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Role of impurities on the optical properties of rectangular graphene flakes
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We study rectangular graphene flakes using mean field states as the basis for a configuration interaction
calculation, which allows us to analyze the low lying electronic excited states including electron correlations
beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake,
but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also
investigate the impact of both short and long range impurity potentials on the optical properties of these systems.
We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often
dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central
regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong
impurity potentials.
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I. INTRODUCTION

Graphene has attracted tremendous interest due to its
remarkable properties, such as its optical response, its mechan-
ical strength, its zero band gap, and its thermal conductivity
[1–10]. It has been used in a variety of optical applications, as
a saturable absorber [11–14], polarizer [15], and mode locker
[16]. Graphene nanoribbons also have interesting electronic
and optical properties [17,18], in particular, ribbons with
zigzag edges exhibit flat bands associated with edge states that
give rise to unconventional optical properties of the nanoribbon
[19,20]. Synthesis methods for graphene often result in small,
finite sized byproducts, known as graphene flakes or graphene
quantum dots, which can be smaller than 2 nm in diameter [21].
Some of these flakes have been synthesized and characterized
in solution [22–24], while others have been deposited on
substrates such as silicon carbide [25,26]. These finite sized
flakes and other carbon based materials, with their nonzero
energy gaps, have been discussed for possible electronic and
optical device applications as graphene flake photodetectors,
light-emitting diodes, and sensitizers in solar cells [27–29].
There are also proposed biomedical applications of graphene
flakes, such as the imaging of cancer and stem cells, real time
molecular tracking in live cells, and in vivo imaging of cellular
processes [30]. Key to the development of graphene flakes for
applications is the understanding of their optical properties.
While the optical properties of graphene have been extensively
studied [17,31–34] including some finite size [35–38] and
impurity [39–42] effects, the optical properties of finite size
graphene flakes have not been, partly due to the shortcomings
of mean field theory in finite systems.

Previous studies [22,43–51] have demonstrated that the size
and shape of graphene flakes, as well as the nature of their
edges, have an impact on their optical properties. Early work
[43,50,51] focused on hexagonal and triangular flakes with
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either zigzag or armchair edges only. Recently, there has been
some progress towards the synthesis of rectangular graphene
flakes [52]. Rectangular flakes inevitably contain both types of
edges and can display unique behavior due to the competition
between effects associated with each kind of edge. Research on
these flakes has so far been at the mean field level [49,53,54],
and there is still little understanding of the optical properties
of these flakes as the size of zigzag or armchair edges are
increased.

It has been shown experimentally that common methods
for generating graphene and graphene flakes can introduce a
variety of localized impurities [55], and these impurities can
have a significant effect on the electronic and optical properties.
Progress has been made in detecting the location of impurities
on graphene flakes [56]. While there has been some work done
on how long-range disorder affects the absorption spectra of
large armchair edge hexagonal graphene flakes [51], there has
been little discussion of how localized impurities affect the
electronic properties of graphene flakes more generally. An
understanding of how impurities can be used to tune the optical
properties of graphene flakes is important for optical device
applications, such as saturable absorbers [11–14].

In this paper, we use an extended Hubbard model, also
known as the Pariser-Parr-Pople (PPP) model [57–59], to
describe the pz electrons in these graphene flakes and apply
the configuration interaction (CI) method to solve for the
many-body states in these systems. We verify that including
electron correlations beyond mean-field theory is essential.
We show that varying the size of armchair or zigzag edges
significantly changes the optical properties of these flakes,
as well as the nature of the electron distribution involved
in the optical transitions. We also investigate the effect of
impurity potentials of various strengths and ranges in these
systems and demonstrate that impurity potentials located on
the zigzag edges can have a significant effect on the low
energy absorption spectrum of these flakes. This is in contrast
to impurities located near the center or on armchair edges
of the flakes, which have an almost negligible impact on the
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absorption spectrum regardless of the strength and range of the
impurity potential. Although the known results for nanoribbons
suggest that the zigzag edge states should be prevalent in the
low energy spectrum of large rectangular graphene flakes, our
results confirm that even graphene flakes of very small sizes
have mainly zigzag edge states in their low energy spectrum.

This paper is organized as follows: In Sec. II we present
details on the model we have used to solve for the many-body
states of graphene flakes, in Sec. III we calculate the absorption
spectra of two different families of rectangular graphene flakes,
in Sec. IV we detail the effects of impurities centered at various
locations of the graphene flake, and in Sec. V we present our
conclusions.

II. METHOD

In graphene and other conjugated organic systems, the pz

electrons on the carbon backbone are primarily responsible
for the low energy physics, while the s, px , py electrons are
primarily responsible for the mechanical stability of the system
[60–62]. We model thepz electrons in the graphene flakes using
the Pariser-Parr-Pople (PPP) Hamiltonian [57–59,63–65]:

H = HT B + HHu + Hext + Himp, (1)

where HT B is the tight-binding Hamiltonian, HHu is the
Hubbard Hamiltonian, Hext extends the Hubbard Hamiltonian,
and Himp is the impurity Hamiltonian,

HT B = − t
∑

〈i,j〉,σ
c
†
iσ cjσ , (2)

HHu =U
∑

i

ni↑ni↓, (3)

Hext =1

2

∑
i �=j

σσ ′

Vij

(
niσ − 1

2

)(
njσ ′ − 1

2

)
, (4)

Himp =
∑
iσ

εic
†
iσ ciσ . (5)

Here t = 2.66 eV is the hopping parameter [66,67], σ is a spin
label, i and j are site labels, and the angular brackets indicate
sums over nearest neighbors only. The fermion creation and

annihilation operators are denoted, respectively, by c
†
iσ and

ciσ , so the electron number operator for spin σ and site i is
niσ = c

†
iσ ciσ .

We set the on-site repulsion parameter to U = 8.29 eV for
all calculations [53]. While some researchers [47–49,51] have
used heavily screened values for U , we base our choice of
this parameter on recent calculations of the Coulomb repulsion
parameter in graphene [53,68,69]. The parameters we use in
this paper have been shown to result in a semimetal solution for
the ground state of graphenelike systems [70–72] and are also
similar to values used in calculations for other organic systems
[65]. We approximate the long-range Coulomb repulsion by
the Ohno interpolation [65],

Vij = U√
1 + (4πε0Uεrij /e2)2

, (6)

where U is the on-site repulsion parameter, ε is a screening
parameter, rij is the distance between sites i and j , e = −|e| is
the electronic charge, and ε0 is the vacuum permittivity. We set
ε = 5 for all calculations, in accordance with other researchers
who have utilized this value of the screening parameter to
model the long range Coulomb repulsion in similar systems
[22,53].

