal lines in the vertical
mirror planes terminate at A point, which is also a termination
of the class-C nodal line. So A point is also called a nexus point
[40,52], which is the termination of several Dirac line nodes.
This nodal-net structure differs from previously reported 0D
and 1D nodal structures, which may lead to some new magnetic
and electrical transport properties. In addition, the linearly and
quadratically dispersed surface Dirac cones are found at the
K̄ point of the surface BZ for B-terminated and Ti-terminated
surfaces of TiB2, respectively.

This paper is organized as follows. In Sec. II, we elucidate
the crystal and electronic structure of TiB2. In Sec. III, we study
the complex nodal-net structure both using first-principles
calculations and effective k · p model analysis. In Sec. IV, we
study the drumhead surface states both for B-terminated and
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FIG. 1. Crystal structure and Brillouin zone (BZ) of AlB2-type
TiB2. (a) Crystal structure of AlB2-type TiB2 with P6/mmm symmetry.
Ti atoms occupy the (0.0, 0.0, 0.0) site, and B atoms occupy the (1/3,
2/3, 1/2) site. The optimized lattice constants are a = b = 3.0335 Å
and c = 3.2263 Å. (b) bulk BZ and the projected BZ of the (001)
surface.

Ti-terminated surfaces of TiB2, where linearly and quadrati-
cally dispersed surface Dirac points are found.

II. CRYSTAL AND BAND STRUCTURE OF AlB2-TYPE TiB2

The crystallographic data of TiB2 and ZrB2 are obtained
from Ref. [49]. TiB2 and ZrB2 have the same AlB2-type cen-
trosymmetric crystal structures with the space groupP 6/mmm

(191). As verified by calculation, we find that TiB2 (Fig. 2) and
ZrB2 (Fig. 7) have similar electronic structures, therefore, we
take TiB2 as an example hereafter. As shown in Fig. 1(a), it
is a layered hexagonal structure with alternating close-packed
hexagonal layers of titanium and graphenelike boron layers.
The optimized lattice constants are a = b = 3.0335 Å and
c = 3.2263 Å, which agree well with the experimental [53]
and other theoretical [54] results.

To study the electronic properties of TiB2, the electronic
band structure (BS) and projected density of states (PDOS)
are calculated in absence of SOC (see details in Appendix A),
as shown in Fig. 2(a). It shows that the valence and conduction
bands near the Fermi level exhibit Dirac linear dispersion.
There are six band crossing points [also called nodal points
(NPs)] located along the H -�, �-A, A-H , K-�, M-K , and
L-A lines [marked as a to f points in Fig. 2(a)]. It is noticed that
these six NPs deviate from the Fermi level about −0.16, 0.5,
0.35, −0.01, −0.28, and 0.32 eV, respectively. To investigate
the formation mechanism of these crossing points, orbital-
character analysis is performed. As shown in Fig. 2(a), the
Ti 3d states in TiB2 are the dominant feature for these six
NPs. Specifically, a is dominated by Ti-dxz, Ti-dx2−y2, and
Ti-dz2 orbitals; b is dominated by Ti-dyz and Ti-dz2 orbitals;
c is dominated by Ti-dxy , Ti-dyz, and Ti-dx2−y2 orbitals; d
is dominated by Ti-dxz and Ti-dz2 orbitals; e is dominated
by Ti-dxz, Ti-dx2−y2, and Ti-dz2 orbitals; f is dominated by
Ti-dyz and Ti-dx2−y2 orbitals, respectively, as well as, the B

atoms’ contribution for these six NPs can be ignored [55]. From
another perspective, it can also be verified by the calculated
charge states around these six NPs, which is shown in Fig. 3.
As we can see, the charge states around these six NPs show a
inversion feature, and the results agree well with our orbital-
character analysis. The Fermi surface (FS) of TiB2 is calculated
and shown in Figs. 2(b) and 2(c), which shows a lanternlike
frame with compensated electron pockets and hole pockets,
which is a feature of a topological semimetal and also will lead

FIG. 2. Electronic energy band and Fermi surface of TiB2. (a) Fat
band of TiB2. (b) Side view and (c) top view of the Fermi surface
of TiB2.

to nonsaturated large positive magnetoresistance [28]. The FS
calculated in this work agrees well with previous experimental
[56] and theoretical studies [49].

In presence of the SOC effect, the crossing points along the
H -�, A-H , K-�, M-K , and L-A lines are fully gapped, which
is common in PT protected systems [34,38]. SOC makes the
crossing points open gaps about 26, 18, 25, 23, and 21 meV
(see Fig. 4), respectively. The millivolt level gaps indicated that
the effect of SOC on the electronic band structure of TiB2 is
quite weak and can be ignored in experimental work. One thing
worth mentioning here is that the SOC splitting would generate
a Dirac point along the � − A direction [Fig. 4(b)], although
it happens between the (N + 2)th and (N + 3)th bands, where
N is the number of occupied bands at � point in the BZ.

