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An essential property of magnetic devices is the relaxation rate in magnetic switching, which depends strongly
on the damping in the magnetization dynamics. It was recently measured that damping depends on the magnetic
texture and, consequently, is a nonlocal quantity. The damping enters the Landau-Lifshitz-Gilbert equation as
the phenomenological Gilbert damping parameter α, which does not, in a straightforward formulation, account
for nonlocality. Efforts were spent recently to obtain Gilbert damping from first principles for magnons of wave
vector q. However, to the best of our knowledge, there is no report about real-space nonlocal Gilbert damping
αij . Here, a torque-torque correlation model based on a tight-binding approach is applied to the bulk elemental
itinerant magnets and it predicts significant off-site Gilbert damping contributions, which could be also negative.
Supported by atomistic magnetization dynamics simulations, we reveal the importance of the nonlocal Gilbert
damping in atomistic magnetization dynamics. This study gives a deeper understanding of the dynamics of the
magnetic moments and dissipation processes in real magnetic materials. Ways of manipulating nonlocal damping
are explored, either by temperature, materials doping, or strain.
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I. INTRODUCTION

Efficient spintronics applications call for magnetic ma-
terials with low-energy dissipation when moving magnetic
textures, e.g., in race track memories [1], skyrmion logics [2,3],
spin logics [4], spin-torque nano-oscillator for neural network
applications [5], or, more recently, soliton devices [6]. In
particular, the dynamics of such magnetic textures—magnetic
domain walls, magnetic skyrmions, or magnetic solitons—is
well described in terms of precession and damping of the
magnetic moment mi as it is formulated in the atomistic
Landau-Lifshitz-Gilbert (LLG) equation for site i:

∂mi

∂t
= mi ×

(
−γ Beff

i + α

ms

∂mi

∂t

)
, (1)

where γ and ms are the gyromagnetic ratio and the magnetic
moment length, respectively. The precession field Beff

i is of
quantum mechanical origin and is obtained either from effec-
tive spin-Hamilton models [7] or from first principles [8]. In
turn, energy dissipation is dominated by the ad hoc motivated
viscous damping in the equation of motion scaled by the Gilbert
damping tensor α. Commonly, the Gilbert damping is used as a
scalar parameter in magnetization dynamics simulations based
on the LLG equation. Strong efforts were spend in the last
decade to put the Gilbert damping to a first-principles ground
derived for collinear magnetization configurations. Different
methods were proposed, e.g., the breathing Fermi surface [9–
11], the torque-torque correlation [12], spin-pumping [13], or
a linear response model [14,15]. Within a certain accuracy,
the theoretical models allow to interpret [16] and reproduce
experimental trends [17–20].
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Depending on the model, deep insight into the fundamental
electronic-structure mechanism of the Gilbert damping α is
provided; damping is a Fermi-surface effect and depending on,
e.g., scattering rate, damping occurs due to spin flip but also
spin-conservative transition within a degenerated (intraband
but also interband transitions) and between nondegenerated
(interband transitions) electron bands. As a consequence of
these considerations, the Gilbert damping is proportional to
the density of states, but it also scales with spin-orbit cou-
pling [21,22]. The scattering rate � for the spin-flip transitions
is allocated to thermal, but also correlation effects, making
the Gilbert damping strongly temperature dependent, which
must be a consideration when applying a three-temperature
model for the thermal baths, say phonon [14], electron, and
spin temperature [23]. In particular, damping is often related
to the dynamics of a collective precession mode (macrospin
approach) driven from an external perturbation field, as it is
used in ferromagnetic resonance experiments (FMR) [24]. It
is also established that the Gilbert damping depends on the
orientation of the macrospin [25] and is, in addition, frequency
dependent [26].

More recently, the role of noncollective modes to the Gilbert
damping has been debated. Fähnle et al. [27] suggested to con-
sider damping in a tensorial and nonisotropic form via αi that
differs for different sites i and depends on the whole magnetic
configuration of the system. As a result, the experimentally
and theoretically assumed local Gilbert equation is replaced
by a nonlocal equation via nonlocal Gilbert damping αij

accounting for the most general form of Rayleigh’s dissipation
function [28]. The proof of principles was given for magnetic
domain walls [29,30], linking explicitly the Gilbert damping
to the gradients in the magnetic spin texture ∇m. Even
on a nanoscale level, the wave-number-dependent and, thus,
nonlocal dissipation was measured recently by Li et al. [31] for
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FIG. 1. Schematic illustration of nonlocal energy dissipation αij

between site i and j (red balls) represented by a power cord in a
system with spin wave (gray arrows) propagation q.

25–200-nm-thick NiFe, Co, and CoFeB films using perpendic-
ular spin wave resonance up to 26GHz. Such spatial nonlocal-
ity, in particular, for discrete atomistic models, allows further to
motivate energy dissipation between two magnetic moments
at sites i and j , and is represented by αij , as schematically
illustrated in Fig. 1. An analytical expression for αij was
already proposed by various authors [14,32,33], however, not
much work has been done on a material specific, first-principles
description of the atomistic nonlocal Gilbert damping αij . An
exception is the work by Gilmore et al. [33] who studied
α(q) in the reciprocal space as a function of the magnon
wave vector q and concluded that the nonlocal damping is
negligible. Yan et al. [29] and Hals et al. [34], on the other hand,
applied scattering theory according to Brataas et al. [35] to
simulate noncollinearity in Gilbert damping, only in reciprocal
space or continuous mesoscopic scale. Here we come up
with a technical description of nonlocality of the damping
parameter αij , in real space, and provide numerical examples
for elemental, itinerant magnets, which might be of high
importance in the context of ultrafast demagnetization [36].

