
PHYSICAL REVIEW MATERIALS 2, 013601 (2018)

Correlation of elastic and mechanical properties of consolidated granular media
during microstructure evolution induced by damage and repair

A. S. Gliozzi,1 M. Scalerandi,1 G. Anglani,2 P. Antonaci,2 and L. Salini1,2

1Department of Applied Science and Technology, Condensed Matter and Complex Systems Physics Institute, Politecnico di Torino, Italy
2Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Italy

(Received 27 June 2017; revised manuscript received 2 November 2017; published 5 January 2018)

Evolving cracks in consolidated granular media cause a modification of the microstructure in the area
surrounding the damaged zone. As a consequence, the mechanical properties (flexural strength) and the elastic
characteristics (linear modulus and nonlinear parameters) change as well. The same happens during repair, which
could be considered as the symmetric counterpart of mechanical damaging. Starting from ultrasonic measurements
of the resonance and nonlinear properties of concrete prisms during progression of damage and repair, we propose
a description of the microstructure evolution, which allows to predict the observed phenomenology. Also, we
demonstrate the existence of a correlation between ultrasonic elastic parameters and mechanical properties of the
samples at each damage/repair state, pointing out symmetries and differences observed in the two processes.
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I. INTRODUCTION

Cracks propagation in consolidated granular media corre-
sponds to an evolution of their microstructure, for instance,
through the generation of clapping [1] or Hertzian contacts
[2] in the crack area or through the nucleation of dislocations
[3] in a small area surrounding the crack zone. Repairing
could be seen as the symmetric counterpart of mechanical
damaging since, either in autonomic systems [4–6] or in
external repair methods [7,8], the activation of a repairing agent
in the damaged area causes a regression of the crack extent. The
analogy of damaging and healing processes in consolidated
media with the rearrangement, aging, and relaxation effect in
nonconsolidated granular media [9–11] is quite evident.

Usually, repairing agents have different mechanical and
elastic properties with respect to those of the original consoli-
dated granular medium, but in some cases they may react with
it at the crack interface in such a way to make the interaction
zone substantially equivalent to the original material after a
given healing time. This is the case, for example, of alkaline
silicates reacting with a hardened cement matrix [12,13].

Even though the material microstructure is affected only
in a small area surrounding the crack zone, effects on the
overall mechanical performances can be significant [14,15].
In particular, the ultimate flexural strength (corresponding to
the maximum load that can be carried in a given configuration)
is very sensitive to the contact area, thus to the presence of local
damage [16].

The presence of imperfections or contacts at the crack
surfaces or in the surrounding zone also influences the elastic
properties of the medium. On one side, the medium behaves
with effective elastic modulus and damping which differ
from the corresponding properties of the intact material.
Such a linear effect could be easily detected and quantified
by considering the resonance spectrum of the sample in a
given frequency bandwidth [17,18]. On the other side, the
nonlinear elastic parameters of the medium are even more
sensitive to small variations of the local microstructure [19,20].

They can be quantified by analyzing the resonance frequency
[21,22], the higher-order harmonics [23,24], the break of the
superposition principle [25–28], the wave-mixing effects [29],
the subharmonics generation [30], and others.

Experimental evidences indicate that increasing the cracks
density or the cracks extension in consolidated granular media
causes a reduction of the ultimate flexural strength [16],
softening phenomena [17], and increase of the nonlinear elastic
parameters [31,32]. During the inverse mechanism, increasing
the duration of the curing process after the application of
a repairing agent on a damaged interface (i.e., increasing
the so-called “healing time”), causes a regain of mechanical
strength [33–36] and a recovery of elastic linear and nonlinear
properties [12].

Although experimental observations show similarities be-
tween the evolution of the mechanical and elastic parameters
during damage and repair progression, the link between their
variations and the microstructure evolution is yet to be fully
explored. The goal of this contribution is to demonstrate the
existence of a correlation between mechanical strength and
elastic parameters (linear modulus and nonlinear properties).
Considering the similarities and differences in their evolution
during damaging and repairing, we also aim to propose a
description of the microstructural evolution, as suggested by
the ultrasonic analysis of the variations of the elastic properties.

To achieve these goals, experiments and simulations were
performed. The experiment setup and configuration are dis-
cussed in Sec. II. Starting from intact samples, first progressive
damage was induced by means of three-point bending tests
[37], conducted in displacement control up to failure. During
this stage, ultrasonic indicators of the linear [18] and nonlinear
[25] elastic properties were measured and analyzed as a func-
tion of damage progression. In a subsequent stage, the residual
fragments resulting from the three-point-bending test were
reassembled using a sodium silicate solution as a repairing
agent [12,13,38]. Then, the same ultrasonic indicators of linear
and nonlinear elastic properties were measured and analyzed
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as a function of time since the repairing action provided by
the sodium silicate solution is not immediate, but is expected
to evolve during the healing time. The experimental results
are discussed in Sec. III. A second set of samples, subjected to
the same damaging and repairing procedure, was mechanically
tested at different ages in the course of the repair process, to
obtain the temporal evolution of their mechanical strength as
a function of healing time. The results of the mechanical and
ultrasonic tests were correlated in the first part of Sec. IV.
To link the experimental observations with the evolution of the
microstructure in the area affected by damage progression, nu-
merical simulations based on a multistate Preisach-Mayergoyz
description [39–46] were performed and the corresponding
results are reported in the second part of Sec. IV.