III. NODAL-NET STRUCTURE

From previous studies, we know that a nodal-line system
would have banana-shaped linked FSs [57,58] as the NPs do
not usually align at the same energy level. In other words, these
banana-shape linked FSs are an indication of the existence of

FIG. 3. Charge states of the a, b, c, d, e, and f points in the energy
band of AlB2-type TiB2 around the Fermi level.
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FIG. 4. Comparison between energy bands without SOC and with SOC close to the six nodal points. The triple point along �-A in the
absence of SOC degenerates to a Dirac point between (N + 2)th and (N + 3)th bands, which is marked by a black circle in (b) when SOC is
included.

a nodal-line structure. There is another clue to find NLSM
for a PT symmetry protected system, i.e., if there is a band
touching point close to the Fermi level, there should be a nodal
line including this point [34]. Based on these two clues, and the
BS and FS shown in Fig. 2, it is clear that there is a nodal-line
structure in the TiB2 system. By using the symmetrical Wannier
tight-binding model [15] and WANNIERTOOLS [59], we have
found all k points with zero local energy gap between the
N th and (N + 1)th energy bands, where N is the number
of occupied bands at the � point, i.e., �(k) = EN+1(k) −
EN (k) = 0. The nodal points are plotted in Fig. 5, from which,
the energies of nodal points are not the same, which leads to
the lanternlike FSs as shown in Fig. 2(b).

TiB2 has PT symmetry, which is enough to protect the
existence of Dirac nodal lines in the absence of SOC. While, be-
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FIG. 5. Nodal-net structure of TiB2. (a) All nodal points in the
first BZ. The color indicates the energy of nodal points with reference
to the Fermi energy. Two red arrowed circles and the closed green
rectangle are used to calculate the Berry phase. (b) Top view of (a),
the topological number ν for regions 1 and 2 are 0 and 1, respectively.
(c) Sketch view of the nodal link of class-A NL (red) and class-B NL
(blue) and O is the nodal link point.

sides PT symmetry, there are another four mirror symmetries
σh, σv1, σv2, and σv3 in the D6h group. Such mirror symmetries
will help to protect the nodal link point. Thus these nodal
lines form an interconnected nodal-net structure including four
classes of nodal lines: A, B, C, and D. In Appendix, with the
aid of DFT calculations, it is verified that class-A, class-B,
and class-D nodal lines still exist, but apart from the previous
mirror plane, by breaking the mirror symmetries, however, the
class-C nodal lines will disappear.

Class-A nodal lines. Those nodal rings surrounding K

point are embedded in the kz = 0 plane, which is a mirror
plane σh of D6h, and is shown as six arcs around K point in
Fig. 5. The effective k · p model at K point was constructed
within the little group D3h, and is shown in Eq. (D11). When
kz = 0, H12 = 0, which leads to two uncoupled blocks. Those
two eigenvalues of each block lead to one upward and one
downward parabola. So, if the energies of the two blocks at K

point are different, there will be a nodal ring surrounding K

point.
Class-B nodal lines. Those Weyl nodes sitting on the vertical

mirror planes σv1, σv2, and σv3 are shown as edges of the lantern
in Fig. 5(a). We could use the effective k · p model at � point
shown in Eq. (D5) to prove the existence of a nodal line on
such k planes. For simplicity, we choose σv1(σxz), a mirror
perpendicular to the y axis as an example. On this plane, ky =
0, then the eigenvalues of Eq. (D5) are

ε1 = 1
2 (α + γ1 + γ2 +

√
(α + γ1 − γ2)2 + 8β2),

ε2 = γ1 − α,

ε3 = 1
2 (α + γ1 + γ2 −

√
(α + γ1 − γ2)2 + 8β2),
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where α = Ck2
x , β = Dkxkz, and γi = Ei + Aik

2
x + Bik

2
z with

i = 1, 2. At � point, kx = 0,kz = 0, ε1 = E1, ε2 = E1, and
ε3 = E2. It is clear that, along � − A, where kx = 0, ε1 =
ε2, which is the evidence of the existence of class-C nodal
lines. The nodal line in classes other than class-C could exist
only if ε1 = ε3 or ε2 = ε3. ε1 = ε3 would lead to constraint
E2 − E1 = Ck2

x and kxkz = 0, which results in a touching
point kz = 0,ky = 0,kx = √

(E2 − E1)/C. However, the DFT
fitting results show that E2 − E1 < 0. So there is no touching
point between ε1 and ε3. Another possibility, ε2 = ε3, would
lead to

(C2 + A2 − A1)k2
x + (B2 − B1 − D)k2

z = E1 − E2. (1)

There are three possibilities arising from the relationship
between the parameters in Eq. (1), which are the following. (1)
If (C2 + A2 − A1)(E1 − E2) > 0 and (B2 − B1 − D)(E1 −
E2) > 0, then there will be an elliptic nodal ring centered at
� point. (2) If (C2 + A2 − A1)(B2 − B1 − D) < 0, then there
will be a hyperbolic nodal ring. (3) If (C2 + A2 − A1)(E1 −
E2) < 0 and (B2 − B1 − D)(E1 − E2) < 0, there will be no
nodal line. According to the DFT fitting parameters, TiB2

belongs to the first class, which have an elliptical nodal ring
on three vertical mirror planes σv1, σv2, and σv3.

