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A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two
degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises
local exchange interactions between the electron spin and magnetic moment and the local couplings between the
electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed
in which the interactions among the spin and lattice components are determined by the underlying electronic
structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and
lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These
former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is
important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal
model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing.
Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these
aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the
spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well
as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations
of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to
a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven
mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise
contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the
discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for
the damping within and between the subsystems are provided. The proposed formalism and types of couplings
enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a
consistent format.
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I. INTRODUCTION

The understanding of how spin and lattice degrees of
freedom interact is of fundamental importance [1,2]. Recently,
strong evidence was found for the existence of a significant
coupling between magnons and phonons, for instance in bcc
Fe [3,4] and the ferromagnetic semiconductor EuO [5]. Spin-
lattice coupling is central for seemingly disparate phenomena
such as the mechanical generation of spin currents by spin-
rotation coupling [6], the spin-Seebeck effect [7,8], and the
driving of magnetic bubbles with phonons [9]. In the field
of multiferroics, spin-lattice coupling is a central mechanism
for the coupling of (anti)ferromagnetic and (anti)ferroelectric
order parameters (magnetoelectric effect) [2,10–12]. Spin-
lattice coupling also occurs in ferroelastic and ferromagnetic
materials (magnetoelastic effect) [13]. There is also a growing
interest in including effects from mechanical degrees of
freedom in theoretical models for ultrafast magnetization
dynamics [14–16], since rapid ionic motion has been shown to
cause nontrivial temporal fluctuations of magnetic properties
[17–20].

*jonas.fransson@physics.uu.se

Magnetization dynamics is conventionally understood
in terms of the phenomenological Landau-Lifshitz-Gilbert
[21,22] approach. A seminal step towards a formulation
of atomistic magnetization dynamics from first principles
was taken by Antropov et al. [23] who started out from
time-dependent density functional theory and the Kohn-Sham
equation and considered also simultaneous spin and molecular
dynamics, however, incorporating energy dissipation and finite
temperature phenomenologically. The equation of motion for
local spin magnetic moments in the adiabatic limit has also
been worked out in Refs. [24,25]. The effects of nonlocality in
space and time were captured in the formalism communicated
in Ref. [26], including a complete basic principle derivation of
the atomistic magnetization dynamics equations of motion.

Recently, great effort has been devoted to improving the
Landau-Lifshitz-Gilbert approach by calculating the damping
tensor directly from the electronic structure [27–29]. The
addition of other contributions, such as the moment of
inertia [26,30,31] observed in Refs. [30,32,33], allows for
dynamics on shorter time scales. The basic principles of the
moment of inertia contributions to atomistic magnetization
dynamics were derived from a Lagrangian formulation [34].
In the adiabatic limit, the lattice degrees of freedom follow
Newtonian dynamics [35] and can be derived from the effective
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FIG. 1. Schematic figure of two atoms (gray balls) with a
magnetic moment (green arrows) and lattice vibrations (fading gray
and transparent balls) in a cloud of electrons (small red balls and
foggy environment).

action of the system [36]. Hence, the uncoupled dynamics of
the spin and lattice are well understood [36,37].

There have been in the last years several simulations with a
combined Landau-Lifshitz-Gilbert (LLG) and lattice dynam-
ics approach [38,39]. They are based on an atomistic spin
model with position-dependent exchange parameters which
for instance lead to spin-ordering-dependent effective lattice
dynamics equations of motion. This spin and lattice coupling
then enter through the Taylor expansion of the magnetic
exchange interactions in terms of ionic displacements around
the equilibrium positions.

To put spin and lattice degrees of freedom on the same
footing, however, bilinear order of spin-lattice coupling is
required that seems forbidden from the naive argument of
breaking the time-reversal symmetry in the total energy. Thus,
the question remains about the lowest order in spin-lattice
coupling, conserving Newton’s third law.

We note that in the past there have been several considera-
tions of coupling magnetic and elastic degrees of freedom;
see for instance Refs. [40–42]. A bilinear magnetoelastic
coupling, which has some similarities to the coupling derived
in this paper, has also been considered previously [40].
However, all these discussions were based on hydrodynamics
approaches aiming towards phenomenological descriptions of
the macroscopic continuum and mechanisms for coupling
between magnetic and elastic properties of solids. Such
accounts are creditable only in the long-wavelength limit. We
find that there is an apparent lack in the literature of systematic
descriptions addressing the quantum mechanical nature of
metals which is responsible for the effective couplings between
the degrees of freedom represented by the spins and lattice at
an atomistic length scale.

The purpose of this paper is to derive from first principles
a theoretical framework for coupled atomistic magnetization
and lattice dynamics (Fig. 1). In order to treat magnetic and
mechanical degrees of freedom on the same footing, our
starting point is to formulate the action of the system. From
this action we derive, to leading order, bilinear couplings
between spins and mechanical displacements, couplings which
are of three different types, namely spin-spin, displacement-
displacement, and bilinear spin-displacement coupling. Fur-

thermore we obtain the coupled equations of motion for
the mechanical displacement {Qi} and velocity {Vi}, and
the magnetization {Mi} dynamics, thus providing a natural
extension of harmonic lattice dynamics, on the one hand, and
the LLG description of the magnetization dynamics of bilinear
spin Hamiltonians, on the other. The framework is applicable
to general out-of-equilibrium conditions and includes also
retardation mechanisms.