Several types of impurities can affect graphene flakes.
Common synthetic routes for the manufacture of graphene
can introduce metallic impurities that can latch onto particular
sites [55]. Other impurities include the substitution of carbon
atoms on the edges of the graphene flake by boron and oxygen
atoms [73,74]. To first approximation these impurities can be
modeled by introducing a site dependent potential. We model
the potential at ri due to an impurity at rc by a Gaussian

εi = εmax exp

(
− (ri − rc)2

2τ 2

)
, (7)

where τ characterizes the range of the impurity potential, ri

is the location of site i, and εmax is the maximum value of
the energy. While a range of these parameters are considered
below, the default parameters we use to model the impurity
potential are εmax = t/3 and τ = lb. These parameters are
in line with recent work done on modeling disorder in large
graphene flakes [51].

We first solve the Hartree-Fock (HF) equations for the PPP
Hamiltonian (1),

H HF = −t
∑

〈i,j〉,σ
c
†
iσ cjσ +

∑
iσ

εic
†
iσ ciσ

+U
∑

i

(〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉〈ni↓〉 − 〈c†i↑ci↓〉c†i↓ci↑ − 〈c†i↓ci↑〉c†i↑ci↓ + 〈c†i↑ci↓〉〈c†i↓ci↑〉)

+
∑
i �=j

Vij

(
ni〈nj 〉 − ni − 1

2
〈ni〉〈nj 〉 + 1

2
− 1

2

∑
σσ ′

〈c†iσ cjσ ′ 〉c†jσ ′ciσ + 〈c†jσ ′ciσ 〉c†iσ cjσ ′ − 〈c†iσ cjσ ′ 〉〈c†jσ ′ciσ 〉
)

. (8)

This equation is derived following the prescription found
in standard references [53,75–77]. We diagonalize (8) self
consistently, using the tight-binding (2) eigenfunctions as an
initial guess. For the parameters used, we find two stable

solutions: one antiferromagnetic and one paramagnetic. The
antiferromagnetic solution is discarded [71,72,78–81], since
other methods that treat electron correlation more rigorously
than HF, such as quantum Monte Carlo and CI calculations,
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have shown that the paramagnetic solution [70,82,83] is the
lower energy state on similar but smaller systems. Upon the
self-consistent solution of (8) with paramagnetic expectation
values, one can write (8) in its diagonal form

H HF =
∑
mσ

h̄ωmσC†
mσCmσ , (9)

where h̄ωmσ are the eigenvalues associated with the single
particle states. The operators C

†
mσ and Cmσ can be written in

terms of the site basis as

C†
mσ =

∑
i

Mmσ,ic
†
iσ , (10)

Cmσ =
∑

i

M∗
mσ,iciσ , (11)

where C
†
mσ indicates the creation of a HF quasiparticle in state

m with spin σ , Mmσ,i is the amplitude associated with the state
m at site i, and is typically nonzero for all i.

The single particle states obtained from solving the HF
equations with paramagnetic expectation values self consis-
tently are then used to construct the HF ground state

|gHF〉 =
N/2∏
m

C
†
m↑C

†
m↓|vac〉, (12)

where |vac〉 represents the full vacuum, and N is the number
of electrons in the system. The states that are filled in the
HF ground state are denoted as “valence,” and those that are
unfilled in the HF ground state are denoted as “conduction.”

We then rewrite the total Hamiltonian (1) in the HF
electron-hole basis; its full form is given in Appendix. We
use an electron-hole basis, where the HF electron creation is
designated by the operator a

†
Lmσ , and the HF hole creation is

designated by the operator b
†
Hnσ

, so

aLmσ = CLmσ , b
†
Hnσ

= CHnσ̃ , (13)

where σ̃ is the opposite spin of σ , Lm is the mth state above
the lowest unoccupied HF state, and Hn is the nth state below
the highest occupied HF state. The lowest unoccupied HF state
itself is denoted as L0 and the highest occupied HF state itself
is denoted as H0, or for simplicity, L and H , respectively.

We select an “active space” for our CI calculation defined
by a set of HF excited states, identified by overbars. The singly
excited states are of the form

|Lm,Hn; σ 〉 = a
†
Lmσ b

†
Hnσ̃

|gHF〉, (14)

where m, n range over {0, . . . ,4}. The doubly excited states
are of the form

|LmLm′ ; Hn,Hn′ 〉 = a
†
Lm↑a

†
Lm′ ↓b

†
Hn↓b

†
Hn′ ↑|gHF〉, (15)

where m,m′,n,n′ all range over {0, . . . ,4}. In the special
case where m = m′ and n = n′ we write |2LmHn〉 for
|LnLn; HmHm〉. Together with the HF ground state (12), these
HF excited states are used to approximately diagonalize the
total Hamiltonian (1). Upon diagonalization of the many-body
Hamiltonian (1), the states become superpositions of the HF

states; for example, the ground state is given by

|g〉 = f GS
g |gHF〉 +

∑
α,β,σ

f αβσ
g |Lα,Hβ ; σ 〉

+
∑
αβγ δ

f αβγ δ
g |LαLβ ; Hγ Hδ〉, (16)

where f GS
g , f αβσ

g , f αβγ δ
g are the CI ground state amplitudes of

the HF ground state, single excitations, and double excitations,
respectively. The excited states have similar expressions. We do
not include higher order excitations in our calculation because
their energies are large compared to the single and double
excitations that are included, so their contribution to the CI
low energy states can be expected to be small; as well, the
matrix elements of the Hamiltonian between the HF ground
state and the states with higher order excitations vanish. For
the systems of interest, the main contribution to the CI ground
state (16) is from the HF ground state, as it corresponds to
more than half (|f GS

g |2 > 0.5) for all the systems studied in
this paper, indicating that the HF ground state is indeed a good
starting point. We find that increasing the active space in our
calculation does not significantly change the composition of
the low energy states, indicating that our calculation already
includes all relevant HF excitations that make up the low energy
states of the system.

