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Postaragonite phases of CaCQO; at lower mantle pressures
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The stability, structure, and properties of carbonate minerals at lower mantle conditions have significant impact
on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years
there has been significant interest in the behavior of carbonates at lower mantle conditions, specifically in their
carbon hybridization, which has relevance for the storage of carbon within the deep mantle. Using high-pressure
synchrotron x-ray diffraction in a diamond anvil cell coupled with direct laser heating of CaCO; using a CO, laser,
we identify a crystalline phase of the material above 40 GPa—corresponding to a lower mantle depth of around
1000 km—which has first been predicted by ab initio structure predictions. The observed sp? carbon hybridized
species at 40 GPa is monoclinic with P2;/c symmetry and is stable up to 50 GPa, above which it transforms
into a structure which cannot be indexed by existing known phases. A combination of ab initio random structure
search (AIRSS) and quasiharmonic approximation (QHA) calculations are used to re-explore the relative phase
stabilities of the rich phase diagram of CaCOj;. Nudged elastic band (NEB) calculations are used to investigate
the reaction mechanisms between relevant crystal phases of CaCO; and we postulate that the mineral is capable
of undergoing sp2-sp> hybridization change purely in the P2, /c structure—forgoing the accepted postaragonite

Pmmn structure.
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I. INTRODUCTION

Carbonates play a significant role in the global carbon
cycle through the subduction of carbonate-containing oceanic
slab [1,2]. Models dating back to the 1980s [3] notion that
the majority of the Earth’s carbon is stored within the planet
interior [4], either in some reduced form such as diamond or
graphite, or as carbides at lower mantle and core conditions
[5,6]. Meanwhile, the existence of carbonate inclusions in
“deep” diamonds suggest stability of the minerals under mantle
pressures and temperatures [7,8]. The stability and structures
of carbonates at mantle conditions is thus important in order to
further our understanding of numerous geological processes.
While experiments designed to investigate such processes are
often extremely challenging, the development of powerful
evolutionary algorithms (for example USPEX [9]) and ab
initio random structure searching (AIRSS) [10,11] approaches
allows for deeper insight into the structures available to these
minerals at mantle conditions.

CaCOjs transforms from its ambient pressure calcite-I (R3c)
to aragonite (Pnma) at comparatively low pressures of below
1 GPa[12], and exhibits a large variety of calcite and calcitelike
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phases in the sub-10 GPa region [13—15]—some of which
exhibit interesting chemistry at further compression [16]. The
existence of phases beyond aragonite has been postulated
since dynamic compression of aragonite CaCOj; revealed
discontinuities in its shock Hugoniot at modest pressures [17].
However, static compression did not reveal a postaragonite
transition until more recently, when Santillan and Williams
observed evidence of a new phase close to 50 GPa [18],
which was attributed to an analog of the trigonal postwitherite
BaCOj3 [19]. Further study by Ono et al. dismisses the trigonal
structure in favor of an orthorhombic one with space group
P212,2 [20]. Assignment of an orthorhombic postaragonite
phase was later supported by USPEX structural simulations,
which suggested the Pmmn supergroup, and also predicted a
further transformation into a post-postaragonite C222; phase
at megabar pressures [21]. Arapan et al. [22,23] performed
density functional theory (DFT) calculations on CaCOj3 and
found good agreement with the Pmmn and C222; transi-
tion pressures predicted by Ref. [21]. Evidence for post-
postaragonite had been observed experimentally and attributed
to the pyroxene-type C222; structure [24]. However, further
structure searches using AIRSS predicts a CaCOj; structure
in the megabar regime with a difference—a P2;/c unit cell
with pyroxene chains stacked out-of-phase, in contrast to the
parallel chains in the C222; structure [25]. This difference
reduces enthalpy significantly [25,26] and is accompanied
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by a marked difference in Raman signature, which was used
recently by Lobanov et al. to confirm P2;/c-h (here the label
h originates from Ref. [25] and refers to the higher pressure
of the two predicted P2;/c phases with sp> hybridization) as
the stable structure for deep mantle CaCOj3 alongside x-ray
diffraction [27]. Additionally, the AIRSS approach predicts a
second monoclinic polymorph of CaCO3; which is stable at
pressures equivalent to a depth of 1000 km in the mantle,
the P2;/c-1 structure (the label 1, as originally assigned by
Ref. [25], refers to the first of the predicted sp? hybridized
P2, /c phases), which has remained unseen in compression
experiments.

In a single-crystal x-ray diffraction study, Merlini et al.
detect a triclinic P1 structure (CaCO3-VI) above 15 GPa
[28] which they attribute to the same transition detected, but
not indexed, by previous dynamic compression experiments
[17]. Interestingly, this triclinic phase had previously been
predicted by the UPSEX code [21], but dismissed by those
authors as metastable with respect to Pnma aragonite. This
finding was echoed in Ref. [25], which found CaCO3-VI to be
higher in enthalpy than aragonite and intrinsically strained, in
spite of Ref. [28] measuring a higher density for CaCO;-VI
than aragonite during their experiments. However, that CaCOj3
is able to occupy numerous metastable and transient phases
at modest [13-16] and high [25,28] pressures—much like
its rich ground-state phase progression under compression—
is a testament to its remarkably diverse polymorphism. We
can attribute the richness of the CaCO; phase diagram to
the close matching in size of the Ca?* and CO%f species.
Structural ramifications of the ionic size ratio in MCO;
aragonite group crystals (M = Ca, Sr, Ba, Pb) is exemplified
by observations made by Ref. [29], where combined high-
resolution x-ray diffraction and neutron diffraction record an
increasing degree of disorder in CO%‘ units with decreasing
cation size, with CaCOj3 having the largest variation in C-O
bond lengths as well as a deviation from truly planar carbonate
ions as a result of steric effects. Indeed, in the case of
MgCO;, this ionic size effect inhibits the formation of an
aragonite phase anywhere in its phase diagram and stabilizes
the R3c structure up to 85 GPa [25]. Similarly, for heavier
carbonates where the sites occupied by CO%‘ grow with
M, we expect a comparatively simple phase evolution with
pressure.