Actually, there are three other mirror symmetries σd1, σd2,
and σd3 in D6h. Take σd1(σyz) as an example, we could perform
the same analysis above by setting kx = 0, however, we have
to admit that the results are the same as in the ky = 0 plane,
i.e., there will be a nodal line in the kx = 0 plane. The reason
for this is that the k · p model in Eq. (D5) is up to the
second order, which will lead to isotopic effects on kx and ky .
Eventually, there are not only nodal lines in the mirror planes,
but also a nodal surface encompassing the � point. So, in order
to degenerate the nodal surface and distinguish between the
kx = 0 and ky = 0 planes, we have to include higher-order
terms in the k · p model, as discussed in Appendix D 2.

Nodal link of class-A and class-B NLs. Figure 5(a) shows
that the class-A NL is linked with class-B NL at O point along
�-K direction, which is also shown in Fig. 5(c). �-K is the
overlap of σv and σh mirror planes. Eventually, the little group
of O is c2v with an additional PT symmetry. The two-band
effective k · p model of O up to second order of k is given as

H (k) = (
M + vkx + α1k

2
x + α2k

2
y + α3k

2
z

)
σz + βkykzσx,

(2)

where σx and σz are Pauli matrices. Since O is a nodal link
point, the mass term M should be zero. The eigenvalues of
Eq. (2) are

E± = ±
√(

vkx + α1k2
x + α2k2

y + α3k2
z

)2 + β2k2
yk

2
z . (3)

The nodal point exists only if kykz = 0 and vkx + α1k
2
x +

α2k
2
y + α3k

2
z = 0, which leads to two classes of NLs, one is

embedded in kz = 0 plane, which belongs to class-A NL, the
other one is embedded in ky = 0 plane, which belongs to
class-B NL. It is clear that both NLs link together at O. Taking
class A as an example, kz = 0, and the other condition becomes
α1(kx + v

2α1
)2 + α2k

2
y = v2

4α1
. It is learned that v �= 0 is the only

condition that keeps the NL. α1α2 > 0 would lead the NL to
be elliptic [class-A NL is shown as a red ring in Fig. 5(c)],
while α1α2 < 0 would lead the NL to be hyperbolic [class-B

NL is shown as a blue line in Fig. 5(c)]. It is easy to prove that
the breaking down of one of the mirror symmetries would only
move the nodal link point O and distort the NLs. However, the
breakdown of PT symmetry would gap out all nodal points,
because σy matrix would be introduced to Eq. (2) then. So the
nodal link of class-A and class-B NLs are robust under the
protection of PT symmetry.

Class-C nodal lines. Actually, such nodal lines are formed
by two degenerated bands along the �-A direction, which are
protected by c3 symmetry, and shown as a segment between
� and A points in Fig. 5(a). Along �-A, there is another
topological fermion, namely, the triple point [15], which is a
type-A triple point according to Ref. [15]’s definition, because
the Berry phase around �-A is zero. Such a triple point would
evolve into a Dirac point in the presence of SOC [Fig. 4(b)].
However, the topologically induced SSs of triple points would
only happen in a system with SOC, and would not happen in
the absence of SOC.

Class-D nodal lines. This is an isolated nodal ring at kz =
0, and is protected by the σh mirror symmetry. It is easily
deduced from the k · p model [Eq. (D20)]. The eigenvalues of
Eq. (D20) are ε±

1 = E1 + (A ± C)(k2
x + k2

y) and ε±
3 = E3 +

(B3 ± G)(k2
x + k2

y), since E1 < 0 and E3 > 0, but (A ± C) >

0 and (B3 + G) ∗ (B3 − G) < 0, ε±
1 would have a cross-point

with ε±
3 due to its typical band inversion. The resulting nodal

line is shown as an orange circle at the top plane of Fig. 5(a).
Topological number for the nodal net. The topological

number of DNL is characterized by a quantized Z2 topological
charge ν [38], which is given by the parity of the Berry phase
along a loop S that interlinks with the Dirac ring [red loop
in Fig. 5(a)]. It is verified that ν is 1 for red loops S1 and
S2. The topological charge ν of red loops S1 is identical to
the topological charge of the green circle in Fig. 5(a), which is
composed of lines H2-H1, H1-L1, L1-L2, and L2-H2. Due to the
mirror symmetry, the summation of Berry phases along H1-L1

and L2-H2 is zero. We could define a topological charge νH and
νL for H2-H1 and L1-L2, respectively, since they form a closed
loop in k-space. From previous studies [38], the topological
number ν for a time reversal invariant loop which links two
parity-invariant momenta �a and �b is related to the parity of
�a and �b as

(−1)ν = ξaξb; ξa =
∏
n

ξn(�a), (4)

where ξn(�a) is the parity for the occupied bands.
So (−1)νL = ξM1ξL1 . Since closed loop L1-L2 links M1 and

L1, which are the parity-invariant momenta, it is verified by
DFT calculations that ξM1 = 1 and ξL1 = 1 (see details in
Appendix E, i.e., νL = 0). So the topological number for H2-H1

is νH = (νS1 − νL) mod 2 = 1. Eventually, the topological
numbers are ν = 0 and 1 for regions 1 and 2 shown in Fig. 5(b)
with different colors respectively. There will be an odd number
of nodal lines between regions 1 and 2 due to the topological
number change from 0 to 1.