The paper is organized as follows. In Sec. II, we introduce
our first-principles model formalism based on the torque-
torque correlation model to study nonlocal damping. This is
applied to bulk itinerant magnets bcc Fe, fcc Co, and fcc Ni in
both reciprocal and real space and it is analyzed in details in
Sec. III. Here, we will also apply atomistic magnetization dy-
namics to outline the importance in the evolution of magnetic
systems. Finally, in the last section, we conclude the paper by
giving an outlook of our work.

II. METHODS

We consider the torque-torque correlation model introduced
by Kamberský [10] and further elaborated on by Gilmore
et al. [12]. Here, finite magnetic moment rotations couple to the
Bloch eigenenergies εn,k and eigenstates |nk〉, characterized
by the band index n at wave vector k, due to spin-orbit
coupling. This generates a nonequilibrium population state
(a particle-hole pair), where the excited states relax towards
the equilibrium distribution (Fermi-Dirac statistics) within the
time τn,k = 1/�, which we assume is independent of n and
k. In the adiabatic limit, this perturbation is described by
the Kubo-Greenwood perturbation theory and in a nonlocal
formulation reads [12,37]

αμν(q) = gπ

ms

∫



∑
nm

T
μ

nk;mk+q

(
T ν

nk;mk+q

)∗
Wnk;mk+qdk. (2)

Here, the integral runs over the whole Brillouin zone volume 
.
A frozen magnon of wave vector q is considered that is ascribed
to the nonlocality of α. The scattering events depend on the
spectral overlap Wnk;mk+q = ∫

η(ε)Ank(ε,�)Amk+q(ε,�)dε

between two bands εn,k and εm,k+q , where the spectral width
of the electronic bands Ank is approximated by a Lorentzian
of width �. Note that � is a parameter in our model and can
be spin-dependent as proposed in Ref. [38]. In other studies,
this parameter is allocated to the self-energy of the system and
is obtained by introducing disorder, e.g., in an alloy or alloy
analogy model using the coherent potential approximation [14]
(CPA) or via the inclusion of electron correlation [39]. Thus
a principle study of the nonlocal damping versus � can
be also seen as, e.g., a temperature-dependent study of the
nonlocal damping. η = ∂f/∂ε is the derivative of the Fermi-
Dirac distribution f with respect to the energy. T

μ

nk,mk+q =
〈nk|T̂ μ|mk + q〉, where μ = x,y,z, are the matrix elements
of the torque operator T̂ = [σ ,Hso] obtained from variation of
the magnetic moment around certain rotation axis e. σ and
Hso are the Pauli matrices and the spin-orbit Hamiltonian,
respectively. In the collinear ferromagnetic limit, e = ez and
variations occur in x and y, only, which allows to consider
just one component of the torque, i.e., T̂ − = T̂ x − iT̂ y . Using
Lehmann representation [40], we rewrite the Bloch eigenstates
by Green’s function G, and define the spectral function Â =
i(GR − GA) with the retarded (R) and advanced (A) Green’s
function,

αμν(q) = g

msπ
Tr

∫∫



η(ε)T̂ μÂk(T̂ ν)†Âk+qdkdε. (3)

The Fourier transformation of the Green’s functionG finally
is used to obtain the nonlocal Gilbert damping tensor [23]
between site i at position r i and site j at position rj ,

α
μν

ij = g

msπ
Tr

∫
η(ε)T̂ μ

i Âij

(
T̂ ν

j

)†
Âjidε. (4)

Note that Âij = i(GR
ij − GA

ji). This result is consistent with the
formulation given in Refs. [14,32]. Hence the definition of
nonlocal damping in real space and reciprocal space translate
into each other by a Fourier transformation:

αij =
∫

α(q)e−i(rj −r i )·qdq. (5)

Note the obvious advantage of using Eq. (4), since it allows
for a direct calculation of αij , as opposed to taking the inverse
Fourier transform of Eq. (5). We would like to emphasize that
q refers to a particular wave vector, however, the underlying
magnetic state is ferromagnetic. The dependency on the mag-
netic configuration, as discussed in Ref. [27], is neglected.
Consequently, a direct comparison to experiment [29–31] is
not straightforward.

For first-principles studies, the Green’s function is obtained
from a tight-binding (TB) model based on the Slater-Koster
parametrization [41]. The Hamiltonian consists of on-site
potentials, hopping terms, Zeeman energy, and spin-orbit
coupling (see Appendix A). The TB parameters, including
the spin-orbit coupling strength, are obtained by fitting the
TB band structures to ab initio band structures as reported
elsewhere [23].
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FIG. 2. Electronic state resolved nonlocal Gilbert damping obtained from the integrand of Eq. (3) along selected paths in the Brillouin zone
for bcc Fe, fcc Co, and fcc Ni. The scattering rate used is � = 0.01 eV. The abscissa (both top and bottom in each panels) shows the momentum
path of the electron k, where the ordinate (left and right in each panel) shows the magnon propagation vector q. The two “triangles” in each
panel should be viewed separately where the magnon momentum changes accordingly (along the same path) to the electron momentum.