In general terms we address the question of whether the
electrons in a metal that, on the one hand, are influenced by
the ionic vibrations, or phonons, through the electron-phonon
coupling and, on the other hand, couple to magnetic moments
via exchange, thereby mediate an interaction between the ionic
vibrations and the magnetic moments. With this question in
mind, we derive a general minimal model for the magnetic and
mechanical degrees of freedom where the interactions between
the entities are mediated by the underlying electronic structure.
We show that the effective model comprises both the well
known bilinear magnetic indirect exchange interaction as well
as the electronic contribution to the interatomic force constant.
However, the derivation also shows the existence of a bilinear
coupling between the magnetic and mechanical entities.
The present paper is essentially focused on this derivation
and the properties of the bilinear spin-lattice coupling from
microscopic theory.

The Paper is organized as follows. In Sec. II we derive
a complete and generalized spin-lattice model. The related
bilinear spin-lattice Hamiltonian and its inherent symmetries
are discussed in Secs. III and IV and a few numerical examples
are studied in Sec. V. In Sec. VI we make a brief comparison
to expanding the exchange parameters as a function of spatial
coordinates. The dynamics of coupled spin-lattice reservoirs
are evaluated in Sec. VII and the paper is summarized in
Sec. VIII. Further details are given in the Appendices.

II. DERIVATION OF EFFECTIVE SPIN-LATTICE MODEL

A. Effective action

The effective action for the coupled spin-lattice system
is constructed and analyzed. In the absence of any ad hoc
coupling between the spin and lattice subsystems, we address
the full microscopic model of the material through the partition
function

Z = eiS, (1)

where the total action S is given by

S = S0 + Slatt + SWZWN + SB + SE +
∮

(HM +Hep)dt.

(2)

Instead of expressing all components in mathematical terms
here, we discuss the physics involved in each contribution and
refer to Appendix A for details.

Accordingly,S0 accounts for the part of the electronic struc-
ture that does not directly relate to the localized spin moments
M and lattice displacements Q, whereas Slatt provides the
analogous components for the unperturbed lattice vibrations.
As for the latter, we shall not make any assumptions about the
model for the lattice dynamics but notice that the mechanism
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for the coupling between the spin and lattice subsystems does
not depend on the specifics of the lattice model. Accordingly,
the intrinsic lattice vibrations can be treated to any order
of accuracy. Furthermore, the Wess-Zumino-Witten-Novikov
component SWZWN accounts for the Berry phase accumulated
by the spin motion, whereasSB andSE comprise the coupling
to the external magnetic and electric fields, respectively.
Finally, the Hamiltonian HM describes the Kondo coupling
between the itinerant electron spin ss ≡ ψ†σψ/2 and the
localized spin moment M while Hep provides the coupling
between the electronic charge n = sc ≡ ψ†σ0ψ and the lattice
displacements Q, or in other words, the electron-phonon
coupling. Here, also ψ = (ψ↑ ψ↓)T is the electron spinor,
σ0 is the 2 × 2 identity, and σ is the vector of Pauli matrices.

Given the above structure we can address both equilibrium
and nonequilibrium problems by defining the quantities appro-
priately either to a well defined ground state in the former case
or by expanding the time integration to the Keldysh contour
and relate the physics to some initial state defined in the far
past in the latter. We therefore keep the derivation as general
as possible and choose the latter approach as the generic
one. Despite the additional complexity this route entails, it is
justified since the equilibrium physics can always be retained
from the nonequilibrium description.

B. Dynamical bilinear couplings

We obtain the effective action SMQ for the coupled
magnetization and lattice dynamics through a second-order
cumulant expansion of the partition function subsequently
followed by tracing over the electronic degrees of freedom.
The resulting model can be written

SMQ = − 1

2

∫
{Q(x) · [Tcc(x,x ′) · Q(x ′) + Tcs(x,x ′) · M(x ′)]

+ M(x) · [Tsc(x,x ′) · Q(x ′) + Tss(x,x ′) · M(x ′)]}
× dxdx ′, (3)

where we have introduced the notation x = (r,t) and defined
the interaction tensor

Tpq(x,x ′) =
∫

�p(r,ρ)Kpq(y,y ′)�q(ρ ′,r′)dρdρ ′, (4a)

Kpq(y,y ′) = (−i)〈Tsp(y)sq(y ′)〉, y = (ρ,t), p,q = c,s.

(4b)

Here, the parameters �c(r,r′) and �s(r,r′) define the electron-
phonon and Kondo coupling, respectively, and we have
adopted the notation where the subscript c refers to charge
and s to spin.

The effective model given in Eq. (3) can be reduced to an
analogous lattice model, the bilinear Hamiltonian which can
be written as

HMQ = − 1

2

∑
ij

{
Qi · [

T cc
ij · Qj + T cs

ij · Mj

]
+ Mi · [

T sc
ij · Qj + T ss

ij · Mj

]}
, (5)

where we denote the magnetic moment centered at the atomic
position i as Mi and the local atomic displacements as Qi ,

where the here instantaneous lattice interactions tensors are
denoted as T

pq

ij .
The effective model presented here demonstrates the pres-

ence of a bilinear coupling Tsc/cs between the spin and lattice
subsystems. It also indicates that this coupling is mediated
by the background electronic structure of the material in
analogous forms as the spin-spin interactions Tss as well
as the lattice-lattice coupling, or the electronic contribution
to the interatomic force constant Tcc. Although this is not
surprising, given the setup of the system, it is nonetheless an
important observation since it demonstrates the lowest order
of indirect exchange interaction between the spin and lattice
subsystems, and since it is generated by the same interaction
field as the spin-spin and lattice-lattice couplings, it is expected
to have a nontrivial impact on certain classes of materials.
It is therefore of utter importance to derive expressions for
the spin-lattice couplings in order to both compare to the
spin-spin/lattice-lattice interactions and also to enable a deeper
analysis and understanding of which conditions have to be
fulfilled to create finite spin-lattice couplings.