That the phase diagram of such a common and important
mineral—and one exhibiting a wide array of stable structures
which are relevant to geological processes in the Earth’s
mantle—has only begun to be unraveled experimentally since
the turn of the century [18,20,24,27] is largely a result of
experimental advances allowing powerful diagnostics such
as x-ray diffraction to be performed in situ at combined
high pressure and temperature [30-33]. A summary of the
experimentally confirmed high-pressure phases of CaCOj; is
given in Table I alongside their onset pressures. Here we
present the addition of a transitional structure experimentally
realized in CaCOs by utilizing a recently developed instrument
to allow in situ CO, laser annealing of minerals at high
pressure—the P2;/c-1 phase previously predicted by AIRSS
calculations [25], which exists as an intermediate between
aragonite and “postaragonite.”

TABLE I. Summary of experimentally observed high-pressure
phases of CaCOs.

Phase Space group P (GPa)
Calcite-I R3c (no. 167) -
Aragonite Pnma (no. 62) 0.67 [12]
CaCOs(1I) P2,/c (no. 14) 1.5 [13]
CaCOs;(III) C2 (no.5) 4.1 [14]
P1 (no.2) 2.5 [28]
CaCOs(11Ib) P1 (no.2) 2.5 [28]
CaCOs(VI) P1 (no.2) 15 [28]
P2,/c-1 P2,/c (no. 14) 41.3 This study
Postaragonite Pmmn (no. 59) ~40 [20,21]
sp3-CaCOs P2,/c (no. 14) 105 [27]

II. STRUCTURE PREDICTIONS

We first revisit the ab initio random structure search
(AIRSS) for CaCOj3 to 100 GPa in Ref. [25] by re-evaluating
the initially reported structures and performing subsequent
searches to uncover more candidate structures. Shown in
Fig. 1, the enthalpy of the structures was computed by fully
relaxing over a range of pressures with the Perdew-Burke-
Ernzerhof for solids and surfaces (PBEsol) generalized gra-
dient approximation (GGA) [34] density functional using the
CASTEP [35] plane-wave DFT code. The choice of PBEsol
as the density functional is taken as the calculations predict a
calcite-I — aragonite transition pressure of 1.4 GPa, which is
closer to experimental observations (0.67 GPa [12]) than the
4 GPa prediction attained when the Perdew-Burke-Ernzerhof
(PBE) functional was used. The PBEsol functional, in general,
provides better accuracies for predicted volumes of condensed
systems. The basis set cutoff energy was set to 700 eV
using ultrasoft pseudopotentials with valence configurations
of 3523 p®4s? for Ca, 2522p? for C, and 2s2p* for O [36].

A Monkhorst-Pack [37] k-point grid with spacing 0.3 27 10\_1
was used to sample the Brillouin zone. The results presented
in Fig. 1 are in very good agreement with other DFT results
[22,23,26].

Beyond the stability field of Pnma aragonite, we observe
two competing monoclinic structures—the P2;/c-1 structure
from Ref. [25] which collapses into P2;/c-h at high pressures
(blue dashed line in Fig. 1), as well as a second which we
name P2;/c-ll. Interestingly, the P2;/c-1l1 phase which has
comparably low enthalpy at low pressures to aragonite is not
the previously known CaCO;3-II P2;/c structure [13]. P2 /c-1
and P2;/c-11 are enthalpically competitive above 10 GPa,
crossing one another in stability once at 18 GPa and once
again at 37.5 GPa, whereupon the P2;/c-1 remains the most
stable until its collapse into P2;/c-h. The maximum sepa-
ration of the two competing structures is 3.23 meV/formula
unit (f.u.) (0.074 kcal mol~' f.u.~!). Both the P2,/c-1 and
P2, /c-1l phases become more enthalpically more favorable
than aragonite above 27.2 GPa. A further competitive phase
is found in this region with P2;2,2; symmetry, and which
eventually collapses into sp3-bonded P2,2,2;-h, however
neither of these structures occupy the lowest enthalpy at any
pressure. The previously reported Pnma-h once again appears
as a competitive phase, and is stable relative to aragonite and
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FIG. 1. Enthalpy per formula unit of CaCOj3 phases relative to postaragonite Pmmn, AH, as a function of pressure (a) to 100 GPa, and
(b) around the transitional postaragonite region. Dashed lines indicate structures which collapse into high pressure phases. Pale lines indicate

structures which are never thermodynamically stable.

each of the aforementioned phases above 44 GPa, but at this
point is not stable relative to Pmmn. In AIRSS we observe a
more narrow field of stability for Pmmn postaragonite than
our past study (42.4-58 here compared with 42-76 GPa in
Ref. [25]) before P2 /c-h becomes the dominant phase until at
least 100 GPa, as has recently been confirmed by experiments
performed by Lobanov et al. [27], however the AIRSS method
does not account for temperature effects—in later sections
we have explored the relative stabilities in more depth using
quasiharmonic approximation (QHA) calculations.