IV. DRUMHEAD SURFACE STATES

Based on previous studies [3,38,60], the 1D Z2 invariant ν

partially guarantees the presence of drumhead surface states.
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FIG. 6. Surface states analysis of the TiB2 (001) surface. (a) B-terminated surface-state spectrum calculated from the Wannier TB model.
The dashed lines are indicative of E − EF = 0 and E − EF = −0.05 eV. (b) and (c) Surface spectrum at fixed energies E − EF = 0 and
E − EF = −0.05 eV, which are shown in a subplot. (d) and (e) show the surface structure for B-terminated and Ti-terminated surfaces,
respectively. (g) shows the surface atom weighted band structure, which is calculated from VASP for 20 layers of TiB2 with Ti(B) sitting in the
outer layer.

In this section, the drumhead surface states on B-terminated
and Ti-terminated (001) cleavage surfaces of TiB2 are studied.

The B-terminated surface structure is shown in Fig. 6(d),
which is a honeycomb lattice like graphene. By using WAN-
NIERTOOLS [59] and the method of iterative Green’s function
[61] solution based on a tight-binding model (TBM), the
surface state spectrum was calculated, as shown in Figs. 6(a)–
6(c). In Fig. 6(a), it is shown that between M̄-K̄ there is a
drumhead surface state coming from a “Dirac” point, which is
the projection of the nodal line. In region 1, those drumhead
surface states form a linear Dirac cone at K̄ point, which is
analogous to the Dirac cone in graphene. SSs obtained from
the TB model are usually used to explain the topological
properties. To compare the SS with ARPES experimental data
for further use, we use a first-principles calculations for a slab
system due to the fact that a real surface system would have
charge reconstructions which cannot be described by TBM. So
we simulated a 20-layer slab of TiB2 with VASP. The BS is
shown in Fig. 6(f), in which the color denotes the contributions
from the pz orbital of the surface’s boron atoms. Basically, the
DFT results are close to the TBM results. The difference is that
the zero-energy point of the surface Dirac cone of DFT results
is about 0.45 eV higher than that of the TBM results. Since
the lattice and the orbital of the boron surface are the same as
that of graphene, the effective k · p models at K̄ point are the
same, and are given as

H (k) = VF (kxσx + kyσy), (5)

where VF is the Fermi velocity. By fitting the DFT calculations,
VF is estimated to be 1.5 eVÅ, which is about 2.28 × 105 m/s
in SI units.

The Ti-terminated surface structure is shown in Fig. 6(e),
which is a hexagonal lattice of the titanium atom. The DFT

calculated BS of a 20-layer slab of TiB2 with titanium in
the outer surface is shown in Fig. 6(g), in which the color
denotes contributions from dzx,dyz orbitals of the surface’s
titanium atoms. There are drumhead SSs coming from the
nodal line, which in this case are same as the B-terminated
surface; however, the dispersion of SS at K̄ is different from
that of B-terminated surface. In Fig. 6(m), it seems that there
is a 2D quadratic dispersed Dirac cone at K̄ point. However,
by zooming into the dispersion at K̄ point in Fig. 6(n), it turns
out that it is a fake quadratic Dirac cone. Not only there is a
linearly dispersed Dirac cone at K̄ point, but also a linearly
dispersed Dirac cone along K̄-�̄. Regarding the point group
C3v describing the surface structure, the effective k · p model
is obtained as

H (k) =
(

Bk2 Ak+ + Ck2
−

Ak− + Ck2
+ Bk2

)
, (6)

where k± = kx ± iky and k2 = k2
x + k2

y . When the quadratic
terms B and C are missing, then Eq. (6) reduces to Eq. (5),
which leads to massless linear Dirac dispersion E(k) = ±|k|.
In the absence of linear term A, Eq. (6) describes a Dirac point
with parabolic energy dispersion. Such a quadratic Dirac point
is unstable due to its topological number ν being trivial. It will
split into four linear Dirac points with nontrivial topological
number ν = 1 under the C3 symmetry [40], which leads to the
linear term in Eq. (6). Eventually, one is centered at K̄ point, the
other three are connected by the C3 symmetry [see Fig. 6(j)].
Fitting to the DFT calculated BS, we obtain the following
parameters for a Ti-terminated surface: A = 0.08 eV Å, B =
−0.46 eV Å

2
, and C = 2.3 eV Å

2
, in which the linear term is

much weaker than the quadratic term.
The surface Dirac cone at K̄ of TiB2 with B-terminated and

Ti-terminated surfaces is very similar to monolayer and bilayer
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graphene, which have linearly dispersed and quadratically
dispersed Dirac cones, respectively. The Berry phase around
the linear Dirac cone is π , while the Berry phase around the
quadratically dispersed Dirac cone is 2π . Such differences in
the Berry phase would lead to different quantum oscillations. In
Ref. [62], it was proposed that a Dirac point could be observed
in monolayer TiB2; however, the Dirac point proposed in this
paper could be observed on the surface of a thick slab system
rather than a monolayer system.