For the sake of argument we therefore decouple the
propagator Kpq into a product of two single-electron Green’s
functions G, see Appendix A, which are defined by the
background electronic structure, given by the HamiltonianH0.
It is then straightforward to derive

Kpq(x,x ′) = (−i)spσ pG(x,x ′)σ qG(x ′,x)/2δps+δqs , (6)

where sp denotes the trace over spin space and where σ c = σ0

and σ s = σ .
Next, since the Hamiltonian can be partitioned into charge

and spin components according to H0 = H(0)
0 σ0 +H(1)

0 · σ ,
the analogous partitioning can be made for the Green’s
function G in terms of charge and spin components G0 and G1,
respectively. Thus, we can write G = G0σ0 + G1 · σ . Using
these two observations, one immediately obtains

spσ pGσ qG = spσ p(G0 + G1 · σ )σ q(G0 + G1 · σ ). (7)

By tracing over the spin degrees of freedom, the nature of the
lattice-lattice, spin-lattice, and spin-spin interactions can be
further analyzed in terms of the Green’s function components
that constitute the expressions.

As one of the purposes of this paper is to construct a
coherent formalism for the coupled spin and lattice dynamics,
we present the results for all three types of couplings.

C. Lattice-lattice coupling

Setting p = q = c in Eq. (7), the interaction tensor de-
scribes the electronic contribution to the interatomic force
constant �(x,x ′) ≡ Tcc(x,x ′). Putting the coupling �c(r,r′) =
λ(r,r′), where λ(r,r′) is the local electron-phonon coupling,
see Sec. A 2 for more details, the interatomic force constant
acquires the form

Tcc(x,x ′) = (−i)2
∫

λ(r,ρ)[G0(y,y ′)G0(y ′,y)

+ G1(y,y ′) · G1(y ′,y)]λ(ρ ′,r′)dρdρ ′. (8)

The interatomic force constant is therefore a direct measure of
the total electronic structure to which the lattice vibrations are
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coupled. Moreover, although there is no directionality induced
by the spin texture (G1) in the electronic structure, it makes
an important contribution to the overall interaction strength. It
can also be seen that the tensorial structure of the interactions
is governed by the structure factor λ of the electron-phonon
coupling, as the dyad λλ = λiλj ı̂�̂.

D. Spin-spin coupling

In case of the spin-spin coupling we put p = q = s in
Eq. (7), for which we obtain

M(x) · Tss(x,x ′) · M(x ′) = J(x,x ′)M(x) · M(x ′)

+ D(x,x ′) · [M(x) × M(x ′)]

+ M(x) · I(x,x ′) · M(x ′), (9)

where the three contributions represent the isotropic Heisen-
berg and the anisotropic Dzyaloshinskii-Moriya and Ising
interactions, respectively. The order of these contributions is
natural since they are the rank 0, 1, and 2 tensors emerging
from the general rank 2 tensor Tss . It should also be noticed
that the first (D) and second (I) rank tensors represent the
antisymmetric and symmetric contributions to the exchange
[43]. Similarly to the case for the interatomic force constant
�, we can write

J(x,x ′) = − i

2

∫
ν(r,ρ)[G0(y,y ′)G0(y ′,y)

− G1(y,y ′) · G1(y ′,y)]ν(ρ ′,r′)dρdρ ′, (10a)

D(x,x ′) = 1

2

∫
ν(r,ρ)[G0(y,y ′)G1(y ′,y)

− G1(y,y ′)G0(y ′,y)]ν(ρ ′,r′)dρdρ ′, (10b)

I(x,x ′) = − i

2

∫
ν(r,ρ){G1(y,y ′)G1(y ′,y)

+ [G1(y,y ′)G1(y ′,y)]T }ν(ρ ′,r′)dρdρ ′. (10c)

These expressions clearly illustrate that the Heisenberg in-
teraction is finite independently of whether the background
electronic structure has a spin texture (G1) or not, whereas
both the Dzyaloshinskii-Moriya and Ising interactions are
finite only in materials with nonvanishing spin texture, that
is, either a simple spin-polarization and/or a noncollinear
magnetic structure. Here, �s(r,r′) = ν(r,r′), where ν(r,r′) is
the direct exchange contribution from the Coulomb integral;
see Sec. A 2 for more details. Equation (10b) is in agreement
with the expression for Dzyaloshinskii-Moriya in Ref. [44].

The antisymmetric properties of D are also clearly illus-
trated by Eq. (10b), since interchanging the spatial coordinates
is accompanied by a sign change, that is, D(r,r′; t,t ′) =
−D(r′,r; t,t ′), which signifies the odd property under spatial
reversal. While this property can be obtained, e.g., in structures
with finite spin-orbit coupling, it can also be finite in
general spatially inhomogeneous structures with noncollinear
magnetic texture [45]. These observations accordingly suggest
that a Dzyaloshinskii-Moriya interaction can be engineered in
heterostructures and tunnel junctions [46–49].

The Ising interaction, finally, is the symmetric part of the
tensor and it is finite in materials with a finite spin polarization
in the background electronic structure and both for a trivial

and nontrivial spin texture [45,49–51]. Hence, a simple spin
polarization along the ẑ axis generates a finite Izzẑẑ while all
other components of I vanish. The contribution to the spin
model then is Izz(x,x ′)Sz(x)Sz(x ′), which is the usual Ising
model for collinear spins and the reason for calling it the Ising
interaction.