DFT computations for P2;/c-1 CaCO; reveal a discontinu-
ity in its enthalpy with pressure at around 7.5 GPa, which is
reflected in the pressure-volume equation of state of the phase
[Fig. 2(a)]. As such behavior can be related to transitions,
we investigate the structure and electronic structure of the
P2, /c-1 phase at low pressures. Figure 2 shows the band
structure and partial density of states (pDOS) of CaCO; in
the P2;/c-1 phase at ambient pressure and 10 GPa [Figs. 2(b)
and 2(c), respectively]. At ambient conditions, we see the
signature of a resonant sp? CO%‘ structure, s and p lobes
which are near symmetric [orange bands in Figs. 2(b) and
2(c)] and a valence composed of the remaining oxygen lone
pairs tightly localized in energy close to the Fermi level (green
bands). When pressure is increased to 10 GPa, the s p2 features
become smeared and more asymmetric, and are accompanied
by additional curvature in the bands indicative of a changing
bonding environment. Physically this is accompanied by a
puckering of CO%‘ groups. The same is true for the oxygen lone
pair features at the top of the valence band due to its splitting,
as well as for the Ca p feature around —20 eV. These behaviors
are suggestive of an interaction (such as polarization or charge
transfer) at higher pressures between the Ca’" and CO5~
species, and is supported further by the enhanced curvature
of the conductance band at 10 GPa.

III. HIGH PRESSURE EXPERIMENTS

High pressure experiments were performed in diamond
anvil cells (DACs) of custom design, equipped with conical-cut

diamonds with a 70° opening and 300, 200, and 100 pum
culets for three separate runs. Re foil with an initial thickness
of 200 um was pre-indented to form a gasket, and a 180,
120, and 60 um hole were drilled, respectively, to serve as
the sample chamber by laser micromachining [38]. CaCOj3
powder (Sigma-Aldrich ReagentPlus >99%) was oven dried
and pressed into 10-um-thick pellets, with an average diameter
of 40 um. High pressure experiments typically have the
requirement that samples are surrounded by some soft medium
to serve as a quasihydrostatic pressure transmitter, and due
to the high thermal conductivity of diamond, laser-heated
DAC experiments require that samples are thermally isolated
from the diamond anvils to achieve efficient and homogeneous
heating [32]. Thus, CaCO; pellets were encased in either
a medium of NaCl, KBr, or Ar, respectively, whose well-
calibrated equation of state is also used to calculate pressure
inside the sample chamber [39-41].

Laser heating was performed in situ at the ID-B diffraction
beamline at HPCAT (Sector 16, Advanced Photon Source, Ar-
gonne IL) using the recently developed instrument depicted in
Fig. 3. A Synrad evolution 125 CO, laser operating at 10.6 um
was focused into the DAC to a spot size 35-80 wm. Thermal
emission is collected using an achromatic objective shielded
by a MgF, window to protect the glass optics from damage by
the diffuse 10.6 um radiation, and the image is then refocused
onto a 50 um pinhole made in a reflective surface. This pinhole
acts as a spatial filter which samples a 7.5 um region of the
sample space, comparable to the x-ray spot size, and is aligned
to the peak in the x-ray fluorescence such that temperature
measurements are made from the precise location of x-ray
diffraction. Reflected light from the pinhole surface is imaged
onto a CCD camera for viewing the DAC interior during
experiments.

For accurate alignment of the mid-IR laser spot to the x-ray
and pyrometer focus, we employ a thermal imaging camera
modified for microscopy (gray paths in Fig. 3). In this way we
are able to directly image the sample chamber in the 7-14 um
region prior to heating. This crucial development allows
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FIG. 2. Electronic evolution of P2,/c-1 CaCO; at 20 GPa.
(a) Relative enthalpy A H and volume display discontinuous behavior
(relative to Pmmn as in Fig. 1). (b) and (c) Calculated band structure
(left) and partial density of states (right) at 0 and 10 GPa (pDOS due to
s, p, and d electrons are shown in red, blue, and green, respectively).
The changes in the electronic structure as a function of pressure may
be observed for the oxygen lone pair states (highlighted in green)
and the C-O sp” bonding states (highlighted in orange) and their
corresponding bands to the immediate left.

alignment of the laser spot to the sample area within the DAC
using only milliwatts of laser power, whereas previous CO;
laser heating instruments for DAC experiments have relied
heavily on laser radiation coupling with material inside the
sample chamber to create a thermal glow to allow the laser

CO, laser
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FIG. 3. In situ CO, laser heating system at the HPCAT ID-B
diffraction beamline. Optical paths are shown for CO, laser delivery
inred, pyrometry and visible spectrum visualization in yellow, mid-IR
visualization in gray, and synchrotron x-ray diffraction in green.

spot to be located, preheating the sample environment in some
cases to in excess of 1500 K. Implementation of mid-infrared
microscopy to directly visualize the 10.6 um laser spot makes
it possible to avoid any preheating of the sample during the
alignment procedure and before the formal beginning of an
experiment [42].