Beyond our model study, we simulate material specific
nonlocal damping with the help of the full-potential linear
muffin-tin orbitals (FP-LMTO) code RSPt [42,43]. Further
numerical details are provided in Appendix A.

The above discussed Kamberský model is only applicable in
certain, but established limits. (i) Time scales of the electron
and spin degree-of-freedom have to be separable (adiabatic
limit) to guarantee the validity of the magnetic force theorem.
Rapid variations in time (e.g., at ultrafast demagnetization) or
in space (e.g., nanodomain walls) do not properly equilibrate
the electron-degree of freedom. (ii) The Kamberský model
assumes a separation between the exchange and the spin-orbit
part of the electron Hamiltonian that are discussed to cause
precession and dissipation, respectively. This is in general not
valid, since spin-orbit enters also into the precession field via
anisotropic exchanges. This is handled within a generalized
torque relation in Refs. [14,44]. (iii) The above model does
not allocate the spectral width � to a particular mechanism
(electron-phonon coupling, electron correlation, etc.) and,
consequently, is a fitting parameter to the experiment.

With the aim to emphasize the importance of nonlocal
Gilbert damping in the evolution of atomistic magnetic mo-
ments, we performed atomistic magnetization dynamics by
numerically solving the Landau-Lifshitz-Gilbert (LLG) equa-
tion, explicitly incorporating nonlocal damping [23,35,45]

∂mi

∂t
= mi ×

⎛
⎝−γ Beff

i +
∑

j

αij

m
j
s

∂mj

∂t

⎞
⎠. (6)

Here, the effective field Beff
i = −∂Ĥ/∂mi is allocated to the spin

Hamiltonian and entails Heisenberg-like exchange coupling
−∑

ij Jij mi · mj and uniaxial magnetocrystalline anisotropy∑
i Ki(mi · ei)2 with the easy axis along ei . Jij and Ki are

the Heisenberg exchange coupling and the magnetocrystalline
anisotropy constant, respectively, and were obtained from
first principles [46,47]. The dissipation term in Eq. (6) can
be derived from a Lagrangian formalism with generalized
Rayleigh dissipation functional, in a similar way as was already
done in Ref. [48]. It remains still an open question if the
dissipation term in Eq. (6) can be allocated to the dissipation

term of the micromagnetic Landau-Lifshitz-Bar equation [49],
which is proportional to the ∇2∂mi/∂t, where ∇ is the spatial
gradient of the micromagnetic magnetic moment. Further
details are provided in Appendix A.

III. RESULTS AND DISCUSSION

This section is divided in three parts. In the first part, we
discuss nonlocal damping in reciprocal space q. The second
part deals with the real-space definition of the Gilbert damping
αij . Atomistic magnetization dynamics including nonlocal
Gilbert damping is studied in the third part.

A. Nonlocal damping in reciprocal space

The formalism derived by Kamberský [10] and
Gilmore [12] in Eq. (2) represents the nonlocal contributions
to the energy dissipation in the LLG equation by the magnon
wave vector q. In particular, Gilmore et al. [33] concluded
that for transition metals at room temperature the single-mode
damping rate is essentially independent of the magnon
wave vector for q between 0 and 1% of the Brillouin zone
edge. However, for very small scattering rates �, Gilmore
and Stiles [12] observed for bcc Fe, hcp Co, and fcc Ni a
strong decay of α with q, caused by the weighting function
Wnm(k,k + q) without any significant changes of the torque
matrix elements. Within our model systems, we observed the
same trend for bcc Fe, fcc Co, and fcc Ni. To understand the
decay of the Gilbert damping with magnon wave vector q in
more detail, we study selected paths of both the magnon q
and electron momentum k in the Brillouin zone at the Fermi
energy εF for bcc Fe (q,k ∈ � → H and q,k ∈ H → N ), fcc
Co, and fcc Ni (q,k ∈ � → X and q,k ∈ X → L) [see Fig. 2
where the integrand of Eq. (2) is plotted]. For example, in Fe,
a usually twofold degenerated d band [approximately in the
middle of �H , marked by (i)] gives a significant contribution
to the intraband damping for small scattering rates. There
are two other contributions to the damping [marked by
(ii)], that are caused purely by interband transitions. With
increasing, but small q the intensities of the peaks decrease
and interband transitions become more likely. With larger q,
however, more and more interband transitions appear, which
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FIG. 3. Nonlocal Gilbert damping as a function of the spectral
width � for different reciprocal wave vectors q (indicated by different
colors and in units a−1

0 ). Note that q provided here are in direct
coordinates and only the direction differs between the different
elemental, itinerant magnets. The nonlocal damping is shown for
bcc Fe (top) along � → H , for fcc Co (middle) along � → X, and
for fcc Ni (bottom) along � → X. It is obtained from “Lorentzian”
[Eq. (2), circles] and Green’s function [Eq. (3), triangles] method. The
directional dependence of α for � = 0.01 eV is shown in the inset.

leads to an increase of the peak intensity, significantly in
the peaks marked with (ii). This increase could be the same
order of magnitude as the pure intraband transition peak.
Similar trends also occur in Co as well as Ni and are also
observed for Fe along the path HN . Larger spectral width
� increases the interband spin-flip transitions even further
(data not shown). Note that the torque-torque correlation
model might fail for large values of q, since the magnetic
moments change so rapidly in space that the adiababtic limit
is violated [50] and electrons are not stationary equilibrated.
The electrons do not align according the magnetic moment
and the nonequilibrium electron distribution in Eq. (2) will
not fully relax. In particular, the magnetic force theorem used
to derive Eq. (3) may not be valid.