E. Spin-lattice coupling

We finally discuss the type of bilinear interaction that we
propose in this paper, namely, the spin-lattice coupling. Here,
we set either p = c, q = s in Eq. (7), or the other way around,
and for completeness we write both forms given by

Tcs(x,x ′) = (−i)
∫

λ(r,ρ)[G0(y,y ′)G1(y ′,y) + G1(y,y ′)

×G0(y ′,y) − iG1(y,y ′) × G1(y ′,y)]ν(ρ ′,r′)

× dρdρ ′, (11a)

Tsc(x,x ′) = (−i)
∫

ν(r,ρ)[G0(y,y ′)G1(y ′,y) + G1(y,y ′)

×G0(y ′,y) + iG1(y,y ′) × G1(y ′,y)]λ(ρ ′,r′)

× dρdρ ′. (11b)

Here, we first notice that the electronically mediated spin-
lattice coupling exists only in materials with either broken
time-reversal symmetry and/or broken inversion symmetry,
which is manifest in the explicit dependence on G1. Second, it
can be noticed that the first two contributions toTcs andTsc are
equal while the third contributions have opposite signs to one
another. This structure reflects the composition of the tensor
as one inversion-symmetric and one inversion-antisymmetric
component.

It is, moreover, interesting that the inversion-symmetric
component has an antisymmetric time-reversal symmetry
while the opposite observation can be made for the inversion-
antisymmetric component. These properties are necessary
in order to maintain the even properties of the effective
spin model under both inversion and time-reversal symmetry
operations. Hence, the result is that we can interchange the
coordinates in, say, the contribution Q(x) · Tcs(x,x ′) · M(x ′)
in Eq. (3), and from the conclusions in this section it follows
that this contribution equals the other spin-lattice contribution,
such that it is only necessary to write 2Q(x) · Tcs(x,x ′) · M(x ′)
in the effective action. Therefore, the opposite signs of the
inversion-antisymmetric contributions to Tcs and Tsc ensure
that the correct symmetries are maintained for the spin-lattice
model.

Further aspects regarding the symmetry properties will be
discussed in Sec. IV.

III. STATIC BILINEAR COUPLINGS

The properties of the bilinear couplings Tpq(x,x ′) that
we have introduced can be further analyzed in the static
limit (ω → 0), that is, Tr

pq(r,r′) ≡ limω→0 Tr
pq(r,r′; ω) =

limω→0
∫
Tpq(r,r; t − t ′)eiω(t−t ′)dt ′. Then, the general static
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TABLE I. Spin dependence and parity properties of the four com-
ponents in the expansion of the single-electron Green’s function G.

Green’s function Spin reversal Space reversal Time reversal

G00 even even even
G01 even odd odd
G10 odd even odd
G11 odd odd even

interaction tensor can be written as

Tr
pq(r,r′) =

∫
�p(r,ρ)Kr

pq(ρ,ρ ′)�q(ρ ′,r′)dρdρ ′, (12a)

Kr
pq(r,r′) = − 2

2δps+δqs π
sp Im

∫
f (ε)

× σ pGr (r,r′)σ qGr (r′,r)dε, (12b)

where the notation Gr (r,r′) ≡ Gr (r,r′; ε). This result is ob-
tained by noticing that in equilibrium, the retarded suscepti-
bility Kr

pq can be written as

Kr
pq(r,r′; ω) = 1

2δps+δqs
sp

∫
f (ε) − f (ε′)

ω − ε + ε′ + iδ

× σ p[−2ImGr (r,r′)]σ q[−2ImGr (r′,r)]

× dε

2π

dε′

2π
. (13)

Then, by application of the Kramers-Krönig relations, the
result in Eq. (12b) follows.

A tool that is convenient to introduce for further discussion
is a partitioning of the single-electron Green’s functions
according to

G = G0σ 0 + G1 · σ = (G00 + G01)σ 0 + (G10 + G11) · σ .

(14)

Here, the first superscript 0 (1) refers to charge (spin)
quantities, whereas the second superscript denotes whether the
Green’s function is even, 0, or odd, 1, under space reversal or
equivalently change of direction r � r′. Then the even Green’s
functions, G00 and G10, carry information about the charge and
spin densities, respectively, while the odd Green’s functions,
G01 and G11, are related to possible charge and spin currents,
respectively, that may occur in the system. This means that
only these Green’s functions may be finite under the current
operator ∼∇r − ∇r′ in the limit r′ → r. In summary, these
four Green’s functions can be characterized in terms of being
even and/or odd under spin and space reversion as is illustrated
in Table I. In this table we also summarize how they behave
under time reversal. Under such an operation not only the spin
but also the currents change sign, so G00 and G11 are invariant
under time reversal while G01 and G10 change sign.

An advantage with this formalism is that it becomes
straightforward to study the effect of spin-orbit coupling.
This is because for topologically trivial magnetic systems in

equilibrium, the odd space reversal Green’s functions are odd
in the spin-orbit coupling while the even functions are even.
Hence, in the absence of spin-orbit coupling only G00 and G10

will be finite.
This static interaction can for clarity and consistency with

earlier literature [52,53] on bilinear exchange couplings also
be expressed in a discrete atomic site or lattice formalism. The
ρ and ρ ′ integrations in Eq. (12a) are then taken to be over
atomic sites i and j and the local interactions �p(r,ρ) are
assumed to be on-site only. In order to perform these integrals
we expand all quantities in local orbitals, e.g., spherical or
tesseral harmonics, which render all quantities to be matrices
in this orbital space, although the local interaction �

p

i is usually
taken to be diagonal. Then we get a lattice representation of
Eq. (12a) or (12b) as