Angle-dispersive x-ray diffraction patterns were collected
both during and after laser heating using monochromatic x
rays with A = 0.4066 A, with a Pilatus 1M detector [43]. The
two-dimensional images were integrated into one-dimensional
spectra using the DIOPTAS software package [44]. We gradually
increased power density from the CO, laser as x-ray diffrac-
tion patterns were collected and observe for changes in the
sample structure and texturing as a function of time and laser
power. Temperature determination by optical pyrometry when
working with insulating materials such as carbonate minerals
is complicated by their low emissivity in the visible, which
remains low even into the mid-IR [45,46]. The pyrometer
is sufficiently sensitive to detect x-ray fluorescence from the
sample and salt medium during diffraction collections, but does
not detect any thermal emission from the CaCO; even when
heating is performed at the highest power densities, making
temperature estimation wrought with uncertainty. In Fig. 4
we show select data from the phase progression of CaCOj3 to
57.7 GPa, with laser annealing performed at roughly 5 GPa
steps in pressure. Below 40 GPa, we observe only the expected
Bragg reflections from aragonite.

Although marginally lower in enthalpy than all competing
phases between 27.2 and 37.5 GPa, we did not observe the
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FIG. 4. Observed x-ray diffraction patterns at 21.9, 41.3, and
57.7 GPa following annealing with CO, laser (black plots), nor-
malized to maximum intensity from CaCO;. Peaks marked with
asterisks (*) are due to a NaCl thermal insulator and pressure medium.
Simulated diffraction patterns at A = 0.4066 A and equivalent unit
cell volumes for each phase are stacked beneath using computa-
tionally generated structures. Annealed CaCO; data at 57.7 GPa are
stacked against the three lowest enthalpy phases at this pressure and,
notably, there is little similarity between the observed pattern and the
postaragonite Pmmn phase, nor with other competitive structures.

P2y /c-1l structure when annealing at 30.6 or 36.2 GPa—
further inspection into free energy arguments is sought to help
understand this discrepancy. At 40 GPa, P2;/c-1l exhibits the
shortest Ca-Ca distance of any of the studied structures—3.17
vs 3.47 A in Pnma aragonite and 3.65 A in P2,/c-1. This
is a markedly compressed distance for two of the heaviest
atoms in the cell, and likely translates to a higher vibrational
potential energy of any of the observed structures from a
harmonic oscillator point-of-view. In order to account for
this, as well as the effects of low temperature on the relative
stability of phases, we have computed the Gibbs free energies
of the most competitive structures within the quasiharmonic
approximation (QHA).

At41.3 GPa, a change in the diffraction pattern is observed,
and the resulting pattern cannot be accounted for with the
Prnma aragonite or Pmmn postaragonite structures. We index
the diffraction pattern at41.3 GPa as corresponding to the mon-
oclinic P2;/c-1structure, found by DFT calculations to be the
most stable structure at 37.5-42.4 GPa (at 0 K). Figure 5 shows

e Data "a

. " P2i/c-l —
— Rietveld fit ; Brmn —
— P2i/c- : oy NaCl —
— NaCl ; ’\,v\
— Residual -/ A2\

Intensity (arb. units)

1.0 115 120 125

Intensity (arb. units)

6 8 10 12 14 16 18 20 22 24
26 (degrees)

FIG. 5. Results of Rietveld structural refinement of x-ray diffrac-
tion pattern of CaCOs; at (a) 41.3 GPa. A good fit (wRp = 1.06%)
is achieved using the P2,/c-l phase predicted by Ref. [25]. Inset:
Simulated x-ray diffraction patterns for P2, /c-1and Pmmn structures
compared with observed data (top) and Rietveld fit (bottom) to peaks
in the 12° 26 region using the P2;/c-1 structure.

the results of a Rietveld refinement of the crystal structure at
41.3 GPa using the GSAS software package with the P2;/c-1
structure type as well as the high-pressure Pm3m structure of
the NaCl thermal insulator. The full structural refinement on
CaCOj; has a weighted R-factor value of 1.06% and a reduced
x? value of 4.202. This crystal structure exhibits a strong peak
at around 5.75° 20 due to Bragg reflections from the (100)
planes, which disappears beyond 50 GPa signifying a further
transition. The inset of Fig. 5 shows the group of observed
Bragg reflections around 12° 26 alongside simulated patterns
for the P2;/c-1 and Pmmn phases (top panel), which show
distinct differences in this region. The Pmmn postaragonite
structure (red) predicts two features between 11.5°-12.0°,
whereas the observed diffraction pattern contains three, which
the P2;/c-l structure (green) is able to account for—further
evidenced by the ability of this phase to accurately model the
data in this region during Rietveld refinement (bottom panel).
Table II shows our recorded experimental P2;/c-1 structure
from Rietveld refinement in which only the positions of the Ca
atoms were refined and the P2;/c-1 structure from simulation
at equivalent pressures.

Above 50 GPathereis a transition away from P2 /c-1. How-
ever, as is evident from the observed diffraction pattern in Fig. 4
and the simulated Pmmn diffraction pattern using appropriate
lattice parameters (orange line in Fig. 4), the pattern above
50 GPa cannot be indexed with the postaragonite phase. This
was sustained until 70 GPa with laser annealing performed
at ~5 GPa intervals, with no evidence for improvements
in crystallinity nor further structural transitions. Subsequent
decompression—again with frequent laser annealing—saw the
system re-adopt the Pnma aragonite structure once below
35 GPa.

Upon reflection in the literature, the accepted Pmmn
structure for postaragonite CaCOs still remains to be subject to
arigorous structural refinement—both the original assignment
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TABLE II. Crystallographic parameters of P2;/c-1 CaCOs from experiment and DFT.

