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Segmental front line dynamics of randomly pinned ferroelastic domain walls
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Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic
force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA
measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004)] found evidence for dynamic phase transitions of
ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain
wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting
time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar
avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ε = 1.7 ± 0.1.
Also, the distribution of waiting times between events follows a power law N (tw) ∝ t−(n+1)

w with an exponent
n = 0.9, which transforms to a power law of susceptibility S(ω) ∝ ω−n. The present dynamic susceptibility data
can be well fitted with a power law, with the same exponent (n = 0.9) up to a characteristic frequency ω ≈ ω∗,
where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function
of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004)].
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I. INTRODUCTION

Understanding domain wall motion in ferroic materials
is not only of pure scientific interest, but is also important
for technical applications [1–4]. Movements of domain walls
(DWs) subject to external forces were shown to cause anoma-
lously high values of susceptibility in some ferroelectrics [5–8]
and ferroelastics [9–13] below the phase transition temperature
Tc. The domain wall response is very sensitive to changes
of external conditions, i.e., temperature, frequency, applied
field, etc. In some systems, freezing of domain wall motion
occurs at temperatures Tf < Tc where the DWs can no longer
follow the dynamically applied external force. As a result, the
susceptibility drops down to the domain-averaged value. Such
behavior was found, for example, in dielectric measurements
of KH2PO4 (KDP) [14] and (NH2CH2COOH)3 · H2SO4

(TGS) [15] and in elastic measurements of KMnF3 [9,16],
PbZrO3 [13], and LaAlO3 [11].

As noticed, domain freezing dynamics shares some sim-
ilarities to glass freezing dynamics [7]. For example, it was
found that the relaxation time for domain wall motion fol-
lows Vogel-Fulcher behavior for KDP (TVF ≈ 69 K), DKDP
(TVF ≈ 191 K), and TGS (TVF ≈ 32 K). Vogel-Fulcher-type
domain freezing was also found in KMnF3 doped with 0.003%
Ca (TVF ≈ 55 K) [10], whereas Arrhenius behavior was de-
tected for pure KMnF3 [17]. Meanwhile, Ren et al. [18–20]
found evidence for strain glass behavior in ferroelastic marten-
sites, i.e., Ti50−xNi50+x , through a Vogel-Fulcher-type relax-
ation time dependence, typical field-cooling/zero-field-cooling
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signatures [20], as well as the observation of dynamic nan-
odomains, which freeze out below Tg at a size of about 20–25
nm. In all these systems, impurities and/or defects seem to play
a major role for the freezing process.

Very recently, Salje et al. [21] argued that domain boundary
patterns can evolve glasslike states even without any defect-
induced disorder, which led them to the notion of domain glass.
Indeed, large-scale molecular dynamics simulations [22,23] of
a ferroelastic crystal, with domain walls mimicked by a simple
two-dimensional spring model with a sheared (ferroelastic)
ground state, show that DW movements under applied shear
deformation follow Vogel-Fulcher behavior at a certain tem-
perature regime. They found that pinning/depinning processes
also appear as a consequence of domain jamming even if no
extrinsic defects are present.

Regardless of whether or not defects are present in a sample,
there is general consensus that domain wall pinning is a
prerequisite for domain freezing. In the domain glass, the twin
patterns involve a very high number of twin intersections,
which act as pinning centers. In other cases, domain walls
are pinned at randomly distributed defects. In LaAlO3 the
determined values of activation energy suggest that domain
walls are predominantly pinned by oxygen vacancies [11]. The
basic idea to explain a finite Vogel-Fulcher temperature [7]
TVF > 0 is then that the pinning becomes correlative with
decreasing temperature, leading to an increase of the effective
pinning region [24] �R. This would imply that the collective
pinning energy, UCP , diverges at TVF as UCP = U/(T − TVF).
This is very appealing, since the concept of increasing (with
decreasing T ) cooperative length scales [25,26], which leads
to a diverging relaxation time at finite temperature, turned out
to be very fruitful for glass forming liquids. It is only natural to
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FIG. 1. Polarizing microscopy image of a LaAlO3 sample and
a schematic of a tip of a wedge-shaped needle domain with the
propagating front line at the right. The needle shafts are smooth due
to elastic compatibility conditions, whereas the front line is wavy and
adapts to the various defect fields.

check if a similar scenario applies also for the domain freezing
problem.