II. EXPERIMENTAL ANALYSIS

A. Materials

The specimens used for this study were in the shape of
(4 × 4 × 16 cm3) concrete prisms with a U-shaped notch
4 mm long and 4 mm wide at mid-span. The concrete matrix
was produced using a CEM I 52.5 R cement, a water-to-cement
ratio of 0.5 and a cement-to-sand ratio of 1:3 by weight, in
accordance with [37]. After casting, the samples were stored
in their molds for 24 h, subsequently in water for 28 days,
then in a low-temperature drying oven for additional 24 h, and
finally in the laboratory for testing.

Starting from samples in their “intact state,” a pass-through
crack was generated at mid-span by a sequence of three-
point-bending test cycles with controlled displacement rate
at the edge of the notch. Each test cycle was conducted in
such a way to achieve a progressively increasing stress and
strain state, so as to induce crack initiation at the notch, crack
propagation through the specimen cross section, and finally
creation of a complete disconnection between the two halves
of each prism. In the following, the relative displacement
of the edges of the notch, that corresponds either to an
elastic elongation (in the initial loading cycles prior to crack
propagation) or to an actual crack mouth opening displacement
(during the crack propagation cycles), will be simply referred
to as “displacement” (v) for the sake of brevity. The loading
sequence was interrupted at preselected values of displacement
in order to ultrasonically test the samples in different states.

At the end of the damage process, i.e., when the sam-
ple was broken into two halves, a thin layer of sodium
silicate solution was applied manually to the crack surface,
with the aim to reassemble the two residual fragments, thanks
to the activation of the healing process, which would induce
the progressive creation of a stable bond between the opposite
edges of the fractured zone, bridging them together, and
eventually restoring the material integrity. Alkaline silicates
are widely used for concrete consolidation purposes because
of their low viscosity, which enables them to effectively
diffuse through the cracks, and also owing to their chemical
affinity with the cement matrix [12,13,38]. The residual crack
width after reassembling was evaluated by means of a 20×
optical microscope, resulting in around 500 μm, on average.
In continuity with previous studies [5,12], the sodium silicate
used was provided by Sigma Aldrich and was characterized

by a 10.6 wt.% proportion of Na2O, a 26.5 wt.% proportion of
SiO2, and a 62.9 wt.% of water.

Some repaired specimens were monitored ultrasonically
for a long time during the repair phase, while some others
were subjected to three-point-bending tests at different ages
during the repair process (i.e., at different “healing times”) to
determine their mechanical properties. Such mechanical tests
being destructive, they could not be performed at different
times during the healing process on the same samples as
the ones subjected to the ultrasonic measurements, but they
had to be carried out on other samples, identical to the ones
ultrasonically monitored.

B. Mechanical testing

As anticipated in the previous section, flexural tests were
performed to induce a controlled damage process, and subse-
quently to evaluate the recovery of mechanical performance
as a function of healing. This is a well-established practice in
the field of self-healing concrete assessment since it allows
to produce cracks in an easier and more controllable way than
tensile tests, plus it makes it possible to express the mechanical
performance recovery very effectively, as regain of load-
carrying capacity [33,34]. Different mechanical quantities,
such as stress intensity factor or toughness, could also be used
to characterize the material recovery.

All the tests were carried out with the aid of a 250-kN
servocontrolled hydraulic testing machine working in dis-
placement control. A test rate of 1.5 μ/s was imposed by
means of an HBM DD1 displacement transducer mounted in
correspondence of the edges of the notch.

For each cycle of the loading sequence described in the
preceding subsection, load versus displacement curves were
recorded, as reported in Fig. 1 as an example. Here, Figs. 1(a)–
1(c) display a few selected curves for one of the prisms tested
(black lines), while Fig. 1(d) shows the superposition of the
curves corresponding to the entire loading sequence [their
envelope is also reported in Figs. 1(a)–1(c) as a dashed blue
line]. In Fig. 1(e), load vs displacement curves are shown for
different prisms tested after repair, at different healing times.