Absorption spectrum calculation

In this subsection, we outline the calculation for the first
order polarizability of the system and introduce the spatial
profile of the transition, a quantity which is used to characterize
the charge distributions of electronic states involved in bright
transitions. The number operator for a particular site i is
defined as

ni =
∑

σ

c
†
iσ ciσ . (17)

In the electron-hole basis, it is written as

ni =
∑
mm′σ

�mm′σ,i(a
†
mσam′σ − b

†
m′σ bmσ )

+
∑
mm′σ

�mm′σ,i(a
†
mσb

†
m′σ̃ + bmσ̃ am′σ ) +

∑
mσ

�mmσ,i ,

(18)

where we have defined

�mm′σ,i = Mmσ,iM
∗
m′σ,i , (19)

and Mmσ,i is the amplitude of the HF state m with spin σ at
site i.

The dipole moment operator is approximated as

μ =
∑

i

eri

(∑
σ

c
†
iσ ciσ − 1

)
, (20)

where the charge of each nucleus not balanced by the in-plane
bonding electrons of the molecule is included, and so the dipole
moment operator is independent of origin. Transforming it into
the electron-hole basis as defined in the previous subsection,
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we have

μ =
∑
mσ

μmmσ − e
∑

i

ri +
∑
mm′σ

μmm′σ a†
mσam′σ

−
∑
mm′σ

μmm′σ b
†
m′σ bmσ +

∑
mm′σ

μmm′σ a†
mσ b

†
m′σ̃

+
∑
mm′σ

μmm′σ bmσ̃ am′σ , (21)

where

μmm′σ =
∑

i

eriMmσ,iM
∗
m′σ,i . (22)

We determine the absorption spectrum by calculating the
imaginary component of the first order polarizability of the
system [84]. Assuming the system is initially in the ground
state, the imaginary component of the first order polarizability
is given by

Im
(
α

(1)
kl (ω)

) = γ

ε0h̄

∑
n

μk
gnμ

l
ng

(ωng − ω)2 + γ 2
, (23)

where k,l are Cartesian components, μgn is the matrix element
of the dipole moment operator between the ground state and
the state n, and h̄γ is a frequency broadening, which we set
to h̄γ = 0.01 eV for all calculations, primarily for reasons of
presentation [85].

In order to analyze the charge distributions of electronic
states involved in bright transitions, we define

TY ;i = 〈g|ni |Y 〉, (24)

where i is the site, g is the CI ground state, and Y is a CI
excited state. This quantity is related to the matrix element of
the dipole moment operator between the ground state and Y ,
the “transition dipole moment,”

〈g|μ|Y 〉 =
∑

i

eriTY ;i . (25)

We call TY ;i , taken as a function of i for fixed Y , the spatial
profile of the transition g → Y .

III. PRISTINE GRAPHENE FLAKES

We first investigate the optical properties of the pristine
graphene flakes. In this section, we present our calculations
for the absorption spectra of the two families of pristine
graphene flakes and observe the trends as we increase their
size. We also present the spatial profiles of a select few low
energy transitions. For the rest of this paper, we shall refer to
the HF single particle levels as “modes,” and we shall refer
to a state that results from the CI calculation as a “state.”
In these systems, the highest occupied HF mode and the
lowest unoccupied HF mode primarily have electron density
concentrated on the zigzag edges of the flake and are labeled
as edge modes. Modes that are below (above) the highest
occupied HF mode (lowest unoccupied HF mode) typically
have electron density spread throughout the flake, and are
labeled as bulk modes. We label the lowest energy bright
excited state the S1 state, and the second lowest energy bright
excited state the S2 state, and so on.

FIG. 1. A cartoon illustration of the W3L3 flake. Here the width
and length of this flake are both composed of three hexagons. The
axis convention used in the rest of the paper is also illustrated in this
figure; the width corresponds to the x̂ axis, and the length corresponds
to the ŷ axis.

We investigate rectangular graphene flakes, and use two
numbers to specify a particular rectangular graphene flake:
the “width,” which identifies the number of hexagons on the
horizontal axis, and the “length,” which identifies the number
of hexagons on the vertical axis of this flake. The notation we
use is WwLl for a flake with a width of w hexagons and a
length of l hexagons. The width corresponds to the size of the
zigzag edges, while the length corresponds to the size of
the armchair edges of the flakes. We illustrate the example
of the W3L3 flake in Fig. 1. The four families of flakes we
consider are the W3Ln, WnL3, W5Ln, and WnL5 families.
The W3Ln family consists of all flakes where the width is 3
hexagons but the length varies, e.g., W3L3, W3L5,...,W3L11;
in this family of flakes the armchair edges are larger than the
zigzag edges. The WnL3 family consists of all flakes where
the length is 3 hexagons but the width varies, e.g., W3L3,
W5L3,...,W11L3; in this family of flakes the zigzag edges are
larger than the armchair edges. The W5Ln family consists of all
flakes where the width is 5 hexagons but the length varies, e.g.,
W5L5, W5L7, and W5L9; in this family of flakes the armchair
edges are larger than the zig-zag edges. Finally, the WnL5
family consists of all flakes where the length is 5 hexagons but
the width varies, e.g., W5L5, W7L5, and W9L5; in this family
of flakes the zigzag edges are larger than the armchair edges.

We first consider the W3Ln family of flakes. In Fig. 2, we
show the absorption spectrum for the W3Ln family of flakes.
As the size of the flake is increased, the first absorption peak is
redshifted, as one would expect even within a noninteracting
description of these flakes [17,65]. The first absorption peak
corresponds to a transition dipole moment that is always
polarized along the long (here ŷ) axis of the flake. We show a
plot of TS1;i for the W3L11 flake in Fig. 2. For this plot, and
all subsequent plots of the spatial profiles of the transitions,
we place a circle at the location of each site i; the area of each
circle indicates the magnitude of TS1;i , and the color indicates
whether it is positive (red) or negative (blue). Even though in
this family of flakes the size of the armchair edges is larger than
the size of the zigzag edges, TS1;i has electron concentration
primarily on the zigzag edges. Although based on the results
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FIG. 2. (Top) Absorption spectrum of the W3Ln family of flakes.
As we consider larger flakes, the first absorption peak, associated
with a transition with a transition dipole moment polarized along the
long axis (here ŷ) of the flake, is redshifted. (Bottom) A plot of (a)
TS1;i and (b) TS2;i in the W3L11 system. For the plots of TS1;i and
TS2;i , we place a circle at the location of each site i; the area of each
circle indicates the magnitude of the relevant quantity, and the color
indicates whether it is positive (red) or negative (blue). The majority
of the electron concentration is confined to the zigzag edges for both
transitions.

of graphene nanoribbons it is expected that the electron
concentration associated with the lowest energy absorption
peak would be localized on the zigzag edges of the flakes, we
find that this holds true even for the smallest graphene flake we
consider. The dominant contributions to the S1 state are from
single excitations (14) of HF quasiparticles from the highest
occupied HF mode to the lowest unoccupied HF mode—
two modes that primarily have electron concentration on the
zigzag edges—with some corrections from excitations of HF
quasiparticles from the bulk modes. The second absorption
peak is associated with a transition whose transition dipole
moment is also polarized along the long axis (ŷ) of the flake.
We show a plot of TS2;i for the W3L11 flake in Fig. 2. Similar
to TS1;i , TS2;i also has significant electron concentration on the
zigzag edges. The dominant contributions to the S2 state are
from double excitations (15) of HF quasiparticles, primarily
involving excitations between edge modes.