The main purpose of the present work was to study the
pinning-depinning process of ferroelastic domain walls (DWs)
in detail as a function of temperature, frequency, and applied
external force. As an example we used the perovskite crystal
LaAlO3, since many aspects of DW movement have been
studied [11,12,27–29] and can be used for comparison.

Domain wall pinning effects were already studied some
time ago by measuring jerky responses of a system to slowly
changing external conditions. For example, in ferromagnetic
DWs [30–32] it is known as Barkhausen noise. There were
serious doubts if a similar crackling noise behavior could
be detected in a crystal with ferroelastic domains, since,
due to elastic compatibility, ferroelastic domain walls are
rather flat, implying a huge Larkin length and no pinning-
depinning transition. However, Salje and Harrison [27,28]
found that jerky avalanches also occur during ferroelastic DW
propagation. For LaAlO3, the pinning-depinning process was
shown [28] to be mainly effective at the front line of the
needle tips (Fig. 1), which, opposed to the planar parts of the
ferroelastic DWs, can easily break into smaller (nanoscale)
segments of various lengths. Recently Gao et al. [33] studied
the switching dynamics of individual ferroelastic domains in
thin Pb(Zr0.2Ti0.8)O3 films by using in situ TEM. They found
ferroelastic switching mainly to occur at the highly active
needle tips in ferroelastic domains. These needle tips are shown
to be broken into segments of various length of one to few nm.

Harrison et al. [27] measured the movement of a single
needle domain in LaAlO3 under weak external stress at the
critical depinning threshold and found discrete jumps of the
needle tip of varying amplitude due to the pinning/depinning of
wall segments to defects. Tracking the movement of the needle
tip x(t) yields the dissipated energy via the kinetic energy E ∼
v2 = (dx/dt)2. They found that the distribution of energies
follows a power-law N (v2) ∝ (v2)−ε behavior with an energy
exponent of ε = 1.8 ± 0.2. A similar phenomenon of the jerky
movement of many DWs in LaAlO3 and PbZrO3 was found
recently [34] to have a power-law distribution of the maximum
drop velocities squared N (v2

m) ∝ (v2
m)−1.6±0.2.

In the present work we determine additionally the distribu-
tion N (tw) of waiting times between successive jerks, which
are related to the energy landscape of the DW segments in

FIG. 2. Dynamic force and response signals using the DMA tech-
nique with dynamic stress mode and three-point-bending geometry
of the DMA.

the presence of defects (most probably oxygen vacancies in
the case of LaAlO3), and compare the calculated complex
susceptibilities with frequency-dependent elastic susceptibility
data. We show that the DW response of LaAlO3 at low
frequency of the external stress shows up in three regimes of
the complex elastic susceptibility, separated by dynamic phase
transitions: sliding at ωτDW < 1, stochastic or creep regime (at
ω ≷ ω∗), and the pinned regime at ω > ω∗.

Section II presents details about the samples and the
experimental measurement technique. In Sec. III we show
temperature-dependent elastic susceptibility data at various
frequencies, as well as the results of static and dynamic stress
scans. We also show waiting time distributions determined
from strain jerks at slowly increasing stress and compare the
(Laplace transformed) results with dynamic susceptibility data
obtained from frequency scans at different temperatures.

II. EXPERIMENTAL

For our present study, single crystals of lanthanum alumi-
nate were used. LaAlO3 is a perovskite crystal and exhibits
a phase transition to an improper ferroelastic phase. At the
phase transition temperature, Tc = 823 K, the crystal structure
changes from cubic Pm3̄m to rhombohedral R3̄c [29]. A typi-
cal domain structure of a LaAlO3 sample at room temperature
in its rhombohedral phase is shown in Fig. 1.

Experiments were carried out using the technique of dy-
namic mechanical analysis (DMA). The measurements were
performed under two different operating modes of the DMA:
static stress scans and dynamic stress scans of varying fre-
quency, temperature, and dynamic force. Static stress scans
were performed to measure the sample height h(t) as a function
of time and external stress. The external force was slowly
increased with time at rates of 3–15 mN/min.