Each cycle was performed starting from a different
mechanical state: “undamaged” for loading cycles performed
up to reaching the maximum load in the envelope curve
[e.g., Fig. 1(a)], “damaged” for the following loading cycles
[e.g., Figs. 1(b) and 1(c)] or “partially healed” for the cycles
performed during healing [e.g., Fig. 1(e)]. For the undamaged
states, the maximum flexural solicitation that the sample
can bear is given by the peak load of the envelope curve [y
coordinate of the blue diamond in Figs. 1(a) and 1(d)]. It is
related to the flexural strength of the material (also referred to as
“ultimate flexural strength”) and will be denoted by Lu. The x

coordinate of the blue diamond peak represents the maximum
elastic elongation vu that the specimen can bear before
initiation of crack propagation. For the damaged states, the
flexural strength is normally termed “residual strength” since it
decreases with increasing damage; therefore, at the beginning
of each cycle in the damaged states, the residual flexural
strength is just a fraction of the ultimate strength [see green di-
amonds in Figs. 1(b)–1(d), with load values denoted byLr ]. For
the partially healed states, the flexural strength of the sample
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FIG. 1. Load versus displacement curves from three-point-bending tests: (a)–(c) A few selected cycles performed during the entire loading
sequence. Once the stress-strain state corresponding to red circles was reached, the sample was unloaded and subjected to ultrasonic tests.
(d) Superposition of all tests performed during the loading sequence. Again, red circles denote the points at which the test was interrupted to
allow for ultrasonic measurements. (e) Tests performed on prisms at different healing times. In all curves, the y coordinate of the diamond
points corresponds to the actual flexural strength for the given state of the sample.

increases significantly with increasing healing time [see gray
diamonds in Fig. 1(e), with load values denoted by Lh].

Throughout the loading sequence, cycles were inter-
rupted after reaching a prefixed displacement, termed vs ,
corresponding to the x coordinate of the red circles in
Figs. 1(a)–1(d) and ultrasonic testing was performed. To
quantify the state of the sample at each cycle, a damage
parameter D was introduced:

D = 20 log10(vs/vu). (1)

The condition D > 0 means that the maximum elastic
elongation is overcome, so that a flexural crack is initiated and
starts to propagate. Hence, the definition of “damaged” state.
Conversely, as long as D < 0, the sample is “undamaged”
given that the maximum elastic elongation is not overcome yet.

C. Ultrasonic testing

1. Experimental setup

Each sample was ultrasonically tested both during the dam-
aging and the repairing phases. To allow measurements, each
sample was equipped with two identical narrow-band piezo-
electric transducers glued with a linear coupling agent (phenyl
salicylate) to the bases of the prism, acting as an emitter and
a receiver, respectively. Transducers had a diameter of 4 cm,
a central frequency at 55.5 kHz, and an almost flat response
between 10 and 40 kHz. Transducers were glued to the intact
samples and never removed up to the end of the monitoring.

The emitting transducer was connected to an arbitrary wave-
form generator (Agilent 33500B) through a 20× linear ampli-
fier (FLC Electronics A400). A rectangular pulse signal with

width �t = 10 μs was chosen as an input. Excitation ampli-
tude ranged from 200 mV (i.e., the lowest amplitude allowing
detection of a signal emerging from noise) to 12 V (much lower
than the highest amplitude at which the experimental setup
was known to behave linearly). The receiving transducer was
connected to an oscilloscope (Agilent Infinium DSO9024H)
for data acquisition. Resolution was set to 13 bits and sampling
rate to 10 MSa/s. Signals were recorded in a 10-ms time
window. Averaging was used (over 64 signals) to improve the
signal-to-noise ratio. The linearity of the experimental setup
was carefully tested in the range of amplitudes adopted.

For each sample (on a total of six), the evolution of the
ultrasonic parameters was monitored. First, measurements
were taken at increasing damage levels [as quantified by the
parameter D, see Eq. (1)]; then, in the following four weeks,
measurements were taken at successive times to monitor the
repair process. In each acquisition we recorded for each sample
a set of nine signals ui(t) at increasing amplitude of excitation
in the range 0.2 V < Ai < 12 V.

It is worth pointing out here that the samples were assumed
to be substantially homogeneous, due to the production and
curing procedures adopted: indeed, as previously described,
all the specimens were manufactured simultaneously, starting
from the same fresh concrete mix (hence with the same sand,
cement, and water proportions) and they were cured and stored
in the same environmental conditions. Plus, the use of a
standardized sand in accordance with Ref. [37] guaranteed a
proper granulometric assortment, with consequent maximum
packing and uniform distribution of the solid grains. Minor
inhomogeneities might, however, be present, though they
are not expected to affect the ultrasonic experiments from a
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FIG. 2. (a) Temporal signal detected on one of the intact samples.
(b) Spectrum of the temporal signal reported in (a). Rectangular
colored bands in the plot indicate the frequency bandwidths used
for the definition of the ultrasonic indicators discussed in the text.

practical point of view due to their negligible size as compared
to the wavelength here used.

In addition to the composition-related factors mentioned
above, some other sources of variability might be present,
due to small differences in the positioning of the notch and
in the coupling of the transducers: they can result in small
variations of the measured ultrasonic quantities among the
different specimens, as it will be detailed in the following.

2. Linear measurements

A portion of the temporal signal recorded on an intact
sample at a given amplitude of excitation is shown in Fig. 2(a).
The signals detected during the damaging and the repairing
phases have a similar aspect. However, with increasing dam-
age, we notice a progressive distortion, as well as a reduction in
amplitude due to increase of attenuation. During the repairing
phase, with increasing time, we notice an almost full recovery
of the original signal shape.