V. CONCLUSION

In this paper, based on first-principles calculations and
model analysis, a novel PT symmetry protected Dirac nodal-
net state is recognized in AlB2-type TiB2 and ZrB2 in the
absence of SOC. This complex nodal-net structure is composed
of four classes of NLs: A, B, C, and D, in which, class-A
and class-B NLs link together at O along the �-K direction,
three class-B NLs in the vertical mirror planes terminate at A
point, which is also a termination of the class-C NL. Several
k · p models for these four classes of NLs are constructed
under the constraint of their symmetry, which confirmed the
formation of this nodal net. The topological numbers ν for
different regions in BZ are calculated. It is noted that there are
two different dispersed drumheadlike Dirac cones emerging on
B-terminated and Ti-terminated surfaces, which are analogous
to those of monolayer and bilayer graphene, indicating some
novel surface transport properties in TiB2 and ZrB2. We believe
that this work will guide further progress in understanding the
novel properties of TiB2 and ZrB2, and two different terminated
surfaces are good platforms to study 2D Dirac fermions. In
addition, AlB2-type TiB2 and ZrB2 can be easily synthesized
and provide two prototype materials to study the topological
nodal-net structure.

Note added. Recently, Ref. [63] appeared, discussing some
of the topological properties of metal-diboride where the nodal
line around K is the class-A nodal line in the nodal net of this
work.
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APPENDIX A: COMPUTATIONAL METHODS

In this work, the electronic properties for AlB2-type TiB2

are studied by using density functional theory (DFT) [64,65] as
implemented in the Vienna ab initio simulation package (VASP)
[66–68]. The exchange correlation functional of Perdew-
Burke-Emzerhof generalized gradient approximation (GGA-
PBE) [69,70] is used in the calculations. The standard version
of PBE pseudopotential is adopted in this work explicitly treat-

ing four valence electrons for the Ti atoms (3d34s1) and three
valence electrons for the B atoms (2s22p1). A cutoff energy of
500 eV and a 11×11×9 k mesh are used to perform the bulk cal-
culation. The conjugate-gradient algorithm is used to relax the
ions, and the convergence thresholds for total energy and ionic
force component are chosen as 1×10−7 eV and 0.001 eV/Å.

For the slab calculations [Figs. 6(f) and 6(g)], the thickness
of the B-terminated slab is 20 layers of titanium and 21 layers
of boron, while the thickness of the Ti-terminated slab is 20
layers of titanium and 19 layers of boron. A 26 × 26 × 1 �-
centered k mesh and a 14-Å-thick vacuum are used in the
DFT simulations. The surface is fully relaxed with energy
convergence up to 1×10−7 eV and a force up to 0.001 eV/Å.

The nodal-net searching and surface states spectrum calcu-
lations shown in Figs. 6(a)–6(c) are done using the open-source
software WANNIERTOOLS [59], which is based on the Wannier
tight-binding model (WTBM) constructed with WANNIER90
[71]. Ti s, p, d, and B s, p orbitals are used as initial
projectors for WTBM construction. WTBMs constructed with
WANNIER90 do not exactly fulfill all crystal symmetries, which
is very important for nodal point searching because usually
nodal points are protected by crystal symmetries except Weyl
points. The WTBM is symmetrized to be compatible with the
crystal symmetry using the method described in Ref. [15].

APPENDIX B: BAND STRUCTURE AND FERMI SURFACE
OF AlB2-TYPE ZrB2

In general, ZrB2 is often compared with TiB2. The structure
of AlB2-type ZrB2 also has hexagonal structure with a space
group of P 6/mmm (No. 191). Its optimized lattice constants
are a = b = 3.1748(3) Å and c = 3.5579(7) Å, which are
slightly larger than those of TiB2. As shown in Fig. 7(a), there

FIG. 7. Electronic energy band and Fermi surface of AlB2-type
ZrB2. (a) Fat band of AlB2-type ZrB2. (b) Side view and (c) top view
of the Fermi surface of AlB2-type ZrB2.

014202-6



TOPOLOGICAL DIRAC NODAL-NET FERMIONS IN AlB … PHYSICAL REVIEW MATERIALS 2, 014202 (2018)

FIG. 8. Nodal-net structure of TiB2 without vertical mirror planes.

are also six band crossing points along the high-symmetry path
similar with TiB2. Among them, Zr 4d states are the main
contributing orbitals for these six band crossing points. The
Zr-dxz and Zr-dxy orbitals are much higher than the Fermi level.
From Figs. 7(b) and 7(c), the Fermi surface of ZrB2 is sightly
different from that of TiB2. The circling surface around A point
disappeared in the Fermi surface of ZrB2. The main part of
the lanternlike Fermi surface of ZrB2 is basically consistent
with the Fermi surface of TiB2, which also shows a nodal-net
feature.