In Fig. 3, we plot the absorption spectrum for the WnL3
family of flakes. Again, as the flake gets larger, the first absorp-
tion peak is redshifted. For larger flakes, the first absorption
peak is associated with a transition with a transition dipole
moment polarized along the long axis (here x̂) of the flake.
We also plot TS1;i for the W11L3 flake in Fig. 3. For the first
bright excited state, TS1;i indicates that the electrons involved
in that particular transition are localized on the zigzag edges.
The first bright excited state is composed of several HF double

FIG. 3. (Top) Absorption spectrum of the WnL3 family of flakes.
Like the W3Ln family, for the large flakes (n > 5) the first absorption
peak is associated with a transition whose transition dipole moment is
polarized along the long direction (here x̂) of the flake. As the size of
the system increases, the first absorption peak is redshifted. (Bottom)
A plot of (a) TS1;i and (b) TS2;i in the W11L3 system. The majority
of the electron concentration is confined to the zigzag edges for both
transitions.

excitations. These states become bright because the CI ground
state of these flakes has significant contributions from HF
double excitations, which leads to a nonzero transition dipole
moment between the ground state and the S1 state. Unlike
the W3Ln family of flakes, the state which predominantly
involves the HF single excitation between edge modes, the
S2 state in the WnL3 family, is weakly bright and higher in
energy than the first excited state. This optical transition is
weak because the dominant contribution to the excited state,
the HF single excitation which involves the transition from the
edge modes, has a transition dipole moment which is oriented
on the short axis (here ŷ) of the flake. The quantity TS2;i is
plotted in Fig. 3; it shows significant electron concentration on
the zigzag edges of the system. In the W3Ln family, the S1

state is composed primarily of HF single excitations, while
the S2 state is composed mainly of HF double excitations.
However, in the WnL3 family this trend is reversed. These
features cannot be observed using mean-field calculations only
[53] and require the CI calculation.

We now turn to the W5Ln family of flakes. In Fig. 4, we
plot the absorption spectrum for the W5Ln family of flakes.
Both the first absorption peak, associated with a very weak
transition whose transition dipole moment is polarized along
the long axis (here ŷ) of the flake, and the second and much
stronger absorption peak, associated with a transition whose
transition dipole moment is polarized along the short axis
(here x̂), are redshifted as the flake gets larger. We plot TS1;i

in Fig. 4. For this particular system, TS1;i extends around the
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FIG. 4. (Top) Absorption spectrum of the W5Ln family of flakes.
As we consider larger flakes, the first two absorption peaks are
redshifted. The lowest energy peak is associated with a transition
with a transition dipole moment polarized along the long axis (here
ŷ) of the flake, while the second lowest energy peak corresponds to a
transition with a transition dipole moment polarized along the short
axis (here x̂) of the flake. (Bottom) Plot of (a) TS1;i and (b) TS2;i for the
W5L9 system. The majority of the electron concentration is confined
to the zigzag edges for the brighter transition (g → S2).

entire flake, although with a significant contribution from the
zigzag edges. We also plot TS2;i in Fig. 4, which shows that the
electrons are concentrated almost exclusively on the zigzag
edges of the system for this transition. In these flakes, the S1

state is primarily composed of HF single excitations involving
transitions from the edge modes, while for larger flakes, the
S1 state also has significant contributions from HF single
excitations involving the bulk modes. This mixing is larger in
these flakes than in the W3Ln family. The S2 state is primarily
composed of HF double excitations.

The W5Ln family of flakes behaves similarly to the W3Ln

family of flakes, except in the strength of the first absorption
peak. This weak absorption peak, associated with a transition
whose transition dipole moment is polarized along the long
axis of the flake, is dwarfed in intensity by the bright peak
associated with a transition whose transition dipole moment is
polarized along the short axis.

Finally we investigate the WnL5 family of flakes. We plot
the absorption spectrum for these flakes in Fig. 5. As the flake
gets larger, the first absorption peak is again redshifted, but
unlike the W5Ln family of flakes, the lowest absorption peak
is very strong. The lowest absorption peak corresponds to
the ground to S1 transition, the associated transition dipole
moment is polarized along the long axis (here x̂) of the flake.
The second lowest energy absorption peak corresponds to the
ground toS2 transition, the associated transition dipole moment
is polarized along the short axis (here ŷ) of the flake. We

FIG. 5. (Top) Absorption spectrum of the WnL5 family of flakes.
As we consider larger flakes, the first two absorption peaks are
redshifted. For the largest flake, W9L5, the lowest energy peak
corresponds to a transition with a transition dipole moment oriented
along the long axis (here x̂) of the system, while the second lowest
energy peak is attributed to a relatively weak transition with a
transition dipole moment oriented along the short (here ŷ) axis of
the flake. (Bottom) Plot of (a) TS1;i and (b) TS2;i for the W9L5 system.
The electrons are concentrated on the zigzag edges for both these
transitions.

plot TS1;i and TS2;i for the W9L5 flake in Fig. 5. For both
these states, most of the electron concentration is located on
the zigzag edges. Unlike the W5Ln family of flakes, the S1

state in the WnL5 family is composed mainly of several HF
double excitations, while the S2 state is composed primarily
of HF single excitations involving transitions between edge
modes, but with significant mixing from HF single excitations
involving transitions between bulk modes. The trends we see
in the WnL5 family are similar to the WnL3 family, for which
the lowest energy bright state is composed of mainly HF
double excitations while the second lowest energy bright state
is composed mainly of HF single excitations.

In summary, the lowest energy bright transition for pristine
graphene flakes invariably has a transition dipole moment
polarized along the long axis of the flake. When the armchair
edges are larger than the zigzag edges, the lowest energy bright
excited state is composed mainly of HF single excitations.
However, when the zigzag edges are larger than the armchair
edges, the lowest energy bright excited state is composed
mainly of HF double excitations.