The distortions of the signals can be properly described
through a spectral analysis. To do so, the spectra of the
detected signals were calculated by means of a fast Fourier
transform (FFT) algorithm implemented through the MATLAB

FFT function (with rectangular windowing and 105 points,
corresponding to the entire duration of the signal). An example
is shown in Fig. 2(b). Typically, the spectra present four main
peaks (at approximately multiple frequencies) which corre-
spond to the four longitudinal resonance modes of the sample.
Other peaks may be present, corresponding to other modes, but
they are not relevant in this context. For the sample considered
in Fig. 2, the first four resonance frequencies correspond to

FIG. 3. Spectral response of signals detected on one sample
during the damaging (left column) and repairing (right column)
phases, plotted vs the damage indicator D [see Eq. (1)] and healing
time, respectively.

ωr ≈ 9, 18, 27, and 36 kHz, although they are not exactly
multiple, due to dispersion effects and/or geometrical features.
As we will show in Fig. 3, the resonance modes differ slightly
from one sample to another, though such differences are
minor. On the whole, four frequency bandwidths could be
identified, each one including one resonance mode, as shown
with rectangular color bands in Fig. 2(b).

As mentioned, distortions of the signals in the damaged and
intermediate repairing stages correspond to an evolution of the
spectrum, which is discussed in Fig. 3. Here, we consider a
different sample with respect to the one used in Fig. 2, to bring
the reader’s attention to the possible variations occurring in the
measured ultrasonic quantities due to stochastic differences in
the positioning of the notch and in the coupling of the transduc-
ers, further than to other minor composition-related factors.
In Fig. 3, we show the spectral amplitudes as calculated based
on the raw signals recorded from the piezoelectric transducers
at each damage level (left column) and each healing time
(right column) using a color map representation. For this
sample, the first longitudinal mode is slightly lower (around
8 kHz) than for the sample tested in Fig. 2. The color scale is
normalized to one in each of the three bandwidths considered,
i.e., corresponding to those marked with blue, green, and gray
rectangles in Fig. 2(b). Due to different normalizations in the
three frequency bands, amplitudes of the modes should not be
compared.

The evolution of the spectra could be discussed as follows:
(i) Damaging phase (left column): with progressively in-

creasing damage, even resonance frequencies survive (16
and 32 kHz), progressively diminishing in amplitude; odd
resonance frequencies slowly shift to lower values up to disap-
pearing due to high increase of attenuation. In particular, the
third mode coalesces with the second mode. It is interesting to
note that the spectral evolution is negligible up to D = 0, which
means that almost no changes in the sample microstructure are
introduced up to reaching the conditions for crack propagation
in three-point bending.
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FIG. 4. Nonlinear measurements on one of the tested samples. The SSM indicator θ is shown versus the maximum amplitude of the output
signals x during the damaging and repairing phases. A power-law relationship between the two quantities is found in accordance with Eq. (3).
Fitting of the data indicates that the exponent b is roughly constant for all curves and samples. Thus, here and in the following, fits were
performed by varying only the coefficient a and assuming b = 2.5.

(ii) Repairing phase (right column): the evolution of the
spectrum as a function of healing time is symmetric. With
increasing time, odd resonances reappear (the third mode
splitting out of the second mode) and the spectral amplitude (at
all frequencies) increases significantly. Almost full recovery is
obtained.

The behavior shown here was detected on one of the
analyzed samples, but a similar behavior was observed on the
entire set of six samples. A more quantitative discussion will
be provided in the next section.

3. Nonlinear measurements

As discussed above, in each state of the sample, mea-
surements were performed by increasing the amplitude of
excitation in order to highlight the presence of nonlinear
effects. In the analysis reported here, the nonlinearity of the
sample is analyzed using the scaling subtraction method (SSM)
[25–27], in which the amplitude dependence of the elastic
properties is estimated using the break of proportionality
principle.

The method is very simple and its implementation consists
in the following steps:

(i) The sample is excited with a pulse at the lowest ampli-
tude A0 in such a way that the propagation could be assumed as
almost linear (in our case, A0 = 200 mV). The corresponding
output signal u0(t) is recorded and windowed in a given time
window starting with the first arrivals (we used a signal window
�t = 0.1 ms);

(ii) The sample is excited with the same source function but
at a higher amplitude Ai . Again, the corresponding signal ui(t)
is detected and recorded. Synchronization with the previous
excitations is ensured;

(iii) If the system was linear, it is expected that ui(t)/Ai ≈
u0(t)/A0, with small discrepancies due to noise effects [47].
Therefore, the contribution due to nonlinearity at amplitude Ai

is fully contained in the SSM signal wi(t):

wi(t) = ui(t) − Aiu0(t)/A0. (2)

(iv) The nonlinear contribution at the excitation amplitude
Ai is here defined as θi = max[wi(t)]. It can be plotted as a

function of the maximum strain amplitude of the propagating
ultrasonic wave, assumed to be proportional to the maximum
amplitude xi of the signals ui(t) in the same time window.

In Fig. 4, we report some θ versus x curves recorded during
damage and repair. The symmetry between the two processes
is remarkable. In the damaging phase [Fig. 4(a)], nonlinearity
is substantially constant up to reaching the material ultimate
strength (D � 0). As soon as the crack is initiated and starts
to propagate, nonlinearity begins to increase.