The integration of the contributions in electron momentum
space k over the whole Brillouin zone is presented in Fig. 3,
where both “Loretzian” method given by Eq. (2) and Green’s
function method represented by Eq. (3) are applied. Both
methods give the same trend, however, differ slightly in the

intraband region, which was already observed previously by
the authors of Ref. [23]. In the Lorentzian approach, Eq. (2),
the electronic structure itself is unaffected by the scattering rate
�, only the width of the Lorentian used to approximate Ank is
affected. In the Green function approach, however, � enters as
the imaginary part of the energy at which the Green functions
is evaluated and, consequently, broadens and shifts maxima
in the spectral function. This offset from the real energy
axis provides a more accurate description with respect to the
ab initio results than the Lorentzian approach.

Within the limits of our simplified electronic structure
tight-binding method, we obtained qualitatively similar trends
as observed by Gilmore et al. [33]: a dramatic decrease in the
damping at low scattering rates � (intraband region). This trend
is common for all here observed itinerant magnets typically
in a narrow region 0 < |q| < 0.02a−1

0 , but also for different
magnon propagation directions. For larger |q| > 0.02a−1

0 , the
damping could again increase (not shown here). The decay
of α is only observable below a certain threshold scattering
rate �, typically where intra- and interband terms are equally
contributing to the Gilbert damping. As already found by
Gilmore et al. [33] and Thonig et al. [23], this point is
materials specific. In the interband regime, however, damping
is independent of the magnon propagator, caused by already
allowed transitions between the electron bands due to band
broadening. Marginal variations in the decay with respect to
the direction of q (inset of Fig. 3) are revealed, which was
not reported before. Such behavior is caused by the break of
the space group symmetry due to spin-orbit coupling and a
selected global spin-quantization axis along z direction, but
also due to the noncubic symmetry of Gk for k �= 0. As a
result, e.g., in Ni, the nonlocal damping decays faster along
�K than in �X. This will be discussed more in detail in
the next section. An experimental verification of these results
might be possible following the setup in Ref. [31], however,
for arbitrary wave vectors (larger mode number) and bulk
materials.

We also investigated the scaling of the nonlocal Gilbert
damping with respect to the spin-orbit coupling strength ξd

of the d states (see Appendix B). We observe an effect that
previously has not been discussed, namely that the nonlocal
damping has a different exponential scaling with respect to the
spin-orbit coupling constant for different |q|. In the case where
q is close to the Brillouin zone center (in particular q = 0),
α ∝ ξ 3

d , whereas for wave vectors |q| > 0.02a−1
0 , α ∝ ξ 2

d . For
large q, typically interband transitions dominate the scattering
mechanism, as we show above and which is known to scale
proportional to ξ 2. Here, in particular, the ξ 2 will be caused
only by the torque operator in Eq. (2). On the other hand, this
indicates that spin-mixing transitions become less important
because there is not contribution in ξ from the spectral function
entering the damping α(q).

The validity of the Kambserký model becomes arguable
for ξ 3 scaling, as it was already proved by Costa et al. [51]
and Edwards [52], since it causes an unphysical and strong
diverging intraband contribution at very low temperature
(small �). Note that there is no experimental evidence of
such a trend, most likely due to that sample impurities also
influence �. Furthermore, various other methods postulate
that the Gilbert damping for q = 0 scales like ξ 2 [9,15,22].
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FIG. 4. Real-space Gilbert damping αij as a function of the
distance rij between two sites i and j for bcc Fe, fcc Co, and fcc
Ni. Both the “corrected” Kamberský (red circles) and the Kamberský
(blue squares) approach is considered. The distance is normalized to
the lattice constant a0. The on-site damping αii is shown in the figure
label. The grey dotted line indicates the zero line. The spectral width
is � = 0.005 eV.

Hence the current applied theory, Eq. (3), seems to be valid
only in the long-wave limit, where we found ξ 2 scaling. On
the other hand, Edwards [52] proved that the long-wavelength
limit (ξ 2 scaling) holds also in the short-range limit if one
accounts only for transitions that conserve the spin (“pure”
spin states), as we show for Co in Fig. 11 of Appendix C. The
trend α versus |q| as described above changes drastically for
the “corrected” Kamberský formula: the interband region is not
affected by these corrections. In the intraband region, however,
the divergent behavior of α disappears and the Gilbert damping
monotonically increases with larger magnon wave vector and
over the whole Brillouin zone. This trend is in good agreement
with Ref. [29]. For the case where q = 0, we even reproduced
the results reported in Ref. [21]; in the limit of small scattering
rates, the damping is constant, which was also reported before
in experiment [53,54]. Furthermore, the anisotropy of α(q)
with respect to the direction of q (as discussed for the insets of
Fig. 3) increases by accounting only for pure-spin states (not
shown here). Both agreement with experiment and previous
theory motivate to consider ξ 2 scaling for all �.