We conclude this section by comparing the predictions
of our CI calculation with those that would follow from a
simple mean field approach. As an example, in Fig. 6 we
consider the W11L3 flake. For each method, we present the
predicted absorption spectrum and the spatial profile of the
first bright transition. There are large discrepancies between
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FIG. 6. (Top) Absorption spectrum of the W11L3 flake from the
CI calculation and the mean field (MF) calculation. (Bottom) Plot of
(a) TS1;i for the CI calculation and (b) TS1;i for the MF calculation for
the W11L3 flake.

the two methods. Besides the large differences in the calculated
transition energies, the mean field calculation indicates that
the first absorption peak for both of these flakes is associated
with a transition dipole moment polarized along the short
(here ŷ) axis while the CI calculation identifies it with one
polarized along the long (here x̂) axis. In the CI calculation,
the excited states are superpositions of several HF excitations;
this leads to CI excited states that are qualitatively differ-
ent from the excited states predicted by mean field theory
alone.

IV. THE EFFECTS OF IMPURITIES ON THE
ABSORPTION SPECTRA

Impurities can impact the optical properties of graphene
flakes depending on the location, strength, and range of
influence of the impurity potentials [21,25,26,55]. In this
section, we analyze the effect of impurities on the optical
properties of the graphene flake families discussed in the
previous section. We consider impurity potentials centered
on the zigzag edges, armchair edges, and in the center of
the flake, and compute the optical properties of the graphene
flake. We illustrate these impurity potentials in Fig. 7. We
show results for positive impurity potentials. Changing the
sign of the impurity potential does not qualitatively change
the results presented in this section. This can be understood by
treating the impurity potential perturbatively. The first order
correction to the energy of states, given by 〈ψ |Himp|ψ〉 where
ψ corresponds to a particular CI state, is similar for the ground
state and states close in energy to it. This is due to the fact
that the densities associated with the ground state and the low
energy unperturbed states are approximately similar around the

FIG. 7. Cartoon of a W3L3 flake showing the locations of various
impurity potentials. The red circle represents an impurity placed on
the zigzag edges, the light blue circle represents an impurity placed
on the armchair edges, and the green circle represents an impurity
placed in the middle, or so-called “bulk” region, of the flake.

impurity location. Therefore, the effect of impurity potentials
becomes significant only at second order in the perturbation,
for which the energy corrections are independent of the sign
of the impurity potential.

We first examine a flake with larger armchair edges than
zigzag, namely the W3L11 flake. The absorption spectrum of
the W3L11 flake, with a Gaussian impurity potential located on
the middle, armchair, and zigzag edges of the flakes are plotted
in Fig. 8. We use the impurity potential parameters εmax = t/3
and τ = lb, for which the absorption spectra of the flakes with
the impurity on its armchair edge or in the center of the flake
are unchanged from that of the pristine graphene flake. The
low-lying bright excited states are not significantly affected

FIG. 8. Absorption spectrum of the W3L11 flake with varied
impurity locations. The absorption remains unchanged for impurity
potentials centered on the armchair edges or in the middle of the flake,
but placing an impurity potential on one of the zigzag edges results in
two new low energy peaks, one redshifted, one blueshifted from the
original absorption line. The parameters used to model the impurity
potential were εmax = t/3 and τ = lb.
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FIG. 9. (a) Profile of an impurity placed in the zigzag bottom site
of the W3L11 flake. Plot of (b) TS1;i and (c) TS2;i for the W3L11
system with an impurity potential from (a). The charge distributions
for these transitions are still concentrated around the zigzag edges.
The parameters used to model the impurity potential were εmax = t/3
and τ = lb.

by the presence of the impurity potential on these locations,
as evidenced by the absorption spectrum and the joint density
of states. This is because the spatial profiles of the low lying
excitations have little electron concentration on the armchair
edges or in the middle of the flake. As illustrated in the previous
section, the low energy transitions in rectangular graphene
flakes have electron concentration on the zigzag edges. The
electron concentration on the zigzag edges is unaffected by
impurity potentials centered on the middle or armchair edges
of the flake, unless the impurity potentials extend to the zigzag
edges.

In contrast, an impurity on a zigzag edge of a graphene
flake can have a significant impact on its optical properties.
This is because the charge distributions involved in the bright
transitions have significant concentration on the zigzag edges.
The impurity blueshifts the first absorption peak, as the excited
state involved in the transition becomes less energetically
favorable due to the presence of the impurity potential. It
also mixes a dark transition with a bright HF single excitation
that involves an excitation of an electron between the edge
modes. In Fig. 9, we show the quantities TS1;i and TS2;i

for an impurity potential centered on a zigzag edge of the
flake.

In order to determine the robustness of the influence
of impurities on the zigzag edges of a graphene flake on
their optical properties, we consider a shorter range impurity
potential, as well as a weaker one. In Fig. 10 we plot the
absorption spectrum for the W3L11 flake with a zigzag
impurity of range τ = lb/5.0, which corresponds to an im-
purity potential essentially confined to a single site. It shows
that even a shorter range impurity potential centered on the
zigzag edge leads to a significant change in the absorption

FIG. 10. Absorption spectrum of the W3L11 flake with varied im-
purity locations, impurity strengths, and ranges. Plot of (a) absorption
spectrum for a shorter range impurity potential localized to a particular
site with εmax = t/3 and τ = lb/5.0 and (b) the absorption spectrum
with a weaker impurity potential, with parameters of εmax = t/5 and
τ = lb.

spectrum, as well as in the joint density of states, and they
also mix otherwise dark transitions with bright HF excitations.
In Fig. 10 we plot the absorption spectrum for the W3L11
flake with a zigzag impurity of reduced strength εmax = t/5,
while setting the range of influence to τ = lb. It shows that
even a weaker impurity on the zigzag edge has a significant
effect on the absorption spectrum of rectangular graphene
flakes.