T
pq

ij = 1

2δps+δqs
sp tr Im

∫
f (ε)�p

i σ p Gij�
p

j σ qGjidε, (15)

where the trace is now over both spin (sp) and orbital (tr )
space. In this matrix formalism the Green’s function is a matrix
over both spin and orbitals. Then when we decompose it in
the way of Eq. (14) each term is still a matrix over orbitals.
This fact leads to that the decomposed Green’s functions are
no longer simply even or odd under change of direction or
equivalently site exchange. Instead, in the case of a real basis
we have that

G00
ij = {

G00
ji

}T
, G01

ij = −{
G01

ji

}T
,

G10
ij = {

G10
ji

}T
, G11

ij = −{
G11

ji

}T
, (16)

where the matrix transpose is over the orbitals. For general
complex orbitals this relation will depend on the choice of
basis; therefore we restrict ourselves to the real basis in this
paper and the expressions below for the interaction parameters
are only valid for this special case.

A. Lattice-lattice coupling

Applying the introduced decomposition of the Green’s
function to the interatomic force constant presented in Eq. (8)
we obtain the form

�ij = − 4

π
tr Im

∫
f (ε)

(
λiG

00
ij λjG

00
ji + λiG

01
ij λjG

01
ji

+ λiG10
ij λj G10

ji + λiG11
ij λj G11

ji

)
dε, (17)

where the products between the Green’s functions G10 and
G11 in the third and fourth term, respectively, should be
considered as scalar products. The presence of the spin-
dependent components shows that also the spin texture in
the material can have a crucial influence on the lattice-lattice
coupling in the material, which leads to the well-known fact
that the atomic forces will be spin dependent for a magnetic
system.

B. Spin-spin coupling

As displayed in Eq. (10) the indirect spin-spin exchange can
be partitioned into three contributions: isotropic Heisenberg
and anisotropic Dzyaloshinskii-Moriya and Ising interac-
tions. By application of the Green’s function decomposition
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introduced, we find that these three interactions in the static
limit can be written as

Jij = − 1

π
tr Im

∫
f (ε)

(
νiG

00
ij νjG

00
ji + νiG

01
ij νjG

01
ji

− νiG10
ij · νj G10

ji − νiG11
ij · νj G11

ji

)
dε, (18a)

Dij = − 2

π
tr Re

∫
f (ε)

(
νiG

00
ij νj G11

ji + νiG
01
ij νj G10

ji

)
dε,

(18b)

Iij = − 2

π
tr Im

∫
f (ε)

(
νiG10

ij νj G10
ji + νiG11

ij νj G11
ji

)
dε.

(18c)

First, it is important to notice that the three contributions
are given as a scalar (J ), vector (D), and a dyad (I), as
would be an expected partitioning of a second-rank tensor.
These interactions are closely related to other expressions
for J and D in the literature [43,53,54], now expressed in
decomposed Green’s functions. Second, we notice that since
G00 or G10 is always present in a magnetic system, the
Dzyaloshinskii-Moriya interaction can be finite only when
either G11 or G01 does not vanish. As mentioned above these
two functions vanish in the absence of spin-orbit coupling
for topologically trivial materials in equilibrium. Third, it is
important to observe that the Ising interaction in its most
general form, as here, is represented by a dyad and due to
its first term can be nonvanishing also in the nonrelativistic
limit without spin-orbit coupling.

C. Spin-lattice coupling

Finally, the spin-lattice interactions in the static limit T cs
ij

derived from Eq. (11a) can in terms of the four Green’s
functions in Table I be written as

T cs
ij = − 4

π
tr Im

∫
f (ε)

(
λiG

00
ij νj G10

ji + λiG
01
ij νj G11

ji

− iλiG10
ij × νj G11

ji

)
dε. (19)

It is easily seen that the tensor T sc is related to this tensor by
the transpose {

T sc
ij

}αβ = {
T cs

ji

}βα
, (20)

with the explicit Cartesian tensor components α and β. The

T cs tensor interactions can further be partitioned into two
independent terms, T cs = S+A, with

Sij = − 4

π
tr Im

∫
f (ε)

(
λiG

00
ij νj G10

ji + λiG
01
ij νj G11

ji

)
dε,

(21a)

Aij = − 4

π
tr Re

∫
f (ε)λiG10

ij × νj G11
ji dε. (21b)

Then it is noteworthy that the S interaction is even in the spin-
orbit coupling strength while theA in contrast is odd. Hence,
for systems with weak spin-orbit coupling, the first interaction
is expected to dominate if it is allowed by symmetry. It is
straightforward from Eq. (21) to verify that the first term is
symmetric with respect to site exchange Sij = Sji while the
second is antisymmetric Aij = −Aji , by using the relations
for the decomposed Green’s functions of Eq. (16).