By way of contrast, dynamic stress scans involve a sinu-
soidally varying force, FD . Apart from the dynamic force, a
static force, FS (which is approximately 15% larger than the
dynamic force), is applied as well, ensuring that the sample re-
mains in contact with the support edges (see Fig. 2). The DMA
measures the amplitude u and phase lag δ of the mechanical
response via electromagnetic inductive coupling and calculates
certain components of the real and imaginary parts of the
complex elastic compliance, S∗, depending on the orientation
of the sample with respect to the applied force. In three-point-
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bend geometry, the distance between the sample’s support
edges l is usually much larger than the sample width, l � w,
leading to the complex elastic compliance (in direction �p
perpendicular to the applied force) of the form [11]:

S∗( �p) = 4t3w

l3

FD

u
e−iδ, (1)

where t is the sample thickness. The complex elastic compli-
anceSij is related to the elastic constant tensorCij asSij = C−1

ij

and to the real and imaginary parts of the complex Young’s
modulus Y ∗ = Y ′ + iY ′′ as

S ′ = [Y ′(1 + tan2δ)]−1 and S ′′ = Y ′′|Y ∗|−2. (2)

Static stress scans were conducted using the Pyris Diamond
DMA (Perkin Elmer) because this device is able to apply
a force up to 10 N, in contrast to the DMA7e, which only
allows a maximal force of 2.5 N. The resolution of the force
is 0.002 N and the resolution of the sample height is about
3 nm. Although the relative accuracy of DMA measurements
is about 1%, the absolute accuracy is usually not better than
20%. For this reason, all plots are shown here in relative units,
i.e., normalized at an appropriate temperature. For dynamic
stress scans, the DMA7e (Perkin Elmer) was used because, in
contrast to the Diamond DMA, it is possible to set initial values
for the dynamic and static forces simultaneously. With the
Diamond DMA it is only possible to set an intentional strain.
The device regulates static and dynamic stresses according to
the sample’s stiffness until the required strain is reached.

Regarding the sample geometry, three-point bending was
used for all measurements. The LaAlO3 samples were cut in
small rods of approximate size 5 × 1.8 × 0.5 mm3, and were
placed on two supports with distance 4.2 mm. The force is
applied from above, halfway along the sample length using
an electromechanical force motor. The maximum temperature
used was 620 K, for technical reasons.

III. RESULTS

A. Dynamic stress scans: Dynamic susceptibility

This section presents the results of dynamic stress mea-
surements in LaAlO3 where both the frequency and dynamic
force amplitude were varied. It should be noted that Harrison
et al. [11,12] have already performed detailed DMA mea-
surements on LaAlO3. However, since we intend to compare
our strain drop data, i.e., ε(σ (t),T ), with the DMA data of
Y ′(σ,f,T ) and Y ′′(σ,f,T ), we performed DMA measurements
in order to have a complete set of data from the same sample
for comparison.

Temperature scans below Tc from room temperature to 623
K with varying measuring frequency are depicted in Fig. 3.
During these experiments the dynamic and static stresses
were fixed at values of FD = 300 mN and FS = 336 mN.
The frequency was changed after each temperature scan.
As previously found [29], the low-frequency response of
the sample at temperatures above ≈470 K is dominated by
domain wall motion in the domain sliding mode (ωτDW < 1),
which induces superelastic softening. At lower temperatures,
the DWs gradually freeze out as reflected in an increase of
modulus Y ′ and a peak in Y ′′ at ωτDW = 1. The motion of
DWs shows a strong frequency dependence. They can respond
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FIG. 3. Temperature dependencies of the real part of Young’s
modulus Y ′ in relative units (top) and the imaginary part Y ′′ (bottom)
for LaAlO3 measured at FD = 300 mN, FS = 336 mN and at different
frequencies. Y ′′ curves are shifted for clarity. The dashed vertical line
serves as a guide for the eye, marking a temperature of about 470 K,
which is in a region of strong dispersion, see Fig. 12.

to the externally applied stress as long as the characteristic
relaxation time τDW for DW movement is small enough in
comparison with the measurement frequency. With decreasing
temperature, τDW increases and the DWs can no longer follow
the applied stress. If ωτDW > 1, this freezing of DW motion
is accompanied by a rehardening of the sample and the elastic
response turns to the domain-averaged value. The Y ′′ peak
shifts to higher temperatures with increasing frequency. For a
Cole-Cole relaxation process, the domain wall relaxation time
can be extracted from the Y ′′ diagram via determining the shift
of the peak maximum, which appears at ωτDW = 1.