We now analyze a graphene flake with larger zigzag edges
than armchair edges, namely the W11L3 flake. In Fig. 11
we plot the absorption spectrum for the W11L3 flake with
impurities with potential strength εmax = t/3 and range τ = lb.
As we found for the W3L11 flake, an impurity located in
the middle of the W11L3 flake, or on its armchair edges, has
almost no effect on the absorption spectrum unless the impurity
potential extends to the zigzag edges. Impurities located on
the zigzag edges, however, can have a significant effect on the
absorption spectrum of these flakes. This is because, like the
W3L11 flake, the charge distributions involved in the low lying
transitions are concentrated on the zigzag edges of the flake.
Impurities on the zigzag edges lead to a splitting of the first
absorption peak into three smaller ones, and produces a very
weak low energy absorption peak corresponding to a transition
whose transition dipole moment is polarized along the short
(here ŷ) axis of the flake. This weak low energy absorption peak
is due to a dark transition that becomes mixed with a bright
HF single excitation involving the edge modes in the presence
of the impurity. In Fig. 12 we show the quantities TS1;i , TS2;i ,
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FIG. 11. Absorption spectrum of the W11L3 flake with varied
impurity locations. The absorption remains relatively unchanged for
impurities located in the middle of the flake, but placing an impurity
potential on one of the zigzag edges results in several new peaks.
The zigzag impurity potential also induces a very weak, low energy
absorption with a transition dipole moment oriented in the ŷ direction,
the short axis of the flake. The parameters used to model the impurity
potential were εmax = t/3 and τ = lb.

TS3;i , and TS4;i for the W11L3 flake with a zigzag impurity.
Much like the pristine graphene flakes, the spatial profiles of
these transitions are concentrated on the zigzag edges, but here
with reduced electron concentration around the center of the
impurity potential. Impurities away from the zigzag edges but
with an extended impurity potential that reaches those edges
can also impact the optical properties of graphene flakes. In
Fig. 13, we show the dependence of the absorption spectrum of
the W11L3 flake on the range of the impurity potential as well
as strength of the impurity potential. A shorter range impurity
potential (τ = lb/5) on an armchair edge does not change the
absorption spectrum, nor does it have a significant effect on the
joint density of states, while a shorter range impurity potential
on the zigzag flake does. Even a weaker strength impurity
potential (εmax = t/5) on the zigzag edge leads to a significant
change in the absorption spectrum and the joint density of
states.

Lastly we analyze the effects of impurities on the larger
W9L5 flake. In Fig. 14, we plot the absorption spectrum for a
impurity potential with strength εmax = t/3, and range τ = lb,
located at different locations on the flake. Again, an impurity
on the zigzag edge has a significant effect on the absorption
spectrum, while impurities on the armchair edges, or the

FIG. 13. Absorption spectrum of the W11L3 flake with varied
impurity locations, varied impurity strengths, and ranges. Plot of
(a) the absorption spectrum of a W11L3 flake with a shorter range
impurity potential, parameters used to model the impurity were
εmax = t/3 and τ = lb/5 and (b) the absorption spectrum of a W11L3
flake with a weaker impurity potential, parameters used to model the
weak impurity potential were εmax = t/5 and τ = lb.

middle of the flake, have almost no impact. This is because
the charge distributions involved in the low lying transitions
of the system are concentrated mainly on the zigzag edge. The
zigzag impurity leads to several peaks within the proximity
of the lowest energy absorption peak of the pristine graphene
flakes. Similarly to the WnL3 family with zigzag impurities,
there is a very weak low energy absorption peak associated
with a transition whose transition dipole moment is polarized
along the short (here ŷ) axis of the flake. This peak is associated
with a dark transition that becomes mixed with several bright
HF excitations, including transitions between edge modes. The
impurity potential also significantly enhances (by a factor of

FIG. 12. Plot of the (a) profile of an impurity placed in the zig-zag bottom site of the W11L3 flake with the same parameters as in Fig 11.
Plot of (b) TS1;i , (c) TS2;i , (d) TS3;i , and (e) TS4;i for the W11L3 flake with an impurity potential shown in (a). The charge distributions are still
concentrated on the zig-zag edges for these transitions.
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FIG. 14. Absorption spectrum of the W9L5 flake with varied
impurity locations. The absorption remains relatively unchanged for
impurities located on either the armchair edges or in the middle
of the flake. However, placing an impurity potential on one of the
zigzag edges results in several new peaks, including a relatively weak
low energy absorption which has a transition dipole moment that is
polarized in the ŷ direction, the short axis of the flake. The parameters
used to model the impurity potential were εmax = t/3 and τ = lb.

2.5) the previously weak absorption peak with an associated
transition dipole moment polarized along the short (here ŷ)
axis of the flake by mixing the excited state with several other
bright HF excitations. We plot the transition densities TS1;i ,
TS2;i , TS3;i , and TS4;i in Fig. 15, which shows they are still
concentrated on the zigzag edges. In Fig. 16, we explore the
dependence of the absorption spectrum on the strength of the
impurity potential. Even a weaker impurity potential placed on
the zigzag edge can have a significant impact on the absorption
spectrum.

Ultimately, impurities on the zigzag edge have a significant
effect on the low energy absorption spectrum of the graphene
flakes studied in this paper. This is because the charge distribu-
tions involved in the low energy transitions are concentrated on
the zigzag edges. Impurities located in the middle of the flake,
or on the armchair edges, have essentially no impact as they do
not affect the charge distributions involved in the low energy
transitions in these systems. Even though the impurity potential
can often lead to the shift of the energies of peaks, and can
turn dark transitions bright, it can sometimes enhance certain
absorption features, making the role of impurities potentially
beneficial to certain applications.

FIG. 16. Absorption spectrum of the W9L5 flake with varied
impurity locations and a weaker strength. The parameters used to
model the impurity potential were εmax = t/5 and τ = lb.

V. CONCLUSION

We have calculated the optical properties of several rectan-
gular graphene flakes, taking into account electron correlations
beyond the mean-field level. Including these correlations is es-
sential to accurately describe the low energy optical absorption
of these flakes, as mean-field theory alone cannot accurately
predict their optical properties. We find that the first absorption
peak invariably corresponds to a transition dipole moment
polarized along the longest axis of the flake. We also find
that the electron concentration for the low energy transitions
are always concentrated on the zigzag edges, regardless of
whether or not the zigzag edges are longer than the armchair
edges. Thus, similarly to graphene nanoribbons, the zigzag
edges of rectangular graphene flakes plays a primary role in
the optical absorption, even for very small graphene flakes.
Recent progress in the synthesis of rectangular graphene flakes
[52] holds promise for producing graphene flakes of desired
shapes and sizes. Predictions of optical properties of graphene
flakes, such as those presented in this paper, could be tested by
measuring the absorption spectra of graphene flakes either in
solution or deposited on substrates.