IV. SYMMETRIES

We want to study the symmetry of the spin-lattice part of
the static interaction Eq. (5), i.e., the heterogenous part

Hsl
MQ = − 1

2

∑
ij

{
Qi · T cs

ij · Mj + Mi · T sc
ij · Qj

}
. (22)

The fact that the two quantities entering this bilinear form have
different symmetries might cause some confusion. The lattice
distortion Qi is even under time reversal θ but odd under space
inversion ι while the magnetic moment Mi is invariant with
respect to space inversion but changes sign under operation
of time reversal. Hence since the interaction energy is scalar,
the interaction coefficients have to be odd under both space
inversion and time reversal which single out the heterogenous
bilinear spin-lattice interaction compared to the homogenous
bilinear spin-spin {T ss} and lattice-lattice {T cc} interactions,
that are both invariant under these operations. However, when
accepting this difference there is nothing that forbids such
heterogenous interactions, as will be demonstrated below, first
through derivation of explicit expressions for these interaction
parameters and then by considering the symmetry of the
interactions. The odd time reversal property is simply stated
as θT cs

ij = −T cs
ij while the space inversion has to be discussed

in more detail below.
First we notice that for each pair {ij} of sites we have four

interaction terms

Qi · T cs
ij · Mj + Qj · T cs

ji · Mi + Mi · T sc
ij · Qj + Mj · T sc

ji · Qi . (23)

Then from the relation (20)

Qi · T cs
ij · Mj + Mj · T sc

ji · Qi = 2Qi · T cs
ij · Mj , (24)

so the total spin-lattice interaction written as a sum over pairs becomes

Hsl
MQ = −

∑
{ij}

∑
αβ

({
T cs

ij

}αβ
Qα

i M
β

j + {
T cs

ji

}αβ
Qα

j M
β

i

)
. (25)
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Now we can decompose the pair interaction into a part that is symmetric Sij and one that is antisymmetric Aij with respect to
interchange of sites; i.e., with T cs

ij = Sij +Aij we have that T cs
ji = Sij −Aij . Then Eq. (25) becomes

Hsl
MQ = −

∑
{ij}

∑
αβ

[{Sij }αβ
(
Qα

i M
β

j + Qα
j M

β

i

) + {Aij }αβ
(
Qα

i M
β

j − Qα
j M

β

i

)]
= −

∑
{ij}

{Qi · Sij · Mj + Qj · Sij · Mi + Qi ·Aij · Mj − Qj ·Aij · Mi}. (26)

In contrast to the homogeneous bilinear interactions these interaction parameters Sij andAij are both general rank-two tensors
in 3D space and can hence both be decomposed into three contributions, scalar (Sij and Aij ), vector (Sij and Aij ), and symmetric
second-rank tensor interactions (S(2)

ij and A
(2)
ij ). By first decomposing these interaction tensors into symmetric and antisymmetric

parts Sij =s Sij +a Sij with respect to exchange of components, the interaction energy can be expressed as

Hsl
MQ = − 1

2

∑
{ij}αβ

{
s
Sαβ

ij

(
Qα

i M
β

j + Q
β

i Mα
j + Qα

j M
β

i + Q
β

j Mα
i

) + sAαβ

ij

(
Qα

i M
β

j + Q
β

i Mα
j − Qα

j M
β

i − Q
β

j Mα
i

)
+ aSαβ

ij

(
Qα

i M
β

j − Q
β

i Mα
j + Qα

j M
β

i − Q
β

j Mα
i

) +a Aαβ

ij

(
Qα

i M
β

j − Q
β

i Mα
j − Qα

j M
β

i + Q
β

j Mα
i

)}
= −

∑
{ij}

{Sij (Qi · Mj + Qj · Mi) + Aij (Qi · Mj − Qj · Mi)

+ Sij · (Qi × Mj + Qj × Mi) + Aij · (Qi × Mj − Qj × Mi) + · · · }
= −

∑
ij

[Qi · (Sij +Aij )] · Mj = −
∑
ij

(Sij + Aij )Qi · Mj

−
∑
ij

(Sij + Aij ) · Qi × Mj −
∑
ij

Qi · (
S

(2)
ij + A

(2)
ij

) · Mj , (27)

where the dots refer to the for the moment neglected second-
rank contributions and note that in the last line we do the
full site sum again. Scalar and vector interactions have been
introduced in line with conventions. The scalar interactions are
related to the trace of the symmetric part of the tensors, while
the vector interactions are the dual form of the antisymmetric
part of the tensors. So for the symmetric tensor Sij we
decompose it in terms of

Sij = 1
3 TrsSij (28)

and

S
γ

ij = Sij · γ̂ = 1

2

∑
αβ

εαβγ aS αβ

ij , (29)

where εαβγ is the antisymmetric Levi-Civita symbol and γ̂ is
the unit vector along the Cartesian axis γ . Finally the second-
rank tensor interaction S

(2)
ij is given as

S
(2)
ij = sSij − Sij 1, (30)

where 1 is the 3D unit matrix.
In order to discuss the symmetry under space inversion,

let us consider that the inversion operation ι brings site i to an
equivalent site i ′ and correspondingly for site j . In Appendix D
it is shown that in this case both spin-lattice interaction tensors
are indeed odd under space inversion, i.e.,

ιSij = − Si ′j ′ , ιAij = −Ai ′j ′ . (31)

For the special case where there exists a center of inversion at
the bond center in between sites i and j , inversion brings site

i to site j and

ιSij = − Sji = −Sij , ιAij = −Aji = Aij . (32)

Hence in this case the interaction tensor Sij has to vanish. If
instead there exists a bond center invariant under the combined
operation of space inversion and time reversal ιθ , then instead

ιθSij = Sji = Sij , ιθAij = Aji = −Aij ; (33)

i.e.,Aij has to vanish.
This reminds us of the fact that the Dzyaloshinskii-Moriya

interaction Dij of Eq. (18b) also vanishes if there is an inversion
symmetry at the bond center. However, a difference is that the
Dzyaloshinskii-Moriya interaction is even under the inversion
per se. It is the asymmetry under site exchange which makes
it vanish, ιDij = Dji = −Dij .