A Cole-Cole relaxation is used for fitting Y ′′ = S ′′|Y ∗|2 in
the crossover region, where ωτDWT < 1 → ωτDWT > 1, with

S∗(ω) = S∞ + �SDW

1 + (iωτDW)μ
. (3)

Here S∞ denotes the elastic compliance in the high-frequency
limit, where ωτDW � 1, and �SDW refers to the DW-induced
softening. The exponent μ leads to a broadening (if μ < 1) of
the Debye relaxation, which is obtained in the limit μ = 1. In
agreement with the results of Ref. [29] a Cole-Cole function fits
the data quite well, if one allows for the broadening parameter
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FIG. 4. Temperature dependence of the relaxation time of domain
wall motion plotted in semilogarithmic scale. The LaAlO3 curves
correspond to different samples labeled s4, s9, s10. Samples s9 and
s10 were cut from the same piece of LaAlO3, whereas sample s4 was
cut from a different piece. The solid lines correspond to Arrhenius
fits. Data points of sample s9 are derived from the curves of Fig. 3.

μ to vary between approximately 0.5 and 0.7 as a function of
temperature. The relaxation time for LaAlO3 is then well fitted
(Fig. 4) with an Arrhenius law

τDW = τ0exp(E/kBT ), (4)

yielding an activation energy, E = 1.15 ± 0.04 eV ≈
110 kJ/mol, for the LaAlO3 sample (s9) used for measurements
depicted in Fig. 3. For another sample (s10), a slightly lower
value, E = 1.06 ± 0.01 eV ≈ 102 kJ/mol, was determined.
Both values are quite similar to the results of Harrison et al. [29]
(E = 0.985, 0.881, and 0.891 eV).

Further investigations of the DW behavior involve variation
of the applied external dynamic force. Figure 5 shows results
for real Y ′ and imaginary Y ′′ parts of Young’s modulus at
different amplitudes of the dynamic force, FD , at a constant
frequency of 32 Hz. Increasing the dynamic force amplitude
leads to an increasing softening of the sample up to a value of
approximately FD = 600 mN. Further increase of the dynamic
force amplitude above 600 mN results in a rehardening (see
inset of Fig. 5). Such a behavior is also reflected in an increase
of the Y ′′ peak with increasing dynamic force, followed by a
decrease at values above 600 mN. A similar pattern is found
for other frequencies. The rehardening at forces >600 mN is
due to saturation effects, which occur when needle tips retract
to the side of the sample where they no longer contribute to
the macroscopic strain [29].

From the curves in Fig. 5 and equivalent measurements at
1 Hz and 24 Hz, data points for Fig. 6 were extracted to show
the real part of Young’s modulus as function of dynamic force
amplitude for 1 Hz, 24 Hz, and 32 Hz at a temperature of
523 K. These plots show that the Young’s modulus decreases
rather abruptly at a certain stress value associated with the
critical depinning force Fω, which is necessary to set the DWs
in motion. Below Fω the DWs remain pinned. The critical
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FIG. 5. Temperature dependencies of Y ′ of normalized Young’s
modulus (top) and Y ′′ (bottom) of LaAlO3 measured at 32 Hz and at
different dynamical forces (FS = 1.2FD). Y ′′ curves are shifted for
clarity. Inset shows further measurements at increasing forces leading
to a rehardening.

depinning force increases with increasing frequency from
about 100 mN at 1 Hz to 200 mN at 24 Hz and 300 mN at 32 Hz.
At forces FD > Fω, the DWs are able to escape their pinning
sites and the superelastic regime is entered. Upon increasing
the dynamic force further, Y ′ decreases and remains at a low
value until the dynamic force amplitude exceeds the upper
threshold stress, Ft , of about 700 mN at 1 Hz and 800 mN at
24 Hz. At stresses above the upper threshold stress, FD > Ft ,
the saturation regime is reached and the modulus increases
again. Hence, the threshold stress separates the superelastic
from the saturation regime. Harrison et al. [11] showed that
the critical depinning stress, Fω, is a function of temperature
because thermal fluctuations enable DWs to unpin. The results
of the present study demonstrate that Fω is a function of
frequency as well.