Pressure Lattice parameters Atomic coordinates
(GPa) Space group (A, deg) Species X y z

Experiment 41.3 P2,/c a = 4.85656 b =3.34107 ¢ =12.09737 Ca 0.08584 —0.19861 0.40372
a =90.0 B = 123.3300 y =90.0 C —0.53927 —0.05723  0.13886

o(1) 0.27374 —0.19485  0.17202

0(2) —0.24458 —0.18693  0.18103

0@3) —0.66300 —0.78832  0.04896

Simulation 40 P2,/c a =4.71660 b =3.34070 c=12.42170 Ca 0.09381 —0.18682  0.39673
a =900 B = 123.2500 y =90.0 C —0.53927 —0.05723  0.13886

o(1) 0.27374 —0.19485  0.17202

0(2) —0.24458 —0.18693  0.18103

0(3) —0.66300 —0.78832  0.04896

of orthorhombic P2,2;2 by Ref. [20] and the following
reassignment to Pmmn by Ref. [21] feature the same raw data
and compare it with simulated patterns without performing any
fitting procedure. Reference [21] provides atomic positions
for their experimental pattern, but there is no evidence for
a structural refinement having been performed on the data.
Until very recently, the raw data in Refs. [20,21] was the only
published evidence of x-ray diffraction from Pmmn CaCOs,
in spite of its recurrence in the literature [22—-24]. Lobanov
et al. have since heated CaCO; at 83 GPa using indirect
laser-heating methods and published the raw diffraction pattern
against simulated peaks. That the Pmmn phase is clearly not
observed in our study warrants further investigation, and will
be discussed in later sections.

During the revisions to this paper, a study on postaragonite
CaCOs; was published in Ref. [47] which features indirect laser
heating of CaCOs in a similar pressure regime. Gavryushkin
et al. present the discovery of a new phase, termed “aragonite-
IL,” at 35 GPa and present “unambiguous” evidence for the
Pmmn structure of postaragonite at 50 GPa. It is important
to consider the quality of the data behind these claims. In
both cases, the phases present are subject to a Pawley (i.e.,
structureless) refinement over a very small range of reflec-
tions. Reference [47] presents their new aragonite-II phase
alongside a further proposed new structure, termed CaCOs3-
VII: a portmanteau of the P2;/c-h unit cell and P2;/c-1
atomic positions (though, more accurately, the P2;/c-h unit
cell, since the Pawley refinement employed is insensitive to
atomic positions). The CaCOs3-VII structure conveniently fits
a number of the reflections which are not accounted for by the
aragonite-II unit cell. The same CaCOs3-VII structure persists at
50 GPa alongside the Pmmn postaragonite, where it accounts
for only a single prominent reflection. The observations in
Ref. [47] of mixed-phase CaCO;3 at 50 GPa reinforces our
discussion in later sections regarding the kinetics of Pmmn
postaragonite.

It should also be noted that the metastable CaCO3-VI phase
observed in Ref. [28] was not observed at any point during
our high pressure experiment, in spite of their finding that
it is higher in density than aragonite up to 40 GPa. The
observation of metastable CaCO; phases by compression is
not uncommon, very early diamond anvil cell high pressure
studies uncovered the structure of CaCO3-II at 1.5 GPa [13].
Such metastable phases are likely avoided using our CO,

laser annealing approach, since direct heating with 10.6 um
radiation allows uniform heating and homogeneous phase
transformations at each density, allowing kinetic barriers that
may lead to sluggish phase transitions and the development
of metastable structures to be overcome with a high degree
of control. Compared with alternative laser-heating methods
at high pressure, which employ a metallic coupling material
to strongly absorb ~1 um radiation and indirectly heat the
sample material, the CO, laser heating approach is a more
close analog of the geothermal annealing experienced by real
mantle minerals. Future experiments could achieve highly
accurate determination of ground state structures in minerals
by combining the CO, laser annealing method employed
here with the single crystal and multigrain methodologies
employed to solve more complex polymorphs such as the
metastable CaCOs3-VI [28], and while necessary preparations
for such experiments are challenging even with near-IR laser
irradiation [48], it is the most natural progression of high P,T
experiments on geological materials to allow for the most
accurate measurements.

In Fig. 6 we show the ambient calcite (R3c) and aragonite
(Pnma) structures of CaCOj alongside the P2 /c-1 phase from
this study and the higher pressure postaragonite (Pmmn [20]),
and follow the angle ¢ between CO%‘ groups in each phase
and their bc stacking plane in R3c. In the ambient calcite and
aragonite phases, a distinct ordering of the CO%f units along
these planes is evident. The CO%‘ groups in aragonite are
likely more ordered than is shown, since the aforementioned
puckering of CO? units appears to exaggerate the apparent

R3c Pnma P2 /e Pmmn
070 0 2.9 SO gioio
oo 290 Q. ¢’e’e” {00}
00" .9 O o0i{0i0
070 0 9.07¢. %00 (0}0}
; A %

@ (degrees)

FIG. 6. Angle ¢ between CO%’ groups and Ca stacking in CaCOj3
crystal structures.
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rotation with respect to the stacking plane. These coplanar
groups are responsible for the anisotropic nature of a number
of material properties in bulk CaCOz;—for instance, the elastic
constants of calcite vary by a factor of 4.5 across its crystallo-
graphic directions and the shear wave velocity by a factor of
1.5 [49], and natural CaCOj crystals famously exhibit strong
birefringence and polarizing properties [50]. Coplanar CO%‘
is present in the high-pressure CaCO;3-1I and CaCOs5-III phases
(C2caxis[13]and P2, /c b axis [14] respectively, not shown),
and in the Pmmn postaragonite phase. In the intermediate
P2, /c-1 phase, however, carbonate ions are at 45° to the R3¢
stacking plane and stack AA B B with one another. One could
expect, then, that the physical properties of P2;/c-1 CaCO;3
differ from those of calcite and aragonite, having a more
isotropic elastic stiffness. Such crystallographic observations
in deep Earth minerals can prove useful in advising geology
and seismology, where mechanical properties of mantle con-
stituents are directly recorded by sound velocities within the
planet. That the carbonate ions occupy an intermediate angle
in P2;/c-1 CaCOj3 correlates with the structure occupying
the energetic intermediate between aragonite and Pmmn, and
that some intermediate featuring noncoplanar CO%‘ is not
surprising since in the absence of this intermediate phase, the
carbonate ions in CaCO3 would be required to undergo a near
90° rotation during the postaragonite phase transition.