In the full magnetic symmetry group the elements generally
consist of combined operations, e.g., rotations and inversion
or rotations and time reversal, etc., as illustrated in the
examples below. The rotational part of this operation behaves
as expected, either on the full interaction tensor or the scalar
and vector interactions in its decomposition, while as noted
both inversion and time-reversal operations are odd for the
spin-lattice interaction.

Finally it is important to remember that for the heterogenous
spin-lattice interaction the inter-site exchange symmetry is
unrelated to the symmetry of the tensor. So the interaction
contribution that is symmetric in site exchange, Sij , con-
tributes both to the scalar interaction Qi · Mj as well as
the cross-product interaction Qi × Mj . This is in contrast to
the homogeneous spin-spin interaction where the interaction
symmetric in sites, e.g., Heisenberg, only contributes to the
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symmetric scalar interaction Mi · Mj , etc. Anyhow we have
chosen to differ between the two contributions as they behave
differently with the strength of the spin-orbit coupling. The
symmetric interaction Sij exists also in absence of spin-orbit
coupling while the antisymmetric Aij is linear in a weak
spin-orbit coupling strength as shown by Eq. (21).

V. EXAMPLES

A. Numerical details

The bilinear couplings (A9a) are implemented in our real-
space tight-binding code [90]. Here, we solve the nonorthog-
onal eigenvalue problem Hψ = εOψ where ψ is a linear
combination of atomic orbitals (LCAO ansatz) within an sp3d5

orbital basis set. The Hamiltonian H0 and the overlap matrix
O are built up from the Slater-Koster scheme [55], where
the Slater-Koster parameter is considered distance dependent
according to the formalism of Mehl et al. [56,57]. The
full Hamiltonian H = H0 +Hsoc +Hmag includes also spin-
orbit couplingHsoc = ξ L · S and magnetic exchange splitting
Hmag = I

2 M · S, respectively. Both the spin-orbit coupling
parameter ξ and the Stoner excitation energy I are obtained
from fitting of the electronic structure to ab initio band
structures obtained from a fully relativistic multiple-scattering
Green’s function method (Korringa-Kohn-Rostoker method,
KKR) [58]. M = mes is the spin magnetic moment. Magnetic
moment rotations come from a unitary transformation of the
Hamiltonian with relativistic rotation matrices R, consisting
of rotations in spin and orbital space [59]. Variations of the
magnetic moment es = es(θ,φ) are addressed by ∂H/∂θi and
∂H/∂φi . A local approximation for λi is used by the derivative
of the Hamiltonian ∂H/∂ Qi due to lattice degrees of freedom
Qi , obtained from Ref. [60]. In the simulations we focus
on low-dimensional clusters of Fe, e.g., chains, with periodic
boundary conditions, where the tight-binding parameters are
from Refs. [31,56,61].

Since pure spin and lattice exchange couplings [62–65]
are already well understood, we will focus in the following
only on the bilinear spin-lattice coupling mechanism, and then
especially the influence on the lattice from the spin order.

B. Double-antiferromagnetic lattice

It is discussed in the literature [66] that the magnetic ground
state in fcc Fe is double antiferromagnetic. It is collinear with
all moments along, say, the ẑ direction, where the variations
along, say, the x̂ direction, are ↑↑↓↓, and translations of
this unit cell (cf. Fig. 2). The symmetry group for this spin
structure is {e,ι,θ t2,ιθ t2} ⊗ T , where T = {nt4; n ∈ Z} is all
pure translations of the unit cell and t2 is a nontrivial translation
by two sites. e, ι, and θ are the identity, inversion, and the spin
(time) reversal operator, respectively. Note that this choice of
symmetry group is quantization axis free and, consequently,
suitable for nonrelativistic treatment. The inversion center can
be chosen as in between atoms 1 and 2 or equivalently in
between atoms 3 and 4 (see Sec. IV).

Without spin-orbit coupling, rotational variation of the
magnetic moment δθ,δφ makes ν(r,ρ) in Eq. (18) proportional
to the Pauli matrices σx,σy . Hence, they do not contribute
to spin-lattice coupling due to the spin-diagonal from of
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FIG. 2. (a) Magnetic moment structure (bold arrows) and related
forces (black arrows) coming from bilinear spin-lattice coupling for
the double antiferromagnetic. Atoms are indicated by gray balls. The
color of the magnetic moments indicates the orientation (ẑ, green
arrow; −ẑ, red arrow). (b) Bilinear spin-lattice coupling vs distance
along the variation ↑↑↓↓ for different magnetic states: ferromagnetic
(FM, green dots), antiferromagnetic (AFM, red dotes), and double
antiferromagnetic (DAFM, blue dots).

the Green’s function. It turns out that for the double-
antiferromagnetic structure T cs

ij is related to longitudinal
fluctuations of the magnetic moments, which is proportional
to σz (Fig. 2). To apply the group symmetry analysis, it is
useful to treat the couplings as being at the center of the
bonds between atoms (cf. Fig. 2). Here, the symmetric scalar
interactions Sij vanish at the bond centers 1-2 and 3-4, due to
inversion. However in between 4-1 and 2-3 they can exist and
are related by θt2, i.e., S41 = −S23 = s. So there will be forces
Fi = −∂Hsl

MQ/∂ Qi on all four atoms:

F1 = −S14m4 = +s, F2 = −S13m3 = −s,

F3 = −S32m2 = +s, F4 = −S41m1 = −s, (34)

which leads to a dimerization; atoms 1 and 2, respectively, 3
and 4, move towards each other [cf. Fig. 2(a), black arrow].
This was also proved numerically [Fig. 2(a)] by comparing dif-
ferent collinear magnetic textures, a ferromagnetic (FM), anti-
ferromagnetic (AFM), and double-antiferromagnetic (DAFM)
structure.