We also investigated the effect of impurities on the optical
properties of rectangular graphene flakes by placing impurity
potentials of different spatial ranges and strengths on different
locations. We find that the effect of impurities on the optical
properties of these graphene flakes strongly depends on the
location of the impurity potential. Impurities on the zigzag

FIG. 15. Plot of (a) the profile of an impurity placed in the zigzag bottom site of the W9L5 flake with the same parameter as Fig. 14. Plot of
(b) TS1;i , (c) TS2;i , (d) TS3;i , and (e) TS4;i for the W9L5 flake with an impurity potential from (a). The charge distributions are still concentrated
on the zigzag edges for these transitions.
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edges have a significant impact on the optical properties of
these graphene flakes, while impurities on the “bulk” region
or their armchair edges have a negligible impact on the
frequencies and the nature of the optical transitions. We expect
that understanding these qualitative features will be central
in the design of any graphene flake devices, both when it is
desirable to avoid the effects of impurities, and when it is
desirable to exploit their effect on the optical properties of
the graphene flakes.

APPENDIX: FULL HAMILTONIAN IN THE
ELECTRON/HOLE BASIS

In this appendix, we rewrite the total Hamiltonian in
the electron-hole basis, which is an important step in our
configuration interaction calculations (16).

1. The tight-binding and impurity Hamiltonian
in the electron/hole basis

The tight-binding Hamiltonian (2), combined with the
impurity potential (5), can be written as

HT B + Himp = −t
∑

〈i,j〉,σ
c
†
iσ cjσ +

∑
iσ

εic
†
iσ ciσ . (A1)

Moving to the basis defined in (10,11), this Hamiltonian can
be written as

HT B + Himp =
∑
mm′σ

κ̃mm′C†
mσCm′σ , (A2)

where

κ̃mm′ =
∑

i

εiMmσ,iM
∗
m′σ,i − t

∑
〈i,j〉

Mmσ,iM
∗
m′σ,j . (A3)

Then, we can rewrite (A2) in the electron-hole basis (13) as

HT B + Himp =
∑
mm′σ

κ̃mm′a†
mσ am′σ −

∑
mm′σ

κ̃mm′b
†
m′σ bmσ

+
∑
mm′σ

κ̃mm′(a†
mσb

†
m′σ̃ + bmσ̃ am′σ )

+
∑
mσ

κ̃mmσ . (A4)

2. The Hubbard Hamiltonian in the electron/hole basis

The Hubbard Hamiltonian (3) can be written as

HHu = U
∑

i

ni↑ni↓. (A5)

In the basis defined in (10,11), we can write this as

HHu =
∑

mm′pp′
�mm′pp′C

†
m↑Cm′↑C

†
p↓Cp′↓, (A6)

where

�mm′pp′ = U
∑

i

Mm↑iM
∗
m′↑iMp↓,iM

∗
p′↓,i . (A7)

Moving to an electron-hole basis, the Hubbard Hamiltonian
can be written as

HHu = HHu;0 + HHu;1 + HHu;2 + HHu;3 + HHu;4. (A8)

The first term can be written as

HHu;0 =
∑

m∈ filled
n ∈ filled

�mmnn. (A9)

Equation (A9) accounts for the Coulomb repulsion of the
nominal vacuum.

The second part of the Hamiltonian is

HHu;1 =
∑
mm′

p ∈ filled

�mm′ppa
†
m↑am′↑ +

∑
pp′

m ∈ filled

�mmpp′a
†
p↓ap′↓ −

∑
pp′

m ∈ filled

�mmpp′b
†
p′↑bp↑ −

∑
mm′

p ∈ filled

�mm′ppb
†
m′↓bm↓

+
∑
mm′

p ∈ filled

�mm′ppa
†
m↑b

†
m′↓ +

∑
pp′

m ∈ filled

�mmpp′a
†
p↓b

†
p′↑ +

∑
mm′

p ∈ filled

�mm′ppbm↓am′↑ +
∑
pp′

m ∈ filled

�mmpp′bp↑ap′↓.

(A10)

Equation (A10) contains the single particle terms that play a role in the matrix elements of both single and double excitations.
The third part of the Hubbard Hamiltonian is

HHu;2 =
∑

mm′pp′
�mm′pp′(a†

p↓bm↓ − a
†
m↑bp↑)am′↑ap′↓ +

∑
mm′pp′

�mm′pp′a
†
m↑a

†
p↓(b†p′↑am′↑ − b

†
m′↓ap′↓)

+
∑

mm′pp′
�mm′pp′(b†m′↓ap′↓ − b

†
p′↑am′↑)bp↑bm↓ +

∑
mm′pp′

�mm′pp′b
†
m′↓b

†
p′↑(a†

p↓bm↓ − a
†
m↑bp↑). (A11)

Equation (A11) has matrix elements between single and double excitations. The fourth part of the Hubbard Hamiltonian is

HHu;3 = −
∑

mm′pp′
�mm′pp′ (a†

p↓b
†
m′↓bm↓ap′↓ + a

†
m↑b

†
p′↑bp↑am′↑) +

∑
mm′pp′

�mm′pp′(a†
p↓b

†
p′↑bm↓am′↑ + a

†
m↑b

†
m′↓bp↑ap′↓)

−
∑

mm′pp′
�mm′pp′(bm↓bp↑am′↑ap′↓ + a

†
m↑a

†
p↓b

†
m′↓b

†
p′↑). (A12)
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Equation (A12) is the part of the Hamiltonian that has a
contribution to the matrix elements between single excitations,
between the ground state and double excitations, as well as
between different double excitations. The last part of the
Hubbard Hamiltonian is

HHu;4 =
∑

mm′pp′
�mm′pp′a

†
p↓a

†
m↑am′↑ap′↓

+
∑

mm′pp′
�mm′pp′b

†
m′↓b

†
p′↑bp↑bm↓. (A13)

The term (A13) has matrix elements between double excita-
tions only.