IV. QUASIHARMONIC APPROXIMATION

The contribution of temperature to the phase stabilities
of CaCO; has been explored by computation of the Gibbs
free energies of the most competitive phases between 30
and 80 GPa: Pnma (aragonite), P2;/c-1, P2{/c-ll, Pmmn
(postaragonite), and P2;/c-h. We have followed an identical
procedure as that outlined in Ref. [51]. We have computed the
phonon spectra at volumes covering DFT pressures between at
least 35 and 60 GPa every 5 GPa. Furthermore, spectra down to
25 GPa for the low energy phases, and up to 75 GPa for the high
pressure ones, have been computed. All phonon calculations
have been performed with QUANTUM-ESPRESSO 6.1 [52], with
ultrasoft pseudopotentials similar to the CASTEP ones, also
generated with the PBEsol exchange-correlation functional.
As a sanity check, the relative enthalpies are in excellent
agreement with those calculated with CASTEP.

The introduction of vibrational effects—as seen in Fig. 7—
has only a small influence on relative stabilities below room
temperature. Above that, however, the contribution of vi-
brational effects stabilizes Pmmn over all other candidate
structures, especially P2;/c-h. However, it is worth nothing
that below 28 GPa an entire branch of the phonon dispersion
along the path connecting the I" and Z special points in the
Brillouin zone becomes zero, suggesting a lack of dynamic
stability of the structure at these pressures.

As alluded to in the previous section, temperature also
stabilizes P2;/c-1 over P2 /c-1l. The inset to Fig. 7 shows the
computed Gibbs free energy of the two competitive phases,
alongside aragonite, at temperatures of 0, 250, and 500 K. At
250 K there is a separation between P2;/c-1 and P2 /c-1l of
~2 meV/formula unit, which is small enough to be comparable
with the error in the QHA calculations, and this persists until
500K, where the P2, /c-1 phaseis ultimately lower in energy—

1200 CT T T 77 B B R s
L - I —;’21/0—"_ i
E —P2/c ]
1000 — b — Pnma 1 —
< 800 |- ]
o L
5 - L ]
= Pnma y '
© | . 30 40
3 600 aragonite L Pressure (GPa)
£ - i
(0]
400 -
Pmmn
r postaragonite P2 [c-h
1
200 — =

20 25 30 35 40 45 50 55
Pressure (GPa)

60 65 70 75

FIG. 7. Calculated pressure-temperature phase diagram of
CaCQOs, within the quasiharmonic approximation. The main effect of
temperature is stabilizing postaragonite against all other structures,
and favors P2,/c-1 over P2;/c-11 at the temperatures over 500 K.
Inset: AG for the aragonite Pnma and competitive P2;/c-1 and
P2, /c-1l structures under pressure, arrows denote the temperature
increase 0, 250, and 500 K.

the dotted green line in Fig. 7 shows the region on the phase dia-
gram where the G of P2 /c-1and P2, /c-1l are within this limit.
That the P2;/c-11 phase is so stable until temperature effects
are considered may suggest that aragonite may undergo a trans-
formation into this structure at low temperatures. For compari-
son, it was recently demonstrated in pure lithium that, at ambi-
ent pressure, the face-centered cubic polymorph is only acces-
sible at low temperatures through hysteretic pathways, despite
it being the energetic ground state [51]. With this in mind and
with the energetic competitiveness of the P2 /c-land P2 /c-Il
structures at moderate temperatures, there is the potential
that P2;/c-1l exists as a low-temperature phase in CaCO3—
further implied by its absence from the literature despite
several decades of room-temperature compression. Rather, we
observed aragonite at 30.6 and 36.2 GPa in our annealing
experiments, suggesting stability of the aragonite Pnma phase
to at least 36.2 GPa; however, the combined uncertainties of
theory and experiment (originating from choice of pressure
medium and its calibration) could amount to 5 GPa on the
phase line connecting Pnma and the new P2;/c-1 structures.

We note that the vibrational pressure "f;—vb is very substantial
beyond 1250 K for the low pressure monoclinic phases, and
therefore the QHA results should not be relied upon beyond
that point. Against our experimental observations, the QHA
predicts a wider stability range for Pmmn. Discarding thermal
stabilization of other known competitive structures, this points
at the large kinetic barrier which we have explored using NEB
in the following section. A large barrier is also consistent with
a significant difference in molar volumes: at 45 GPa, Pmmn
has a theoretical volume 3.5% smaller than that of P2;/c-l,
roughly equivalent to 5 GPa.

V. TRANSFORMATION MECHANISMS

To elucidate why the P2, /c-1 phase has not previously been
observed, and why it is realized only in a narrow pressure

013605-7



DEAN SMITH et al.