B. Nonlocal damping in real space

Atomistic spin-dynamics, as stated in Sec. II [see Eq. (6)],
which includes nonlocal damping, requires Gilbert damping in
real space, e.g., in the form αij . This point is addressed in this
section. Such nonlocal contributions are not excluded in the
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FIG. 5. First (circles) and second-nearest-neighbor (triangles)
Gilbert damping (left) as well as on-site (circles) and total (triangles)
Gilbert damping (right) as a function of the spectral width � for the
itinerant magnets Fe, Co, and Ni. In particular for Co, the results
obtained from tight binding are compared with first-principles density
functional theory results (gray open circles). Solid lines (right panel)
show the Gilbert damping obtained for the magnon wave vectors
q = 0 (blue line) and q = 0.1a−1

0 (red line). Dotted lines are added
to guide the eye. Note that since cubic symmetry is broken (see text),
there are two sets of nearest-neighbor parameters and two sets of next
nearest-neighbor parameters (left panel) for any choice of �.

Rayleigh dissipation functional, applied by Gilbert to derive
the dissipation contribution in the equation of motion [48] (see
Fig. 4).

Dissipation is dominated by the on-site contribution αii in
the itinerant magnets investigated here. For both Fe (αii =
3.55 × 10−3) and Co (αii = 3.59 × 10−3), the on-site damping
contribution is similar, whereas for Ni αii is one order of
magnitude higher. Off-site contributions i �= j are one order of
magnitude smaller than the on-site part and can be even neg-
ative. Such negative damping is discernible also in Ref. [55],
however, it was not further addressed by the authors. Due to
the presence of the spin-orbit coupling and a preferred global
spin-quantization axis (in z direction), the cubic symmetry of
the considered itinerant magnets is broken and, thus, the Gilbert
damping is anisotropic with respect to the sites j (see also Fig. 5
left panel). For example, in Co, four of the in-plane nearest
neighbors (NN) are αNN ≈ −4.3 × 10−5, while the other eight
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are αNN ≈ −2.5 × 10−5. However, in Ni, the trend is opposite:
the out-of-plane damping (αNN ≈ −1.6 × 10−3) is smaller
than the in-plane damping (αNN ≈ −1.2 × 10−3). Involving
more neighbors, the magnitude of the nonlocal damping is
found to decay as 1/r2 and, consequently, it is different than the
Heisenberg exchange parameter that asymptotically decays in
RKKY-fashion asJij ∝ 1/r3 [56]. For the Heisenberg exchange,
the two Green’s functions as well as the energy integration in
the Lichtenstein-Katsnelson-Antropov-Gubanov formula [57]
scales like r−1

ij ,

Gσ
ij ∝ ei(kσ ·r ij +�σ )

|r ij | , (7)

whereas for simplicity we consider here a single-band model
but the results can be generalized also to the multiband case
and where �σ denotes a phase factor for spin σ =↑ , ↓. For
the nonlocal damping, the energy integration is omitted due to
the properties of η in Eq. (4) and, thus,

αij ∝ sin(k↑ · r ij + �↑) sin(k↓ · r ij + �↓)]

|r ij |2 . (8)

This spatial dependency of αij superimposed with Ruderman-
Kittel-Kasuya-Yosida (RKKY) oscillations was also found in
Ref. [55] for a model system.

For Ni, dissipation is very much short range, whereas in Fe
and Co “damping peaks” also occur at larger distances (e.g.,
for Fe at rij = 5.1a0 and for Co at rij = 3.4a0). The “long-
rangeness” depends strongly on the parameter � (not shown
here). As it was already observed for the Heisenberg exchange
interaction Jij [46], stronger thermal effects represented by
� will reduce the correlation length between two magnetic
moments at site i and j . The same trend is observed for
damping: larger � causes smaller dissipation correlation length
and, thus, a faster decay of nonlocal damping in space rij .
Different from the Heisenberg exchange, the absolute value
of the nonlocal damping typically decreases with � as it is
demonstrated in Fig. 5.

Note that the change of the magnetic moment length is
not considered in the results discussed so far. The anisotropy
with respect to the sites i and j of the nonlocal Gilbert
damping continues in the whole range of the scattering rate
� and is controlled by it. For instance, the second-nearest-
neighbors damping in Co and Ni become degenerated at � =
0.5 eV, where the anisotropy between first-nearest-neighbor
sites increases. Our results show also that the sign of αij is
affected by � (as shown in Fig. 5 left panel). Controlling
the broadening of Bloch spectral functions � is in princi-
pal possible to evaluate from theory, but more importantly
it is accessible from experimental probes such as angular-
resolved photoelectron spectroscopy and two-photon electron
spectroscopy.