In addition, frequency scans at constant temperatures,
shown in Fig. 7, were performed to further investigate the
changes in Young’s modulus, which occur close to the domain
freezing temperature Tf (ω), which depends on frequency. The
freezing temperature is defined as the temperature value where
the maximum of the Y ′′(T ) curve is measured. The static and
dynamic forces were fixed at FS = 448 mN and FD = 400 mN,
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FIG. 6. Dynamic force dependence of the real part of Young’s
modulus at 1 Hz (top), 24 Hz (middle), 32 Hz (bottom) at a
temperature of 523 K. The decrease in modulus above a critical value
of dynamical force is associated with the unpinning of domain walls,
displaying a dynamic phase transition at Fω. The lowest plot shows
the critical depinning force Fω as a function of frequency. For these
measurements sample s10 is used.

and measurements were performed within a temperature range
303–573 K, i.e., starting in the domain freezing regime up to
the superelastic regime. At lower temperatures, 303–373 K,
the modulus shows hardly any variation with frequency. With
increasing temperature, the overall value of the modulus
decreases and shows a strong variation of frequency. The dis-
persion is maximal at temperatures of about 470 K. Increasing
the temperature further, the dispersion disappears again.

B. Static stress scans: Strain intermittency

To study the pinning-depinning process of DW segments in
more detail, we have performed static stress scans at various
temperatures. Figure 8 shows the height evolution of LaAlO3

with slowly increasing static stress at different temperatures.
At low temperatures (blue curves), the sample height follows a
stretched-exponential relaxation envelope punctuated by jerks
of varying amplitude. The jerks are manifestations of pinning-
depinning events of DWs to defects or due to mutual jamming
of DWs.

Figure 9 shows the corresponding squared drop velocity
peaks derived from the height evolution h(t) with time as
v2

m = (dh/dt)2
m. They vary over several orders of magnitude

and result from about 4000 (at 323 K) single discontinuous
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FIG. 7. Log-lin plots of real part Y ′ of Young’s modulus (top) and
imaginary part Y ′′ (bottom) as functions of frequency. FS = 448 mN,
FD = 400 mN. The dashed line indicates the shift of the minimum
of the Y ′′ curves. The steps in Y ′ and Y ′′ at ∼6 Hz are most probably
due to resonance effects of the DMA apparatus.

strain bursts with about 200 positive velocity jumps, i.e.,
backward movements of the domain walls. These back jumps
were neglected for further calculations because including them
yielded the same statistical results.

For calculation of the power-law exponents, the peak data
were logarithmically binned (bin size = 0.1) and plotted in a
histogram. Figure 10 shows the log-log plot of the distributions
of squared drop velocity maxima calculated from the statistical
characteristics of height drops �h(t). N (v2

m) is calculated
from the squared temporal derivative v(t)2 = (dh/dt)2 of the
sample height h(t). The curves at lower temperatures (curves
in different blue shades), i.e., in the frozen regime (ωτDW > 1)
are fitted by a power law N (v2

m) ∝ (v2
m)−ε with ε = 1.7 ± 0.1.

This exponent value agrees very well with the exponent value
of Harrison et al. [27], ε = 1.8 ± 0.2, who studied the jerky
propagation of one needle.

At higher temperatures (curves in red shades) the re-
sponse of the sample differs considerably. An increase in the
number of energy jerks (Fig. 9) with increasing temperature
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FIG. 8. Height evolution during a compression experiment of
LaAlO3 at different temperatures. The applied force is increased
at the rate 10 mN/min from 10–2000 mN. (Curves are shifted for
clarity.) The red curves correspond to stretched-exponential fits (∝
e−(t/τ )β with β ≈ 0.003). Insets show magnifications of h(t) revealing
different evolutions of height at 323 K (left) and 603 K (right).

is observed, together with an exponential distribution of
N (v2

m). This crossover is in agreement with recent computer
simulations of a ferroelastic switching process at different
temperatures [22,23], and is most probably due to thermal
fluctuations, which at high temperature ease the motion of
domain wall segments [24] of various length li with a rate
of τ (li)−1 = τ−1

0 e−E(li )/T . The distribution of waiting times tw
between successive events is shown in Fig. 11. It also yields a
power law N (tw) ∝ t−(n+1)

w , with n ≈ 0.9. The exponents n for
both temperatures are in good agreement within the uncertainty
limits.