During the repairing phase [Fig. 4(b)], nonlinearity dimin-
ishes rapidly in the first seven days. The original intact state
(corresponding data are reported for reference as a dashed line)
is not completely recovered. In both plots, the solid lines refer
to a power-law fitting of the data in the form

θ = a(x/x0)b, (3)

where x0 = 1 V is introduced to make the power-law exponent
b adimensional.

III. EVOLUTION OF LINEAR AND NONLINEAR
PARAMETERS

In this section, three ultrasonic indicators will be defined in
order to allow for a quantitative analysis of the data presented
in the previous subsection.

A. Linear spectral analysis

The spectrum reported in Fig. 2(b) highlights the presence
of odd and even resonance peaks in the response of the intact
samples. Odd resonances shift during both damaging and
repairing phases. In principle, we can define four frequency
bandwidths of a few kHz centered around each resonance peak
to include the single resonance frequency values and the related
variations due to shifting [colored rectangles in Fig. 2(b)]. One
exception is introduced to monitor the evolution of the third
resonance mode, for which the frequency bandwidth should be
larger than the others [green rectangle in Fig. 2(b)], because
it showed a greater shift during damaging and repairing
phases. Therefore, to quantitatively characterize the spectrum,
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FIG. 5. Centroid frequency and bandwidth amplitude during the damaging (left column)and repairing (right column) phases. Different
colors refer to the indicators defined in the four frequency bands specified in the text and shown as rectangles in Fig. 2(b).

we divided it into four regions. For most of the samples, a
frequency bandwidth of 9 kHz was chosen:

(a) 0 kHz � ω < 9 kHz: containing the first resonance
mode;

(b) 9 kHz � ω < 18 kHz: containing the second reso-
nance mode;

(c) 9 kHz � ω < 27 kHz: containing the second reso-
nance mode and the third resonance mode (the last one being
dominating in amplitude);

(d) 27 kHz � ω � 36 kHz: containing the fourth reso-
nance mode.

In the case of a few samples, a larger interval of 10 kHz was
chosen (as for the case of Fig. 2) due to the different modes
distribution.

In each region, we characterize the spectrum introducing
two quantities which quantify the “position” of the peak (cen-
troid frequency) and the “amplitude” of the peak (bandwidth
amplitude). The two quantities are defined as follows:

ωc =
∫ ωH

ωL
Aωω dω∫ ωH

ωL
Aωdω

, (4)

�c =
∫ ωH

ωL

Aωdω. (5)

Here, ωL and ωH indicate the lower and upper frequency limits
of each of the four frequency bands described above. Since
the calculations are performed for each frequency band, four
couples of indicators will be available.

It is interesting to observe that the above-defined quantities
ωc and �c are closely related to the elastic modulus of the
material and to the acoustic quality factor, respectively. Recent
papers [48] have pointed out how their variations are strictly
dependent on the variation of the concentration of the defects,
with direct analogy with the approach followed in this study.
We also remark that the quantities discussed have analogies
with the resonance frequencies and Q factor measured in non-
linear resonance ultrasound spectroscopy experiments, where,
albeit in a different context, it was found that the damping
contribution is normally more sensitive to the presence of
defects than the resonance frequency shift [21,49,50]. Our
results confirm this observation.

The centroid frequencies and bandwidth amplitudes are
shown in Fig. 5 for one of the tested samples as a function
of damage progression and healing time (as during damaging
and repairing phases, respectively). The decrease (increase)
in frequency of the odd peaks during damaging (healing)
is evident and regular. Likewise, the plot well captures the
decrease/increase in the amplitude of the four peaks. It is also
important to observe the time scales on which the evolution
takes place. During the damaging phase, we do not appreciate
any effect up to reaching the material’s ultimate strength
(D = 0). During the repairing phase, all curves reach an
asymptotic value within approximately 28 days (corresponding
to 4 × 104 min). We also point out that a slightly different
time scale can be observed for the second resonance (red
curve), where amplitude stabilization is reached in about 7 days
(corresponding approximately to 104 min), while no peak shift
is manifested.
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FIG. 6. Relative variation of the centroid frequency and bandwidth amplitude with respect to the values assumed for the intact sample,
calculated for the third resonance mode [green bandwidth in Fig. 2(b)]. Curves obtained on the six samples analyzed are well overlapped.
(a) Evolution during the damaging phase; (b) evolution during the repairing phase.

The qualitative behavior observed for the overall set of
specimens was always the same, as shown in Fig. 6. Here,
the variations of the two indicators with respect to the values
assumed for the intact sample are shown (with reference to the
bandwidth containing the third resonance mode), according to
Eq. (6):

δωc = ωc − ωintact
c

ωintact
c

,

δ�c = �c − �intact
c

�intact
c

. (6)

A similar level of repeatability can be also noticed for the
indicators calculated in the other three frequency bandwidths.
After repairing, the variations of both indicators almost turn
back to zero.