The importance of nonlocality in the Gilbert damping
depends strongly on the material (as shown in Fig. 5 right
panel). It is important to note that the total—defined as αtot =∑

j αij for arbitrary i—but also the local (i = j ) and the
nonlocal (i �= j ) part of the Gilbert damping do not violate
the thermodynamic principles by gaining angular momentum
(negative total damping). For Fe, the local and total damping
are comparable in the whole range of � and, thus, the nonlocal
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α
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FFT(α(q)); αii = 0.003481
FFT(G(k)); αii = 0.003855

FIG. 6. Comparing nonlocal Gilbert damping obtained by Eq. (5)
(red symbols) and Eq. (4) (blue symbols) in fcc Co for � = 0.005 eV.
The dotted line indicates zero value.

contribution is negligible small. However in Co and Ni, local
and total damping are significantly different revealing an
important nonlocal damping contribution. The trends coming
from our tight-binding electron structure were also reproduced
by our all-electron first-principles simulation, for both depen-
dency on the spectral broadening � (Fig. 5, gray open circles)
but also site resolved nonlocal damping in the intraband region
(see Appendix A), in particular, for fcc Co.

A direct experimental observation of αij might be not
possible, however, magnon lifetimes could be measured as a
function of the wave vector q, as was done in Ref. [31], or
by analyzing switching processes that include a noncollinear
intermediate state. These magnon lifetimes could be, e.g., fitted
to an effective model including nearest-neighbor nonlocal
damping. Such a procedure is already established for magnetic
exchange [58].

We compare also the nonlocal damping obtain from the real
and reciprocal space. For this, we used Eq. (3) by simulating
Nq = 15 × 15 × 15 points in the first magnon Brillouin zone
q and Fourier transformed it (Fig. 6). For both approaches, we
obtain good agreement, corroborating our methodology and
possible applications in both spaces. The nonlocal damping
for the first three nearest-neighbor shells turn out to converge
rapidly with Nq , while it does not converge so quickly for
larger distances r ij . The critical region around the � point
in the Brillouin zone is suppressed in the integration over q.
On the other hand, the relation αtot = ∑

j αij = α(q = 0) for
arbitrary i should be valid, which is, however, violated in the
intraband region as shown in Fig. 5 (compare triangles and blue
line in Fig. 5): the real-space damping is constant for small �

and follows the long-wavelength limit (compare triangles and
red line in Fig. 5) rather than the divergent ferromagnetic mode
(q = 0). Two explanations are possible: (i) convergence with
respect to the real-space summation and (ii) a different scaling
in both models with respect to the spin-orbit coupling. For
(i), we carefully checked the convergence with the summation
cutoff (see Appendix D) and found even a lowering of the
total damping for larger cutoff. However, the nonlocal damping
is very long-range and, consequently, convergence will be
achieved only at a cutoff radius  9a0.

For (ii), we checked the scaling of the real-space Gilbert
damping with the spin-orbit coupling of the d states (see Ap-
pendix B). Opposite to the “noncorrected” Kamberský formula
in reciprocal space, which scales like ξ 3

d , we find ξ 2
d for the

real-space damping. This indicates that the spin-flip scattering
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FIG. 7. Nonlocal Gilbert damping as a function of the normalized
distance r ij/a0 for a tetragonal distorted bcc Fe crystal structure. Here,
c/a = 1.025 (red circles) and c/a = 1.05 (blue circles) is considered.
� is put to 0.01 eV. The zero value is indicated by dotted lines.

hosted in the real-space Green’s function is suppressed. To
corroborate this statement further, we applied the corrections
proposed by Edwards [52] to our real-space formula (4),
which by default assumes ξ 2 (Fig. 4, red dots). Both methods,
corrected and noncorrected Eq. (4), agree quite well. The small
discrepancies are due to increased hybridizations and band
inversion between p and d states due to spin-orbit coupling
in the noncorrected case.

Finally, we address other ways than temperature (here
represented by �) to manipulate the nonlocal damping. It is
well established in literature already for Heisenberg exchange
and the magnetocrystalline anisotropy that compressive or
tensial strain can be used to tune the magnetic phase stability
and to design multiferroic materials. In an analogous way, also
nonlocal damping depends on distortions in the crystal (see
Fig. 7).

Here, we applied nonvolume conserved tetragonal strain
along the c axis. The local damping αii is marginally biased.
Relative to the values of the undistorted case, a stronger
effect is observed for the nonlocal part, in particular for the
first few neighbors. Since we do a nonvolume conserved
distortion, the in-plane second-NN component of the nonlocal
damping is constant. The damping is in general decreasing
with increasing distortion, however, a change in the sign of
the damping can also occur (e.g., for the third NN). The rate
of change in damping is not linear. In particular, the nearest-
neighbor rate is about δα ≈ 0.4 × 10−5 for 2.5% distortion,
and 2.9 × 10−5 for 5% from the undistorted case. For the
second-nearest-neighbor, the rate is even bigger (3.0 × 10−5

for 2.5%, 6.9 × 10−5 for 5%). For neighbors larger than rij =
3a0, the change is less significant (−0.6 × 10−5 for 2.5%,
−0.7 × 10−5 for 5%). The strongly strain-dependent damping
motivates even higher-order coupled damping contributions
obtained from Taylor expanding the damping contribution
around the equilibrium position α0

ij : αij = α0
ij + ∂αij/∂uk · uk +

. . .. Note that this is in analogy to the magnetic exchange
interaction [59] (exchange striction) and a natural name for
it would be “dissipation striction.” This opens new ways to
dissipatively couple spin and lattice reservoir in combined
dynamics [59], to the best of our knowledge not considered
in today’s ab initio modeling of atomistic magnetization
dynamics.
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FIG. 8. Evolution of the average magnetic moment M during
remagnetization in bcc Fe (left) and fcc Co (right) for different
damping strength according to the spectral width � (different colors)
and both, full nonlocal αij (solid line) and total, purely local αtot

(dashed line) Gilbert damping.