IV. DISCUSSION

Figure 3 shows real and imaginary parts of Young’s modulus
of LaAlO3 as a function of temperature at different frequencies.
The behavior is very similar to the DMA data of Harrison
et al. [29]. At sufficiently high temperature (say above ≈550 K,
depending on f ) the domain walls can perform macroscopic

FIG. 9. Squared drop velocity peaks v2
m = (dh/dt)2

m derived from
the height measurements (Fig. 8) of LaAlO3.

FIG. 10. Log-log plot of the distribution N(v2
m) of maximum drop

velocities squared of LaAlO3 at different temperatures. Curves are
calculated from the similar color curves of Fig. 8. (Curves are shifted
for clarity.) The linear fits correspond to power laws with exponent of
ε = 1.7 ± 0.1. The inset shows a corresponding maximum likelihood
plot.

displacements in response to the applied dynamic force, FD >

Fω, leading to a DW-induced superelastic softening at ωτDW �
1. In this superelastic regime it was shown [35] that the DW
motion-induced elastic compliance �SDW of Eq. (3) can be
written as

�SDW(T ) ∝ Nw

B
η2(T ), (5)

where Nw is the number of domain walls, η the order parameter,
and B is the fourth-order coefficient of the Landau-expansion.
Equation (5) describes the domain-wall-induced superelastic
softening [36] in the region ωτDW � 1 for many ferroelastic
systems.

In the derivation of Eq. (5) the needle shape of ferroelastic
walls plays an essential role. Contrary to ferroelectrics and

10 100
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n = 0.9 0.11
n = 1.0 0.15

323 K
373 K

N

tw

FIG. 11. Waiting time distributions N (tw) corresponding to mea-
surements shown in Fig. 8 for LaALO3, calculated from the time
intervals between successive v2

m peaks of Fig. 9.
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FIG. 12. Frequency dependence of Y ′′ of LaAlO3 at T = 473 K,
showing two dispersion regions. The part far enough below ω∗/2π ≈
15 Hz is well fitted with a Cole-Cole relaxation function. In the region
around f ≈ ω∗/2π , a scaling function [38], Eq. (10), describes the
data quite well.

ferromagnetics, a system of parallel striped ferroelastic domain
walls is unstable, because of the lack of a field that corresponds
to the depolarization or demagnetization field. However, at
the tips of ferroelastic needles, long-range elastic fields are
created, which act in a very similar way to the stray fields in
ferroelectrics or ferromagnetics, and stabilize [37] an array of
ferroelastic needles. The dynamics of such a domain wall array
in LaAlO3 have been described phenomenologically [29] in the
range ωτDW < 1 by a Cole-Cole function, Eq. (3). Combining
Eqs. (3) and (5) we obtain

�SDW = S∞ + const.
Nw

B
η2(T )

1

1 + (iωτDW)μ
. (6)

The behavior of Fig. 3 can be well described with Eq. (6) and
μ varying with temperature between approximated 0.5–0.7.
Moreover, a fit of the data (e.g., Fig. 3) yields an Arrhenius
dependence of the DW relaxation time τDW (Fig. 4) with
an activation energy E ≈ 1 eV. With decreasing temperature,
τDW increases and a decreasing fraction of DWs can follow
the applied dynamic force. The rest of the needles are pinned.
This increase of the ratio of static to mobile needle tips with
decreasing temperature was observed [29] by in situ optical
microscopy during DMA measurements.