B. Scaling subtraction method

A quantitative indicator could be defined also for the
nonlinear ultrasonic parameters. The nonlinear indicator θ

depends on the maximum output amplitude x according to
a power-law behavior [see Eq. (3)]. Since the exponent b

is substantially constant during all phases of damaging and
repairing (b ≈ 2.5), the coefficient a fully defines the nonlinear
behavior.

The nonlinear indicator used to monitor the evolution of
nonlinearity during the damaging and repairing phases is
defined as the variation of the coefficient a with respect to
the value aintact which was measured when the sample was

intact:

δa = a − aintact

aintact
. (7)

In Fig. 7, δa is plotted during the damaging and repairing
phases for three samples with different colors. The parameter
increases with increasing damage. Again, after repairing the
variation of the parameter is almost turned back to zero, denot-
ing excellent, but not complete, recovery. We also notice that
the time scale for recovery of the nonlinear parameters appears
to be different than the time scale for recovery of the linear
parameters (centroid frequency and bandwidth amplitude).
In fact, full recovery is obtained after approximately 7 days
(corresponding to 104 min). The repeatability of the nonlinear
measurements is also excellent.

IV. DISCUSSION

A. Link with mechanical parameters

As shown in the previous section, the ultrasonic linear
and nonlinear parameters evolve with increasing damage and
healing time with a symmetric behavior. The mechanical
characteristics of the examined samples, and in particular their
load-carrying capacity related to the actual flexural strength,
vary as well as a function of damage progression [Figs. 1(a)–
1(d)] and healing time [Fig. 1(e)].

In order to establish a correlation, in Fig. 8 the ultrasonic
parameters measured on different samples are shown as a
function of the load-carrying capacity corresponding to their
actual flexural strength. When considering the entire loading
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FIG. 7. Nonlinear ultrasonic parameter δa (relative variation of a with respect to the value it assumed when the sample was intact) during
damaging and repairing phases. Different colors refer to measurements obtained on different samples.

sequence, the actual flexural strength is the ultimate strength
(hence Lu) for D < 0 or the residual strength (then Lr ) for
D > 0, while in the repairing phases the actual flexural strength
is derived from the average of peak values Lh resulting from
the mechanical tests performed on sets of five additional
repaired samples at the same healing time as the ultrasonic
measurements. In the case of the linear ultrasonic parameters,
we presented only the bandwidth amplitude indicator calcu-
lated for the third resonance mode, but similar results were
obtained for the centroid frequency indicator too and for the
first resonance mode.

As already remarked, as far as the loading sequence is
concerned, ultrasonic tests and mechanical tests could be
performed on the same specimens (six, on the whole), thus,
we have a one-to-one correspondence between ultrasonic
indicators and mechanical parameters. This feature could not
be preserved in the repairing process due to the destructiveness
of the mechanical tests conducted to determine the flexural
strength. Therefore, in the repairing phases, the first set of
six samples was monitored ultrasonically for a total time of
more than 4 weeks and the ultrasonic indicators for each
healing time were obtained by averaging the measurements

FIG. 8. Correlation between linear and nonlinear ultrasonic parameters and mechanical parameters. Measurements of the linear indicator
are performed in the frequency bandwidth of the third resonance mode. Results are shown for a selection of samples during the loading sequence
[(a) and (c)] and healing time [(b) and (d)]. The load-carrying capacity, depending on the actual flexural strength, is calculated as a function of
the Lu, Lr , and Lh values recorded during the mechanical tests.
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performed on the same sample at the given healing time (i.e.,
all the measurements taken within the same day); in parallel,
mechanical tests were performed on other sets of specimens,
each one composed of five samples and tested at the same
healing time as in the ultrasonic monitoring, thus allowing to
calculate the average flexural strength of the repaired samples.
The good repeatability of the measurements discussed in the
previous section allows to compare the results, being the two
sets of samples practically equivalent.

During the damaging phases [Figs. 8(a) and 8(c)], the
variations of both linear and nonlinear indicators show a
nonlinear correlation with the actual load-carrying capacity,
in the shape of an exponential decay dependence. The expo-
nential fitting function is reported as a solid line in the plots
and the fitting parameters are reported in the legend. Both
indicators decrease with increasing actual flexural strength, or
conversely increase with increasing damage. The correspon-
dence between the coefficients of the exponential decay for
the linear and nonlinear indicators is remarkable, as it can
be appreciated in the legend of the corresponding subplots
(k ≈ 0.002).

The correlation during the repairing phases is discussed in
Figs. 8(b) and 8(d). Again, an exponential decay law is found,
with an offset in both cases due to a noncomplete recovery
of the mechanical and ultrasonic properties of the tested
specimens. From the mechanical point of view, we notice that
only slightly more than 40% of the original ultimate strength
is recovered, which is, however, already quite remarkable for
practical applications.