C. Atomistic magnetization dynamics

The question about the importance of nonlocal damping
in atomistic magnetization dynamics (ASD) remains. For this
purpose, we performed zero-temperature ASD for bcc Fe and
fcc Co bulk and analysed changes in the average magnetization
during relaxation from a totally random magnetic configura-
tion, for which the total moment was zero (Fig. 8).

Related to the spectral width, the velocity for
remagnetisation changes and is higher, the bigger the
effective Gilbert damping is. For comparison, we performed
also ASD simulations based on Eq. (2) with a scalar, purely
local damping αtot (dotted lines). For Fe, it turned out that
accounting for the nonlocal damping causes a slight decrease in
the remagnetization time, however, is overall not important for
relaxation processes. This is understandable by comparing the
particular damping values in Fig. 5, right panel, in which the
nonlocal part appear negligible. On the other hand, for Co, the
effect on the relaxation process is much more significant, since
the nonlocal Gilbert damping reduces the local contribution
drastically (see Fig. 5, right panel). This “negative” nonlocal
part (i �= j ) in αij decelerates the relaxation process and the
relaxation time is drastically increased by a factor of 10. Note
that a “positive” nonlocal part will accelerate the relaxation,
which is of high interest for ultrafast switching processes.

IV. CONCLUDING REMARKS

In conclusion, we have evaluated the nonlocality of the
Gilbert damping parameter in both reciprocal and real space
for elemental, itinerant magnets bcc Fe, fcc Co, and fcc Ni.
In particular, in the reciprocal space, our results are in good
agreement with values given in the literature [33]. The here
studied real-space damping was considered on an atomistic
level and it motivates to account for the full, nonlocal Gilbert
damping in magnetization dynamic, e.g., at surfaces [60] or
for nanostructures [61]. We revealed that nonlocal damping
can be negative, has a spatial anisotropy, quadratically scales
with spin-orbit coupling, and decays in space as r−2

ij . Detailed
comparison between real and reciprocal states identified the
importance of the corrections proposed by Edwards [52] and,
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consequently, overcome the limits of the Kamberský formula
showing an unphysical and experimental not proved divergent
behavior at low temperature. We further promote ways of
manipulating nonlocal Gilbert damping, either by temperature,
materials doping or strain, and motivating “dissipation stric-
tion” terms, that opens a fundamental new root in the coupling
between spin and lattice reservoirs.

Our studies are the starting point for even further inves-
tigations: although we mimic temperature by the spectral
broadening �, a precise mapping of � to spin and phonon
temperature is still missing, according to Refs. [14,23]. Even
at zero temperature, we revealed a significant effect of the non-
local Gilbert damping to the magnetization dynamics, but the
influence of nonlocal damping to finite temperature analysis
or even to low-dimensional structures has to be demonstrated.

In analogy to the equivalence between the atomistic Heisen-
berg exchange and the micromagnetic exchange stiffness, the
atomistic nonlocal damping should be carried over to a micro-
magnetic quantity. It turns out that it will lead to dissipation
terms proportional to ∇ṁ and ∇2ṁ, similar to dissipation
terms entering to the Landau-Lifshitz-Bar equation [49,62,63].
However, a conceptional proof is still missing but this is out
of the scope of the current manuscript although it is the main
topic of an upcoming paper.
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APPENDIX A: NUMERICAL DETAILS

We perform k integration with up to 1.25 × 106 mesh points
(500 × 500 × 500) in the first Brillouin zone for bulk. The
energy integration is evaluated at the Fermi level only. For our
first- principles studies, we performed a Slater-Koster parame-
terized [41] tight-binding (TB) calculation [64] of the torque-
torque correlation model as well as for the Green’s function
model. Here, the TB parameters have been obtained by fitting
the electronic structures to those of a first-principles fully rel-
ativistic multiple scattering Korringa-Kohn-Rostoker (KKR)
method using a genetic algorithm. The details of the fitting
and the tight-binding parameters are listed elsewhere [23,65].
This puts our model on a firm, first-principles ground.

The tight-binding Hamiltonian [66] H = H0 + Hmag +
Hsoc contains on-site energies and hopping elements H0,
the spin-orbit coupling Hsoc = ζ S · L, and the Zeeman term
Hmag = 1/2B · σ . The Green’s function is obtained by G =
(ε + i� − H)−1, which allows in principle to consider disorder
in terms of spin and phonon as well as alloys [23]. The bulk
Greenian Gij in real space between sites i and j is obtained by
Fourier transformation. Despite the fact that the tight-binding
approach is limited in accuracy, it produces good agreement
with first-principles band structure calculations for energies
smaller than εF + 5 eV.
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FIG. 9. Comparison of nonlocal damping obtained from the tight-
binding method (TB) (red filled symbols), tight-binding with Edwards
correction (TBe) (blue filled symbols), and the linear muffin-tin orbital
method (DFT) (open symbols) for fcc Co. Two different spectral
broadenings are chosen.