Inspecting Fig. 7, we realize that in the vicinity of the
domain freezing regime (around 470 K at 1 Hz), there are
at least two dispersion regions. A regime below f ∗ ≈ 15 Hz
and another one above f ∗. With the temperature dependence
of the domain wall relaxation time τDW (Fig. 4), one finds
that the region much below f ∗ corresponds to the region
of macroscopic DW motion. For example at 470 K, τDW ≈
0.06s and, accordingly, the region of macroscopic domain
wall motion, i.e., where ωτDW < 1 to ωτDW = 1, is below
approximately 3 Hz. Indeed, in the region below approximately
8 Hz, Y ′′(f ) can be well fitted (Fig. 12) with the Cole-Cole
relaxation Eq. (3) and the parameters obtained from the fits of

the T -dependent measurements (Fig. 3). This implies that the
region f � f ∗ corresponds to macroscopic DW movements.

In the region above ωτDW = 1, the macroscopic domain
wall motion gradually freezes out and only segments of DWs
can move in the random potential. For f < f ∗ it is assumed
that, on the time scale given by 2π/ω (f = measurement
frequency), the center of mass of the field-driven DW seg-
ments probes different local minima of the energy landscape,
corresponding to different metastable DW configurations (see
inset of Fig. 12). This region has been referred to as the
stochastic regime [38]. We can resort to a large amount of
theoretical work [39–44] to understand the behavior of DW
motion in this region. For example it was shown [38,39] that the
distribution ψ(tw) of waiting times tw(L) = τ0exp[EB(L)/T ]
for hops of DW segments of length L between metastable states
separated by energy barriers EB(L) � Uc(L/Lc)θ (Uc is the
typical barrier on the Larkin scale Lc and θ = 2ζ + D − 2, D:
dimension of the interface = 2 for DWs; ζ : roughness exponent
of DWs = 2/3 for random bond impurities [45]. This yields θ

= 4/3.) scales as a power law at large times, i.e.,

ψ(tw) ∝ (tw/τ0)−(n+1). (7)

Here

n = (T/Uc)(ν − 1) (8)

and ν > 2 determines the size distribution n(L) ∝ L−ν of DW
segments. The dynamic response in this regime (f < f ∗),
which often is called the creep regime, is then given as

S(ω) = S∞[1 + (iωτ0)−n]. (9)

For frequencies corresponding to ω � ω∗ the DW segments
are captured in the valleys, i.e., only relaxational reversible
motion of internal modes occurs. In the region ω ≷ ω∗, the
imaginary part of the dynamic susceptibility was represented
by a scaling function [38]

S ′′(ω) = aω−n

[
1 + 1

2κ − 1

( ω

ω∗
)κ

]2n

. (10)

Figure 13 shows the measured frequency dependencies of
Y ′′ at different temperatures in the domain freezing region. The
data can be perfectly fitted using Eq. (10) with n = 0.9 and
κ = 1.2 ± 0.2. As shown below, in the temperature range of
this measurement, T � Uc is valid (because Uc/kB = 464 K)
and, therefore, according to Ref. [39], the exponent n becomes
independent of temperature and remains at n = 1 for an elastic
string (D = 1).

At this stage it should be stressed that there is perfect
agreement between the exponents (n ≈ 0.9), which are de-
termined by two quite independent experimental methods.
The first is from frequency-dependent measurements of the
dynamic susceptibility S∗(ω) at a given temperature (Figs. 7
and 13), and the second is from the intermittent DW response
to a slowly increasing stress (Figs. 8 and 9), yielding the
distribution of waiting times (Fig. 11) between successive
jerks. Moreover, using Eq. (8) with n = 0.9, we obtain with
ν − 1 ≈ 1, T/Uc ≈ 0.9. This implies that, at T ≈ 400 K,
i.e., the temperature, where the crackling noise exponent was
measured, the elementary pinning energy is of the order of
Uc ≈ 0.04 eV. Interestingly enough, this value of Uc is rather
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FIG. 13. Top image shows the frequency dependence of Y ′′ at
various temperatures in the domain freezing regime (data points).
FS = 448 mN, FD = 400 mN. The red lines are the best fits using
Eq. (10) with n = 0.9 and κ = 1.2 ± 0.2. The leading temperature
dependency comes from ω�(T ). The shift of ω�(T ) with temperature
is marked by the dashed line. Bottom image shows the relaxation times
of macroscopic (τDW), from Fig. 4, and microscopic (τ ∗ = 1/ω�) DW
motion as function of inverse temperature. The data of τDW(T ) is
derived from temperature scans of sample s10, which was also used
for the frequency scans.

similar to the value determined from the frequency scans
(Fig. 13). Indeed, we found an Arrhenius dependence of
the depinning frequency ω∗ = τ−1

0 exp(−�E/T ) (see inset of
Fig. 13), with an activation energy �E ≈ 0.05 eV that is close
to the value of Uc ≈ 0.04 eV.