The parameters for the exponential decay law (describing
the dependence of the linear and nonlinear indicators on the
mechanical parameters) are significantly different, as it can
be seen from the legend in the corresponding subplots. The
value of the exponent for the linear indicator (k = 0.003) is
comparable with that obtained during the damaging phase,
confirming the symmetry between damage progression and
damage repair as far as the linear properties are concerned. On
the contrary, the coefficient is much larger (k = 0.009) for the
case of the nonlinear indicator, revealing that the recovery of
the nonlinear elastic properties is much faster than the recovery
of the linear ones during the repairing phases. As it will be
discussed in the next subsection, this asymmetry between dam-
aging and repairing phases suggests the presence of different
chemical-physical mechanisms during the repairing process.

In this regard, please note that the correlation laws discussed
above should be carefully discussed. The overall behavior, i.e.,
the nonlinear exponential correlation, could be considered a
general rule, even though testing on other samples/geometries
should be carried on. On the contrary, the coefficients found
for the correlation parameters should not be considered in
absolute terms since they depend on the specific geometric
setting here adopted. Their reverse analogy with the damaging
process could again be a general feature and its assessment
and quantification could be crucial when a new repairing
system is considered.

B. Evolution of the interface

Starting from the observations and speculations reported in
the previous paragraphs, we propose here a possible evolution

Damaging Repairing

Eint

Eint

Eint

Eint

Eint

Eint

Eint

E0+NL

E0+NL

E0+NL

E0+NL
Eh(t)

Eh(t)

Eh(t= )

FIG. 9. Schematic representation of the affected zone evolution
during damage (left) and repair (right) progression.

process of the elastomechanical characteristics of the sample in
the cracked zone, that reproduces the observed phenomenology
during damage and repair. The description proposed here is
based on a very simplified model, with the goal to highlight
that very intuitive and simple mechanisms could be proposed
to describe qualitatively the observed phenomenology. Thus,
without any expectation to explain the physical mechanisms
involved in the various processes, the description proposed here
is just meant to support the hypotheses/conclusions derived
from our measurements about the possible evolution of the
interface due to the action of the repairing agent.

1. Phenomenological description

As already remarked, two concurrent phenomena are at
play: modulus variation affecting the spectral response and
appearance/disappearance of microscopic features resulting in
a variation of the nonlinear contributions to signals.

During the damage process, starting from the notch ar-
tificially produced in the middle of the sample, a crack
is initiated for a given stress-strain state induced by the
three-point bending. With progression of the deformation
mechanically imposed to the system, the fracture opening and
extension increase, generating an affected area surrounding
the crack in which several closed microcracks are nucleating
and eventually coalesce into an open macrocrack, along the
propagation line of the fracture. As a consequence, a thin layer
(see the green area in the left column of Fig. 9) is formed with
softer effective elastic constant that drastically changes the
propagation of elastic waves traveling in the sample. These are
mainly reflected at the interface and only partially transmitted
due to the high elastic mismatch between the concrete matrix
and the air (in the cracked zone). Furthermore, the presence of
contact points [2] and/or clapping surfaces [1] at the surfaces of
microcracks lead to a local increase of the nonlinear response
to an ultrasonic excitation.

During the repairing process, the healing agent in a first
stage fills the voids between the two free surfaces (i.e., the
open crack area) and, while undergoing a change in viscosity,
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FIG. 10. Simulation results for the centroid frequency and bandwidth amplitude during the damaging (left column) and repairing (right
column) phases. Different colors refer to the indicators defined in the four frequency bands. Results should be compared with Fig. 5.

it also fills microcracks, with gradual transition from a liquid
to a solid state. During this first stage, the nonlinear response
of the sample, that was at its maximum when the sample
was completely broken, progressively decreases. The repair-
ing agent, after a short time, starts behaving as an almost
solid compound with a softer modulus with respect to that
of concrete (see first two subplots in the right column of
Fig. 9). Moreover, a progressive complex chemical interac-
tion between the agent and the concrete matrix starts and
evolves in time [12,13,38] until the almost complete recovery
of the elastic properties in the affected zone. This second
phase does not lead to a significant further filling of micro-
cracks, being in this phase the repairing agent already almost
solidified.

2. Model and numerical implementation

In order to prove the reliability of this schematic description,
we performed numerical simulations of the wave propagation
in an elastic medium based on a spring model approach [51]. In
the model proposed, the specimen (rectangular 2D sample in
our simulations, with dimensions 16 × 4 cm2) is discretized
through a square grid and in each cell the modulus, density,
and damping are defined. The cell is then described by a set
of springs which, properly arranged, react to a time-dependent
stress applied to its surfaces to provide, in the limit of the cell
dimension approaching zero, the exact elastodynamic wave
propagation equation. The nonlinear part of the stress-strain
relation for cells within the crack-affected zone is defined

using time-dependent elastic moduli, in which the moduli are
calculated at each time as the statistical average of the moduli
of linear basic elements which might be in either an elastic or
in a rigid state depending on the values of the stress in the cell.
This approach, described in details in Refs. [42,44,51], is based
on the so-called Preisach-Mayergoytz (PM) description [43].
The multistate PM description adopted is known to be a good
model to describe the response of closed cracks and contact
points which display different elastic behaviors in compression
and tension [39,40] due to deformation effects [41], adhesion
phenomena [52,53], dislocations [24], etc. The model was
validated in previous works [45,46].