Equation (4) was also evaluated within the DFT and linear
muffin-tin orbital method (LMTO) based code RSPT. The
calculations were done for a k-point mesh of 1283 k-points.
We used three types of basis functions, characterized by
different kinetic energies with κ2 = 0.1, − 0.8, and − 1.7 Ry
to describe 4s, 4p, and 3d states. The damping constants were
calculated between the 3d orbitals, obtained using the muffin-
tin head projection scheme [67]. Both the first-principles and
tight-binding implementations of the nonlocal Gilbert damping
agree well (see Fig. 9).

Note that due to numerical reasons, the values of � used
for the comparisons are slightly different in both electronic
structure methods. Furthermore, in the LMTO method, the
orbitals are projected to d orbitals only, which leads to small
discrepancies in the damping.

The atomistic magnetization dynamics is also performed
within the CAHMD simulation package [64]. To reproduce
bulk properties, periodic boundary conditions and a suffi-
ciently large cluster (10 × 10 × 10) are employed. The nu-
merical time step is �t = 0.1 fs. The exchange coupling
constants Jij are obtained from the Liechtenstein-Katsnelson-
Antropov-Gubanov (LKAG) formula implemented in the first-
principles fully relativistic multiple scattering Korringa-Kohn-
Rostoker (KKR) method [40]. On the other hand, the magneto-
crystalline anisotropy is used as a fixed parameter with K =
50 μeV.

APPENDIX B: SPIN-ORBIT COUPLING SCALING
IN REAL AND RECIPROCAL SPACE

Kamberský’s formula is valid only for quadratic spin-
orbit coupling scaling [21,51], which implies only scattering
between states that preserve the spin. This mechanism was
explicitly accounted by Edwards [52] by neglecting the spin-
orbit coupling contribution in the “host” Green’s function.
It is predicted for the coherent mode (q = 0) [21] that this
overcomes the unphysical and not experimentally verified
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FIG. 10. Gilbert damping α as a function of the spin-orbit cou-
pling for thed states in fcc Co. Lower panel shows the Gilbert damping
in reciprocal space for different q = |q|values (the color scheme used,
represents different q-values, as shown in the inset of the figure) along
the � → X path. The upper panel exhibits the on-site αos (red dotes
and lines) and nearest-neighbor αNN (gray dots and lines) damping.
The solid line is the exponential fit of the data point. The inset shows
the fitted exponents γ with respect to wave vector q. The color of
the dots is adjusted to the particular branch in the main figure. The
spectral width is � = 0.005 eV.

divergent Gilbert damping for low temperature. Thus the
methodology requires to prove the functional dependency of
the (nonlocal) Gilbert damping with respect to the spin-orbit
coupling constant ξ (Fig. 10). Since damping is a Fermi-surface
effect, it is sufficient to consider only the spin-orbit coupling
of the d states. The real-space Gilbert damping αij ∝ ξγ scales
for both on-site and nearest-neighbor sites with γ ≈ 2. For the
reciprocal space, however, the scaling is more complex and
γ depends on the magnon wave vector q (inset in Fig. 10).
In the long-wavelength limit, the Kamberský formula is valid,
where for the ferromagnetic magnon mode with γ ≈ 3 the
Kamberský formula is indefinite according to Edwards [52].

APPENDIX C: INTRABAND CORRECTIONS

For the same reason as discussed in Appendix B, the
role of the correction proposed by Edwards [52] for magnon
propagations different than zero is unclear and need to be
studied. Hence we included the correction of Edward also to
Eq. (3) (Fig. 11). The exclusion of the spin-orbit coupling
(SOC) in the “host” clearly makes a major qualitative and
quantitative change: although the interband transitions are
unaffected, interband transitions are mainly suppressed, as
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q: Γ → X
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FIG. 11. Comparison of reciprocal nonlocal damping with
(squares) or without (circles) corrections proposed by Costa et al. [51]
and Edwards [52] for Co and different spectral broadening �.
Different colors represent different magnon propagation vectors q.

it was already discussed by Barati et al. [21]. However, the
intraband contributions are not totally removed for small �. For
very small scattering rates, the damping is constant. Opposite
to the noncorrected Kamberský formula, the increase of the
magnon wave number q gives an increase in the nonlocal
damping, which is in agreement to the observation made by
Yuan et al. [29], but also with the analytical model proposed
in Ref. [55] for small q. This behavior was observed for all
itinerant magnets studied here.

APPENDIX D: COMPARISON REAL AND RECIPROCAL
GILBERT DAMPING

The nonlocal damping scales like r−2
ij with the distance

between the sites i and j , and is, thus, very long-range. In order
to compare αtot = ∑

j∈Rcut
αij for arbitrary i with α(q = 0),

we have to specify the cutoff radius of the summation in real
space (Fig. 12). The interband transitions (� > 0.05 eV) are
already converged for small cutoff radii Rcut = 3a0. Intraband
transitions, on the other hand, converge weakly with Rcut to
the reciprocal space value α(q = 0). Note that α(q = 0) is
obtained from the corrected formalism. Even with Rcut = 9a0,
which is proportional to ≈ 30 000 atoms, we have not obtain
convergence.
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FIG. 12. Total Gilbert damping αtot for fcc Co as a function
of summation cutoff radius for two spectral widths �, one in the
intraband (� = 0.005 eV, red dots and lines) and one in the interband
(� = 0.1 eV, blue dotes and lines) region. The dotted and solid
lines indicate the reciprocal value α(q = 0) with and without SOC
corrections, respectively.
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