PHYSICAL REVIEW MATERIALS 2, 013605 (2018)

1.0
- 20 GPa — E
08 — 40GPa — _|
60 GPa — i
= 06 - —
C
= L i
S04 |- —
E | ]
K]
S 0.2 — —
° L
50 - N~
Vi
-0.4
Pnma P24/c-l
Reaction path
¥0 ¥-0
0,20
O o—of O
Plclr B @ %o “P2,/c-h"
O §o—o O
o o—ol) o
¥-0 o B0
0,20

FIG. 8. Mechanisms connecting the aragonite Prnma phase to the
new P2, /c-1at 20 (red), 40 (green), and 60 (blue) GPa with enthalpies
relative to the Pmmn phase. Distances along the pathway are taken
as the Euclidean norm between the images normalized so the defined
phases lie at unit values. Appearance of P2;/c-ll (green arrow)
and P2, /c-h (blue arrow) structures along mechanism pathways are
highlighted.

range, we carried out generalized solid-state nudged elastic
band (g-SSNEB [53]) simulations at 20, 40, and 60 GPa
along the pathway shown in Fig. 6. The reaction pathways
were calculated with the Vienna ab initio simulation package
(VASP) version 5.4.1 modified for g-SSNEB. The VASP
calculations were set up similarly to the CASTEP calculations
with the exceptions of the use of a I'-centered k-point grid
and the projector augmented wave (PAW) [54] method to
describe the electron-ion interactions. The g-SSNEB calcula-
tions connected a single unit cell of each phase co-oriented to
follow the pathway described in Fig. 6, and they employed 24
images to connect the initial and final phases. Both the atomic
positions and lattice vectors of the images were allowed to
vary. The g-SSNEB simulations ran until the forces were below
1072eV/ A.The AIRSS predicted structures were reoptimized
in VASP prior to g-SSNEB to minimize any inconsistencies
between different DFT implementations, and the defined states
maintained the same energy orderings as in Fig. 1.

The transformation between Pnma to P2;/c-l follows a
similar trajectory at each pressure as can be seen in Fig. 8, and
is marked by three processes: the rotation of the CO? groups,
a shifting of the Ca>* between atomic planes along the defined
b axis, and distortion of the unit cell to accommodate these
motions. For reference, the R3¢ stacking planes are defined
here as bc planes perpendicular to the a axis. The initial uphill
steps from Pnma have the system adopting a monoclinic cell
angle. This provides an initial rotation of the CO%‘ groups

commensurate with the monoclinic angle. After the first bar-
rier, the CO3~ then begin to rotate along a different axis and the
cell angles return to nearly orthogonal. To accommodate this
twisting of the CO%f groups the Ca>* switch stacking planes
and migrate into a single ac plane, until they become nearly
planar at the minima halfway between Prnma and P2, /c-1. The
nextuphill trajectory has the Ca>* moving away from the single
ac plane while the box becomes more monoclinic, eventually
reaching the global maximum along the pathway. We believe
the roughness observed along this pathway is an artifact of
the modest convergence criterion employed coupled with the
use of variable spring constants between the images; tighter
criterion should smooth out this climb. The global maximum
has the largest unit cell volume of any of the structures,
implying that the main enthalpic contribution is the PV work
the system must apply against the external pressure source
to accommodate that larger volume. Following that highest
enthalpy barrier, the cell volume drops below the final unit
cell volume, but the higher enthalpies relative to the P2;/c-1
arise here from the repulsive sterics of nonoptimally positioned
atoms, and the cell axis perpendicular to the stacking plane
elongates to allow for longer Ca>* distances.

As this phase transition is kinetically hindered, it is worth
estimating the transition temperature. If we assume that the
potential energy barrier shown in Fig. 8 is overcome entirely
by thermally induced kinetic energy (AH ~ Eyj, = %N kgT)
[55], this estimates the transition temperatures to be 1091,
1216, and 1145 K for 20, 40, and 60 GPa, respectively. If a
reasonable dimensionless rate constant (N/A) of 1 x 10713
is assumed for this kinetically hindered solid-solid phase
transition, the Arrhenius equation predicts nearly identical
transition temperatures: 1094, 1219, and 1148 K for 20, 40, and
60 GPa, respectively. Altering the rate constant up or down by
2 orders of magnitude only affects these estimates by +100 K.
These predicted barriers should be considered as upper bounds
to the actual energetic barrier since this NEB connects only a
single unit cell along the pathway defined in Fig. 6, and is by
no means exhaustive of all possible transition pathways and
other free energy concerns that may alter those values. With
that being said, they do clearly demonstrate that while P2, /c-1
is the most enthalpically favorable structure at 40 GPa, there
is a clear necessity for the system to be driven at temperature
to overcome the barrier into the P21/c-1 phase reinforcing the
necessity of CO, laser annealing for investigating the phase
progression in this and in other other geologically relevant
systems. A cold compression will not observe the P2;/c-1
phase, and that the phase has not yet been observed in over
a decade of postaragonite CaCO3; experiments demonstrates
that only an appropriately designed experiment can unveil the
true phase progression of mantle minerals.