In the simulations, we performed a propagation analysis
injecting from the left edge (emitting transducer position) a
pulse wave with spectral content at the source similar to the
one used in the real experiments. On the right side of the
sample (receiver position) we recorded the elastic response.
We first assumed to have no crack-affected zone and fixed
the linear elastic parameters (Lamé constants λ = 5 GPa,
μ = 11 GPa, i.e., Young’s modulus E = λ + 2μ = 27 GPa,
ρ = 2800 kg/m3) to obtain a spectral response similar to that
experimentally observed. Then, the simulation was repeated
several times, each time changing the extension of the affected
zone: a thin layer (0.5 mm thick) with increasing/decreasing
length (see Fig. 9). In particular, note the following

(i) damaging: the affected zone was increased in extent and
the corresponding discretization cells were assigned a very
soft modulus (E0 = 100 kPa, ρ = 1.2 Kg/m3) and nonlinear
properties;
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FIG. 11. Simulation results obtained by the nonlinear SSM analysis during damage (left plot) and repair (right plot). Results should be
compared with Fig. 6.

(ii) repairing, phase 1: cells within the affected zone were
progressively replaced by cells with a soft modulus [Eh(t) in
Fig. 9] and linear behavior;

(iii) repairing, phase 2: cells within the affected zone were
further replaced by cells with an elastic modulus evolving to
the original elastic value [limt→∞Eh(t) = Eint].

Note that, during repairing, phases 1 and 2 are overlapped.
In order to characterize the damage-affected zone for each

of the simulations performed, we defined a damage indicator
νr that measures the ratio between the actual mean longitudinal
wave velocity in the affected zone and the longitudinal velocity
in the intact sample:

νr =
∫

vLdl

vintL
, (8)

where vL (vL = √
E/ρ) is the longitudinal wave velocity of

the dl element of the layer, vint is the longitudinal wave velocity
of the intact sample, and L is the length of the vertical section
of the sample. The parameter νr is the simulation counterpart
of the quantities D and “healing time” (see Fig. 5).

3. Numerical results

Simulations were performed for different configurations of
the damage-affected zone, repeating the very same analysis
as for the experimental data, in order to estimate the centroid
frequency, bandwidth amplitude, and the nonlinear parameter
a. They are plotted as a function of νr [see Eq. (8)] in
Figs. 10 and 11. In the simulations of the damaging process we

reproduced only the cases corresponding to positive D values,
i.e., to the crack opening and propagation stages.

Numerical results for the linear indicators during damaging
and repairing are shown in Fig. 10. The qualitative agreement
between the numerical and the experimental results (Fig. 5) is
good. Indeed, simulations during damaging (repairing) predict
the smooth decreasing (increasing) in the centroid frequency of
the first and third bands and, correspondingly, a drop down (rise
up) of all the bandwidth amplitudes. Moreover, a different time
scale is observed in the recovery of the bandwidth amplitude
for the different modes: as in the experiments, the second mode
amplitude (red color in the figure) almost regains the original
value well before the other modes. This happens at νr ≈ 0.2,
i.e., in correspondence of the beginning of the second phase
of repairing (i.e., after substantial solidification of the healing
agent) which means that the attenuation of this mode is mainly
due to nonlinear attenuation effects.

We also performed the analysis of the nonlinear behavior,
as shown in Fig. 11: here, on the left (right) the nonlinear
parameter is evaluated in the damaging (repairing) phases as
a function of νr [see Eq. (8)]. Again, the agreement with the
experimental observations is good and in particular the faster
time scale for a to recover the original intact value is evident
during the repairing phase.

V. CONCLUSIONS

In this paper, we analyzed the evolution of the elastic and
mechanical properties of concrete samples as a function of
the progression of a damage process (caused by cycles of
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flexural solicitations), followed by a repair process (induced by
a sodium silicate layer acting as a repairing agent for the dam-
aged specimen). Linear/nonlinear ultrasonic tests and mechan-
ical flexural tests were used for the experimental observations.
The existence of a correlation between elastic and mechanical
properties was demonstrated. Also, the symmetry between
damaging and repairing processes was analyzed and discussed.

The time scales observed during the repair process, respec-
tively, for the recovery of the linear and of the nonlinear elastic
properties turned out to be different. Based on this observation,
a possible explanation was proposed for the evolution of the
physical properties around the damaged zone. While the dam-
aging phases correspond to a progressive crack opening, with
consequent variation of the effective local modulus (softening)
and generation of contact tips responsible for the increase of
nonlinearity, the situation is more complex during the repairing
phases. Here, aside from crack closing due to the penetration,
gelation, and solidification of the repairing agent, chemical
reactions with the concrete matrix occur on a longer time

scale, leading to a full recovery which, in the case of sodium
silicate, took place in about 4 weeks. Model results are in
good agreement with the experimental observations. Further
verification of the proposed description for the link between
microstructural evolution and damage/repair progression is
ongoing, with reference to a system in which a different
repairing agent is used instead of sodium silicate, preventing
the occurrence of chemical reactions with the cement matrix
[54].
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