APPENDIX C: NODAL-NET STRUCTURE OF TiB2

WITHOUT VERTICAL MIRROR PLANES

Since the nodal net of TiB2 is PT symmetry protected, any
perturbations that preserve the inversion symmetry can only
distort the nodal-net but not destroy them. As an example,we
apply a uniaxial strain (compression 1%) along the [100]
crystal direction. After deformation, the structure of AlB2-type
TiB2 belongs to space group of C2/m (No. 12), which just
preserves the Mz mirror reflection symmetry. As a result, as
shown in Fig. 8, it is found that the class-A nodal line is
still embedded in the kz = 0 plane, one of the class-B nodal
line becomes isolated with the other two class-B nodal lines,
which link with the class-D nodal line that is embedded in
the kz = 0.5 plane, while the class-D nodal line along �-A
disappears because it is protected by C3 symmetry, which is
destroyed under such strain. Thus the nodal net in TiB2 is
robustly stable, which does not require the protection of mirror
symmetry.

APPENDIX D: EFFECTIVE k · p MODEL

We derive several k · p models describing the bulk bands in
the vicinity of �, A, and K in the 3D BZ, and a k · p for the
surface states at K̄ point in 2D BZ. The k · p models are used to
get a better understanding of the surface states and the nodal-
net structures, and would be useful for further investigations
of Landau level and quantum transport properties.

The k · p models were calculated using the
kdotp_symmetry code, which implements the method
described in Ref. [72]. Basically, there are two things that
should be prepared before applying kdotp_symmetry. Firstly,
we identify the little group G of a high symmetry point K0 of
which we want to construct a low-energy effective model, and
get the generators R of little group G. Secondly, we identify
the representations of R on the basis of the eigenvectors at
the selected high-symmetry points. Then, k · p symmetry will

produce the k · p model under the constraint

D(R)H (k)D†(R) = H (R(k)), (D1)

where D(R) is the representative matrix of symmetry
operator R.

1. k · p model at � point

The little point group at Gamma point of bulk TiB2 is D6h

plus TR symmetry (see Table 76 of Ref. [73]). There are three
generators ofD6h including spatial-inversion I (−x, − y, − z),
twofold rotation c2y(−x,y, − z), and sixfold rotation c6z( x

2 +√
3

2 y, −
√

3
2 x + y

2 ,z). From the fat-band analysis of Fig. 2,
the relevant bands come from dz2 , which belongs to the A1g

representation, dzx and dyz orbitals, which form the basis of its
E1g representation. The representations of group generators
according to the symmetrical basis {(dzx + idyz)/

√
2, (dzx −

idyz)/
√

2, dz2 } are given by

D(I ) = diag{1,1,1},
D(c6z) = diag{−ei2π/3, − e−i2π/3,1}, (D2)

D(c2y) =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, (D3)

D(TR) =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠K, (D4)

where K is the complex conjugation operator. Considering
these symmetries, and the constraint of Eq. (D1), a three-band
model up to second order of k around � point for bulk TiB2 is
given by

H (k) =
⎛
⎝ ε1(k) Ck2

− Dk−kz

Ck2
+ ε1(k) Dk+kz

Dk+kz Dk−kz ε2(k)

⎞
⎠, (D5)

where ε1(k) = E1 + A1(k2
x + k2

y) + B1k
2
z and ε2(k) = E2 +

A2(k2
x + k2

y) + B2k
2
z .

As mentioned in the main text, Eq. (D5) with only second-
order momentum k would lead to a nodal surface other than
the nodal-line structure. To distinguish the difference between
�-K and �-M directions, we have to introduce the sixth order
of kx , ky in the kz = 0 plane, and introduce a fourth order of kx ,
ky in the off-diagonal part, so eventually, the new k · p model
is given by

H (k) =
⎛
⎝ ε1(k) Ck2

− + Fk4
+ Dk−kz

Ck2
+ + Fk4

− ε1(k) Dk+kz

Dk+kz Dk−kz ε2(k)

⎞
⎠, (D6)

where ε1(k) = E1 + A1(k2
x + k2

y) + B1k
2
z and ε2(k) = E2 +

A2(k2
x + k2

y) + B2k
2
z + L(k2

x + k2
y)2 + M(k6

+ + k6
−).

By fitting the value to the DFT band structure of
TiB2, the parameters in Eq. (D6) are obtained: E1 =
1.787 eV, B1 = −3.8 eVÅ

2
, A1 = 2.6 eVÅ

2
, E2 = −2.12 eV,

A2 = 1.63 eVÅ
2
, B2 = 5.1 eVÅ

2
, L = 1.3 eVÅ

4
, C =

3.55 eVÅ
2
, M = 0.65 eVÅ

6
, F = 1.83 eVÅ

4
, and D =
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FIG. 9. Comparison between DFT bands and the bands from the
k · p model [Eq. (D6)] at � point of TiB2. Blue lines come from DFT
calculations and red dotted lines come from k · p model.