Although the pathway in Fig. 8§ may not be the true minimum
energy pathway, it does provide interesting physical insight
about this complicated potential energy landscape pockmarked
with the several similar, low-lying local minima defined in
Fig. 1. The first minimum about 20% along the 40 GPa
pathway very closely resembles the P2;/c-1l phase predicted
by AIRSS (shown in the inset structure and highlighted by a
green circle in Fig. 8), and it having slightly higher enthalpy
than P2;/c-1 here, unlike in AIRSS calculations (Fig. 1),
shows just how sensitive the magnitude of these small enthalpy
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changes are to the subtle differences in simulation setup. This
minimum appears in all the structures, which seems obvious in
retrospect as P2 /c-1l can be best be described as a monoclinic
distorted version of the Pmna phase, where the rotations of
the CO? groups follow the monoclinic distortion of the cell.
The barrier into this phase can be surmised as the energy
penalty required to lower the symmetry of the cell from a
favorable orthorhombic structure. Along the 60 GPa path, an
intermediate structure actually becomes more enthalpically
favorable than the P2;/c-1 phase. This structure corresponds
to a lowered symmetry version of the sp® bonded P2;/c-h
phase (shown in the inset structure and highlighted by a
blue circle in Fig. 8). At this point along the pathway, the
counter-rotated CO%‘ groups become sufficiently close from
the compressed cell volume that they react and bond to form
the pyroxenelike chains of COy sp? tetrahedra. The raise in
enthalpy at the very end of the 60 GPa Pnma to P2;/c-1
pathway comes from breaking a C-O bond to return to the
sp? bound CO%‘ groups. Similar minima are observed along
the 20 and 40 GPa pathways, however at those pressures the
cell volume has not become sufficiently small to force the
sp> bonding. The ability at higher pressures to form P2;/c-h
before forming P2, /c-1short circuits the mechanistic pathway
we have illustrated in Fig. 6, allowing for a lower energy
pathway connecting P2;/c-h to stable higher pressure phases
like Pmmn akin to that studied in Ref. [27]. Reoptimizations
indicate that the NEB discovered P2, /c-h structure becomes
more enthalpically favorable by 50 GPa, precisely when the
P2, /c-1is no longer observed experimentally.

We also attempted to define similar pathways from both
Pmna and P2;/c-1to Pmmn using 2 unit cells, however in
each case we were unable to obtain a satisfactorily converged
pathway. One of the main reasons for this is the concerted
rotation of the CO%‘ and rearrangement of Ca’* groups
necessitates that several groups come very close to one another
creating large amounts of steric repulsion, and in some cases
even leaving atoms directly on top of one another in the
original images. This is likely because the matched interfaces
of Pmna and P2, /c-1to Pmmn are not ideal especially with
the small cell volumes employed here, implying that larger
scale mechanics such as diffusion would be required to achieve
a phase transition into Pmmun. It should be noted that smallest
energy barriers along the P2;/c-1 to Pmmn pathway are
double what was observed between Pmna and P2;/c-1, and at
least double that for Pmna to Pmmn. While these numbers are
not converged and any inference is purely speculative, it does
seem as though these transitions may require temperatures that
are beyond those estimated to be in the mantle at 50-80 GPa
(1250-1850 km, corresponding to 2054-2223 K) according
to the PREM model [56]. We intend to study the complicated
Pmmn phase transformation dynamics more thoroughly in a
subsequent publication.

These complicated kinetics alongside our observation of
experimental x-ray diffraction patterns which are not con-
sistent with the reported Pmmn phase casts some doubt
over the claims made in recent years, i.e., that aragonite
will transform into a Pmmn postaragonite. This doubt is
further reinforced by the aforementioned lack of published
structural refinements on the now-accepted Pmmn structure.
Furthermore, Ref. [27] reveals a marked distinction in quality

of diffraction data between their reported Pmmn and P2;/c-h
samples, strongly evidenced by their ability to perform a
Le Bail refinement on P2;/c-h at 105 GPa, but reporting
only a qualitative comparison between data at 83 GPa and a
simulated Pmmn pattern, i.e., experimental evidence for the
existence of the Pmmn structure is not as strong as evidence
for each of the P2;/c structures. The recent publication by
Ref. [47] reportedly features Pmmn postaragonite at 50 GPa
alongside a proposed new structure with the P2;/c-h unit
cell, supplementing the argument that transformations into
Pmmn are severely kinetically hindered. With this in mind
and with support from mechanistic calculations reported here
showing the arrival of a structure above 50 GPa which is
identical to P2 /c-h, we postulate that—in spite of its enthalpic
favorability (Fig. 1)—Pmmn may not be a real structure of
CaCOs; at mantle conditions. Tentative analysis of the post-
P2, /c-1 data shown in Fig. 4 suggests that some mixture of
the P2;/c-1 and -h may exist over some pressure range over
which CaCOj; is undergoing an isosymmetric transition.

VI. CONCLUSIONS

We report an additional polymorph of CaCO; (P2;/c-1)
which is stable at pressures equivalent to a mantle depth around
1000 km, first predicted to be stable by ab initio random struc-
ture search [25] and now realized by utilizing direct annealing
of the mineral with 10.6 um radiation from a CO, laser with
in situ x-ray diffraction. Above 50 GPa, the P2;/c-1 phase
transforms into a structure which cannot be indexed as the
formally accepted postaragonite, despite its apparent stability
when analyzed with QHA calculations. Investigation of the
reaction pathways between P2, /c-l1 and Pmmn postaragonite
sees a rising kinetic barrier with increasing pressure, slightly
exceeding the temperatures estimated at equivalent depths
inside the mantle by the PREM model [56], which may suggest
an absence of Pmmn CaCOQOs; in the Earth’s interior. Further
work is required to formally investigate the phase progression
of P2;/c-1 CaCO; upon further compression, but AIRSS and
2-SSNEB calculations tentatively suggest that an isosymmetric
transition from P2;/c-1 to P2;/c-h may be able to facilitate
direct sp?-sp> conversion within mantle carbonates.
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