Along the same line of reasoning, we can also understand
the frequency dependence of the threshold force Fω (Fig. 6),
which was shown [41] to obey the relation

Fω = Fc

[
Uc

T ln( 1
ωτ0

)

(
1 − Fω

Fc

)θ
]1/μ

. (11)

With θ = 4/3 for random bond impurities, and μ = θ/(2 −
ζ ) = 1 for ζ = 2/3, we can approximate Eq. (11) as

Fω = Fc

1 + T ·ln(1/(ωτ0)
Uc

, (12)

which describes the observed (Fig. 6) increase of Fω with
increasing ω rather well. Equation (11) also explains the ∼1/T

dependence of the depinning force found by Harrison et al.
(Fig. 10 of Ref. [11]).

The observed similarity between �E ≈ Uc can be well
explained with the threshold frequency [38]

ω∗ = τ−1
0 exp

[
−Uc

T
·
(

Fc

F

)μ]
= τ−1

0 exp

(
�E

T

)
(13)

and the value Fc ≈ 300 mN, obtained from the fit (Fig. 6).
During frequency scans (Fig. 13) the applied force was F ≈
400 mN. The values of Fc ≈ 300 mN and F ≈ 400 mN support
the assumption �E = Uc

T
( Fc

F
)μ ≈ Uc

T
.

V. CONCLUSIONS

Up to this time, work on elastic interfaces in random envi-
ronments of ferroics has been mainly focused on ferromagnetic
and ferroelectric systems. In the present study we investigated
the ac response of elastic DWs in LaAlO3. Similarly to many
other systems, where a competition between disorder (due
to defects) and order (due to interfacial elasticity) leads to a
rugged energy landscape with many metastable states, this is
also the case for ferroelastic DWs in the presence of defects.

By measuring the complex linear susceptibility of LaAlO3

at low frequency we found clear effects of such a complex
energy landscape. The data can be well modeled within a
scaling approach by taking account of local pinning and motion
of DW segments under random pinning forces [38,40]. At
temperatures T ≈ Tf (ω) around the domain freezing regime,
where the macroscopic motion of DWs has already stopped
during one period of the alternating force (ωτ0 > 1), segments
of DWs of length L can still overcome local barriers of height
EB(L), even at forces Fω < Fc, where Fc is the pinning force
at T = 0 K. This leads to an irreversible creeplike wall motion
with S ′′(ω) ∝ ω−n with n ≈ 0.9. To study this non-Debye
response also in the time domain, we measured the distribu-
tion of waiting times ψ(tw) needed to overcome the energy
barriers, which, according to theory (e.g., Ref. [39]), should
scale as ψ(tw) ∝ t−(n+1)

w . Although these measurements of
ψ(tw) are rather complementary (based on strain bursts during
slow compression) to the frequency-dependent susceptibility
measurements, there is a remarkable agreement between both
methods, both lead to n = 0.9 ± 0.1. This value of the n ≈ 1,
together with the fact that n is independent of temperature
strongly supports the idea that the domain wall segments are
one-dimensional objects [39], i.e., elastic strings, moving in
a random potential. For elastic manifolds with D � 2 it is
expected [46] that n < 1 at all temperatures.

In summary, the present results suggest that DW dynamics
in disordered ferroic materials are rather universal. More-
over, ferroelastic domain walls are ideal objects to study
the dynamics of elastic manifolds driven through a random
medium. Dynamic mechanical analysis is a very appropriate
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method for its study, since it can be used in a complementary
way to provide both the dynamic elastic response in the
frequency domain (dynamic susceptibility) and in the time
domain (through strain intermittency measurements).

Further measurements on various systems have to be done to
understand the DW dynamics around ωτDW ≈ 1 in more detail,
so as to reveal the microscopic origin of domain freezing and to

see if the observed deviations of τDW from Arrhenius behavior,
found in some systems, are manifestations of a domain glass.
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