5.1 eVÅ
2
. The comparison between DFT bands and k · p bands

is shown in Fig. 9
The nodal-line structure around � point calculated from

Eq. (D6) with the DFT fitted parameters is shown in Fig. 10(a).
It is shown that the nodal net close to the � point is very
similar to Fig. 3, the class-A, class-B, and class-C nodal lines
are captured successfully; however, the nodal line beyond the
nexus point A is not captured. This is because the nexus point
A is at the boundary of the BZ, which is related to an infinity
in the k · p model. The position of the nexus point A could be
tuned by changing F in Eq. (D6). In Fig. 10(c), it is shown
that the nexus point would have disappeared if F was very
large. The nodal line in the σd mirror plane could be shown if
the fourth and sixth order terms in Eq. (D6) become smaller
[Fig. 10(b)].

2. k · p model at K point

The little group at K point in the TiB2 is D3h (see Table 65
of Ref. [73]), of which there are three generators including hor-
izontal mirror σh(x,y, − z), twofold rotation c2x(x, − y, − z),
and threefold rotation c3z(− x

2 −
√

3
2 y,

√
3

2 x − y

2 ,z). Around K

point, the relevant representations are �5 and �6, of which the
basis are {dzx,dyz} and {dxy,dx2−y2}. Taking the symmetrical
orbitals { |Y 1

2 〉, −|Y−1
2 〉} and { −|Y 2

2 〉,|Y−2
2 〉} as a basis,

FIG. 10. Nodal-line structure obtained from Eq. (D6) at � point

of TiB2 with different M, F , and D parameters. (a) M = 0.65 eVÅ
6
,

F = 1.83 eVÅ
4
, and D = 5.1 eVÅ

2
. (b) M = 0, F = 1.18 eVÅ

4
,

and D = 2.53 eVÅ
2
. (c) M = 0.65 eVÅ

6
, F = 7.6 eVÅ

4
, and D =

5.1 eVÅ
2
.
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FIG. 11. Comparison between DFT bands and the bands from the
k · p model [Eq. (D10)] at K point of TiB2. Blue lines come from DFT
calculation, and red dotted lines come from k · p model.

where |Ym
l 〉 is the complex spherical harmonic function, the

representations of the generators are given by

D(σh) = diag{−1, − 1} ⊕ diag{1,1}, (D7)

D(c2x) =
(

0 −1
−1 0

)
⊕

(
0 −1

−1 0

)
, (D8)

D(c3z) =
(

e−2iπ/3 0
0 e2iπ/3

)
⊕

(
e2iπ/3 0

0 e−2iπ/3

)
. (D9)

Considering the above symmetries and the constraint of
Eq. (D1), a four-band model up to second order of k around K

point in bulk TiB2 is given by

H (k)

=

⎛
⎜⎜⎝

ε(k) Ck+ + Dk2
− iEkzk+ Fkz

Ck− + Dk2
+ ε(k) Fkz −iEkzk−

−iEkzk− Fkz ε′(k) C ′k− + D′k2
+

Fkz iEkzk+ C ′k+ + D′k2
− ε′(k)

⎞
⎟⎟⎠,

(D10)

where ε(k) = E0 + A(k2
x + k2

y) + Bk2
z and ε′(k) = E′

0 +
A′(k2

x + k2
y) + B ′k2

z . The fitted parameters of TiB2 are

E0 = −1.8651 eV, E′
0 = 1.3387 eV, A = 2.55 eVÅ

2
,

A′ = −16.5 eVÅ
2
, C = 3.7 eVÅ, C ′ = −1.66 eVÅ, D =

−0.58 eVÅ
2
, D′ = 18.8 eVÅ

2
, B = 8.73 eVÅ

2
, B ′ =

−6.37 eVÅ
2
, E = 24.9 eVÅ

2
, and F = 6.84 eVÅ. The

comparison between DFT bands and k · p bands is shown in
Fig. 11.

In order to analyze the nodal-line structure, Eq. (D10) can
be written into two blocks:

H (k) =
(

H11 H12

H
†
12 H22

)
, (D11)

where

H11 =
(

ε(k) Ck+ + Dk2
−

Ck− + Dk2
+ ε(k)

)
, (D12)

014202-8
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FIG. 12. Nodal-line structures close to K point calculated from
the k · p model [Eq. (D10)]. The coordinates are relative to the K

point.

H22 =
(

ε′(k) C ′k+ + D′k2
−

C ′k− + D′k2
+ ε′(k)

)
, (D13)

H12 =
(

iEkzk+ Fkz

Fkz −iEkzk−

)
. (D14)

With the fitted parameters, we find that our k · p model not
only describes the nodal line surrounding the K point, but can
also predict part of the nodal line in the vertical mirror plane
as shown in the Fig. 12.