3. The extended Hubbard Hamiltonian in the electron/hole basis

The extended Hubbard Hamiltonian can be written as

Hext = Hee + Hen + Hnn, (A14)

where

Hee =1

2

∑
i �=j

σσ ′

Vijniσ njσ ′ , (A15)

Hen = − 1

2

∑
i �=j

σ

Vij (niσ + njσ ), (A16)

Hnn =1

2

∑
i �=j

Vij . (A17)

The term (A15) describes the long-range interaction between
the electrons, (A16) describes the electron-nuclei interaction,

and the term (A17) describes the nuclei-nuclei interaction,
which in our model is a constant.

a. Hee in the electron/hole basis

The extended Hubbard electron-electron repulsion Hamil-
tonian is

Hee = 1

2

∑
i �=jσσ ′

Vijniσ njσ ′ . (A18)

Rewriting this in the HF basis,

Hee =
∑

mm′nn′
σσ ′

�mm′nn′C†
mσCm′σC

†
nσ ′Cn′σ ′, (A19)

where

�mm′nn′ = 1

2

∑
i �=j

VijMmσ,iM
∗
m′σ,iMnσ ′,jM

∗
n′σ ′,j . (A20)

Moving to the electron-hole basis and normal ordering, the
Hamiltonian can be written as

Hee = Hee;0 + Hee;1 + Hee;2 + Hee;3 + Hee;4. (A21)

The first part of the Hamiltonian can be written as

Hee;0 =
∑
σσ ′

m,n ∈ filled

�mmnn +
∑

m ∈ filled
n ∈ unfilled

σ

�mnnm.

(A22)

The term Hee;0 (A22) represents the long-range Coulomb
repulsion of the initial ground state. The second part of the
Hamiltonian is

Hee;1 =
∑
mn′σ

n∈unfilled

�mnnn′a†
mσ an′σ −

∑
nn′σσ ′
m∈filled

�mmnn′b
†
n′σ bnσ −

∑
mm′σσ ′
n∈filled

�mm′nnb
†
m′σ bmσ +

∑
m′nσ

m∈filled

�mm′nmb
†
m′σ bnσ

+
∑
mn′σ

n∈unfilled

�mnnn′a†
mσ b

†
n′σ̃ ′ +

∑
mn′σ

n∈unfilled

�mnnn′bmσ̃ an′σ +
∑

mm′σσ ′
n∈filled

�mm′nna
†
mσ am′σ −

∑
mn′σ

n∈unfilled

�mnnn′b
†
n′σ bmσ

+
∑

nn′σσ ′
m∈filled

�mmnn′a†
nσ an′σ −

∑
m′nσ

m∈filled

�mm′nma†
nσ am′σ +

∑
mm′σσ ′
n∈filled

�mm′nna
†
mσ b

†
m′σ̃ +

∑
mm′σσ ′
n∈filled

�mm′nnbmσ̃ am′σ

+
∑
m′nσ

m∈filled

�mm′nmam′σ bnσ̃ +
∑

nn′σσ ′
m∈filled

�mmnn′a
†
nσ ′b

†
n′σ̃ ′ +

∑
m′nσ

m∈filled

�mm′nmb
†
m′σ̃ a†

nσ +
∑

nn′σσ ′
m∈filled

�mmnn′bnσ̃ an′σ .

(A23)

The term Hee;1 (A23) represents the single-particle terms that play a role in the matrix elements of both single and double
excitations. The third part of the Hamiltonian is

Hee;2 =
∑

mm′nn′σσ ′
�mm′nn′a†

mσ a
†
nσ ′b

†
n′σ̃ ′am′σ +

∑
mm′nn′σσ ′

�mm′nn′a†
mσan′σ ′am′σ bnσ̃ ′ +

∑
mm′nn′σσ ′

�mm′nn′a
†
nσ ′a

†
mσb

†
m′σ̃ an′σ ′

+
∑

mm′nn′σσ ′
�mm′nn′a

†
nσ ′bmσ̃ am′σ an′σ ′ +

∑
mm′nn′σσ ′

�mm′nn′a†
mσb

†
n′σ ′b

†
m′σ̃ bnσ ′ +

∑
mm′nn′σσ ′

�mm′nn′b
†
n′σ ′am′σ bmσ̃ bnσ ′

+
∑

mm′nn′σσ ′
�mm′nn′b

†
m′σ b

†
n′σ̃ ′a

†
nσ ′bmσ −

∑
mm′nn′σσ ′

�mm′nn′b
†
m′σ bmσ bnσ̃ ′an′σ ′ . (A24)
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The term Hee;2 (A24) can have nonzero matrix elements between single and double excitations. The fourth part of the
Hamiltonian is

Hee;3 = −
∑

mm′nn′σσ ′
�mm′nn′a†

mσ b
†
n′σ ′bnσ ′am′σ −

∑
mm′nn′σσ ′

�mm′nn′a
†
nσ ′b

†
m′σ bmσ an′σ ′ +

∑
mm′nn′σσ ′

�mm′nn′a†
mσ b

†
m′σ̃ bnσ̃ ′an′σ ′

+
∑

mm′nn′σσ ′
�mm′nn′a

†
nσ ′b

†
n′σ̃ ′bmσ̃ am′σ +

∑
mm′nn′σσ ′

�mm′nn′bmσ̃ am′σ bnσ̃ ′an′σ ′ +
∑

mm′nn′σσ ′
�mm′nn′a†

mσ b
†
m′σ̃ a

†
nσ ′b

†
n′σ̃ ′ . (A25)

The term Hee;3 (A25) contributes to the matrix elements be-
tween single excitations, between the ground state and double
excitations, as well as between different double excitations.
The fifth part of the Hamiltonian is

Hee;4 =
∑

mm′nn′σσ ′
�mm′nn′a

†
nσ ′a

†
mσ am′σ an′σ ′

+
∑

mm′nn′σσ ′
�mm′nn′b

†
n′σ ′b

†
m′σ bmσ bnσ ′ . (A26)

The term Hee;4 (A26) contributes to the matrix elements
between double excitations only.

b. Hen in the electron/hole basis

The electron-nuclei Hamiltonian is given by

Hen = −1

2

∑
i �=j,σ

Vij (niσ + njσ ). (A27)

In the basis defined in (10,11), this is

Hen =
∑
mm′σ

φmm′C†
mσCm′σ , (A28)

where

φmm′=−1

2

∑
i �=j

Vij (Mmσ,iMm′σ,j + Mmσ,jM
∗
m′σ,j ). (A29)

Moving to the electron-hole basis, we can write (A28) as

Hen =
∑

m∈filled,σ

φmm +
∑
mm′σ

φmm′a†
mσ am′σ

+
∑
mm′σ

φmm′a†
mσb

†
m′σ̃

+
∑
mm′σ

φmm′bmσ̃ am′σ −
∑
mm′σ

φmm′b
†
m′σ bmσ . (A30)

The electron-nuclei interaction (A30) contributes to matrix
elements between single excitations, matrix elements between
double excitations, and matrix elements between single and
double excitations and single excitations and the nominal
vacuum.
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