3. k · p model at A point

For the little group at A D6h (see Table 76 of Ref. [73]),
relevant representations are A1g, E1g , and E2g , which consti-
tutes {dz2 }, {dzx , dyz}, and{dxy , dx2−y2 }. By symmetrization
of those orbitals according to the D6h group, the symmetrical
basis are chosen as |Y 0

2 〉, |Y 1
2 〉, −|Y−1

2 〉, −|Y 2
2 〉, and |Y−2

2 〉, and
the related representations of its generators are given by

D(I ) = diag{1,1,1,1,1}, (D15)

D(c2y) = 1 ⊕
(

0 1
1 0

)
⊕

(
0 −1

−1 0

)
, (D16)

D(c6z) = diag{1, − e2iπ/3, − e−2iπ/3,e−2iπ/3,e2iπ/3}, (D17)

D(TR) = 1 ⊕
(

0 1
1 0

)
⊕

(
0 −1

−1 0

)
K. (D18)

The constructed k · p model is given by

H (k) =

⎛
⎜⎜⎜⎝

ε2(k) Dkzk+ Dkzk− Ek2
+ −Ek2

−
Dkzk− ε1(k) Ck2

− Fkzk+ 0
Dkzk+ Ck2

+ ε1(k) 0 −Fkzk−
Ek2

− Fkzk− 0 ε3(k) Gk2
+

−Ek2
+ 0 −Fkzk+ Gk2

− ε3(k)

⎞
⎟⎟⎟⎠,

(D19)

where εi(k) = Ei + Ai(k2
x + k2

y) + Bik
2
z with i = 1,2,3. The

fitted parameters are E1 = −0.2426 eV, A1 = 170 eVÅ
2
,

B1 = 3.53 eVÅ
2
, E2 = 1.575 eV, A2 = 1.27 eVÅ

2
, B2 =

−6.16 eVÅ
2
, E3 = 0.3822 eV, A3 = −2.39 eVÅ

2
B3 =

26.55 eVÅ
2
, C = 0.47 eVÅ

2
, D = 0.0, E = 0.0, F =

0.1 eVÅ
2
, and G = 5.62 eVÅ

2
. The fitted band is shown in

Fig. 13.
Particularly, when the effective kz = 0, this means that

bulk kz = 0.5, Eq. (D19) decouples into three block-diagonal
matrices. From Fig. 2, it is shown that along A − H , band
crossing happens between d2

z and the combination of dxz and
dyz, i.e., we only have to consider the following block of
Eq. (D19):

H (k) =

⎛
⎜⎜⎜⎝

ε1(k) Ck2
− 0 0

Ck2
+ ε1(k) 0 0

0 0 ε3(k) Gk2
+

0 0 Gk2
− ε3(k)

⎞
⎟⎟⎟⎠. (D20)

4. k · p model for surface states at K̄ points

The little group at K̄ point of the slab system TiB2 is
C3v , which has two generators c3z(− x

2 −
√

3
2 y,

√
3

2 x − y

2 ,z)
and σv(x, − y,z). According to the DFT calculations, it was
determined that the surface state at K̄ belongs to E (see Table
49 of Ref. [73]) representation of C3v . On the basis of complex
orbitals, the related representations of its generators are given
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FIG. 13. Comparison between DFT bands and the bands from the
k · p model [Eq. (D19)] at A point of TiB2. Blue lines come from DFT
calculations, and red dotted lines come from the k · p model.
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FIG. 14. Comparison between DFT bands and the bands from the
k · p model [Eq. (D22)] at K̄ point for Ti-terminated surface of TiB2.
Blue lines come from DFT calculations and red dotted lines come
from the k · p model.

by

D(c3z) =
(

e−2iπ/3 0
0 e2iπ/3

)
, σv =

(
0 −1

−1 0

)
. (D21)

Considering the above symmetries and the constraint of
Eq. (D1), a two-band model up to the second order of k around
K̄ point for surface states is given by

H (k) =
(

Bk2 Ak+ + Ck2
−

Ak− + Ck2
+ Bk2

)
, (D22)

TABLE I. Parity of the occupied bands of TiB2 at TRIMs, �i is
in unit of the reciprocal lattice vectors. “Total” means the product of
all parities of occupied bands. �0, �1(�2), �3, and �5 are the same as
the notional �, M , A, and L, respectively.

TRIM parity Total

�0 (0.0, 0.0, 0.0) + + + − + −
�1 (0.5, 0.0, 0.0) + − − + + +
�2 (0.0, 0.5, 0.0) + − − + + +
�3 (0.0, 0.0, 0.5) − + − − + + −
�4 (0.5, 0.5, 0.0) + − − + + +
�5 (0.0, 0.5, 0.5) + − + + − +
�6 (0.5, 0.0, 0.5) + − + + − +
�7 (0.5, 0.5, 0.5) + − + + − +

where k± = kx ± iky and k2 = k2
x + k2

y . The linear part of
Eq. (D22) leads to massless Dirac dispersion E(k) = ±|k|. The
combination of the linear term and the quadratic term leads to
threefold rotation symmetry of the energy dispersion. Fitting
to the DFT-calculated band structure as shown in Fig. 14, we
obtain the following parameters for the Ti-terminated surface,

A = 0.08 eVÅ,B = −0.46 eVÅ
2
,C = 2.3 eVÅ

2
, and for the

B-terminated surface, A = 1.5 eV Å, B = 0, C = 0.

APPENDIX E: PARITIES AT TRIMS

The parities of the occupied bands of TiB2 at TRIMs are
listed in Table I. It is noted that there are six occupied bands
at A, and five occupied bands at other TRIMs. The product of
the parities of the occupied bands at M and L is 1, which leads
to ξM = 1 and ξL = 1.
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