Note that the magnetic moment length is set to 0.001 μB

for a proper ground state description. T cs
ij scales linearly to

the moment length; thus the nearest neighbor coupling TNN

is ≈10 eV for the magnetic moment length m = 2.3 μB for
Fe. In the first two cases, say FM and AFM, the exchange
T cs

ij is antisymmetric around zero and, consequently, no net
force exists. However, it affects the dynamics of the spin and
lattice degree of freedom. Oscillations occur for the AFM
structure which is linked to the alternating spin state. T cs

ij in
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FIG. 3. (a) Magnetic moment structure (bold arrows) for the
planar spin density wave. (b) Lattice forces at different position in a
sinusoidal spin density wave calculated from the force related to the
bilinear spin-lattice coupling (blue triangles) and from the Hellmann-
Feynman theorem (red dots). The oscillation period extends over
10 atoms, indicated by the vertical dotted line. Lines are guides to
the eye.

the DAFM is not antisymmetric around the origin, but around
the bond center, described in our symmetry analysis. This
creates an alternating finite force of F = 0.39 μeV/a.u. (F =
1.33 eV/a.u. for finite moment) between the atoms and causes
dimerization of the atoms.

C. Planar spin density waves

In the previous case we kept the crystal and spin structure
simple. If we extend the two magnetic structures to an infinite
spiral, represented by

M i = Mzẑ cos(qxi) + Meê sin(qxi), (35)

where xi is the x component of the position of atom i,
r i , q is the magnitude of the wave vector q = qx̂, and ê
is either (i) x̂ or (ii) ŷ. For Me = 0 the magnetic structure
would correspond to a sinusoidal spin density wave (sSDW)
[Fig. 3(a)]. Here, two phases are possible, either with a belly
or node at x0 = 0, respectively. We notice that the symmetry
groups for the sinusoidal spin density wave is for the belly
{e,c2z,θc2x,θc2y} × {e,ι} and for the node {e,c2z,θc2x,θc2y} ×
{e,iθ}. Here, cnν defines the n-fold rotation axis along ν. Note
that the sinusoidal magnetic structure is invariant with respect
to ι or ιθ for the belly or nodal type, respectively.

Let us focus on the symmetric scalar interaction for the
belly sinusoidal SDW with a node at qx = 0 and a maximum
at qx = π/2. Thus (not shown here), the symmetric scalar
interaction behaves as sj = s sin q(xj + d/2) and the force at
atom j due to its nearest neighbor interactions are

Fj = −(Sjj−1Mj−1 + Sjj+1Mj+1)

= −2sM sin 2qxj cos qd/2, (36)

where d is the distance between two atoms. These forces
oscillate with 2q; however they disappear for qd/2 = π/2,

FIG. 4. Magnetic moment structure (bold arrows) for the cy-
cloidal spin wave.

i.e., for qd = π , which corresponds to a commensurate
AFM, where the variation of magnetic moments disappears,
i.e., mj = 0. Note that we recover the double-layered AF
for qd = π/2 if we phase-shift the sSDW by φ = −3d/2.
This periodicity is also recovered by our numerical method
[Fig. 3(b)].

Note that the calculations are done for a finite magnetic
moment of 2.23 μB and all neighbors contribute to the
summation needed to get the force from the bilinear coupling
term. This results in slight variation from the sinelike behavior
of the force observed from group-symmetric analysis. The
periodicity of 2q, however, was reproduced. The obtained
forces are in good agreement with the forces obtained directly
from the Hellmann-Feynman theorem. Disparities are due
to higher order exchange couplings that are included in
the Hellmann-Feynman force as well as due to long-range
exchange.

D. Cycloidal and helical spin density wave

Continuing the discussion about spiral spin configurations
(35), we set Mz = Me = M , which corresponds to either a
cycloidal spiral ê = x̂ or helical spiral ê = ŷ, respectively,
with the symmetry groups {e,c2z,iθc2x,iθc2y} for the cycloid
(Fig. 4) and {e,c2z,θc2x,θc2y} for the helix state.

a. Cycloid. For a general position of an atom j at rj ,
the bond center to the nearest neighbor is conserved by
the group {e,ιθc2y} and allows both a scalar T

cs;s
jj±1 and a

vectorial coupling along y, T cs;v
jj±1 × ŷ = 0. We assume the

spiral to be commensurate and point to the atomic position
rn such that qxn = π/2. Caused by the symmetry operation
θc2z, the sign of the nearest neighbor scalar interaction,
T

cs;s
nn+1 = −T

cs;s
nn−1, changes, while the nearest neighbor vector

interaction does not T cs;v
nn+1 = T cs;v

nn−1; it behaves opposite to
around the point r0. This can be explained only by an oscil-
latory behavior of the interaction parameters along the wave
vector.

There are two possibilities: either the interactions are
symmetric (see Sec. IV), Sjj+1 and Sjj+1, or antisymmetric,
Ajj+1 and Ajj+1. This gives rise to the following forces on the
atom at rj arising from nearest neighbor interactions due to
the last part in Eq. (27):

FSs
j = −(Sjj−1 Mj−1 + Sjj+1 Mj+1)

= −sMe(qxj )[2 cos(qd) − 1] cos(qd/2), (37a)

FSv
j = −(Mj−1 × Sjj−1 + Mj+1 × Sjj+1)

= syM{[2 cos(qd) − 1]e(qxj ) + ẑ cos(qd)} cos(qd/2),

(37b)
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FAs
j = −(Ajj−1 Mj−1 + Ajj+1 Mj+1)

= −aMe(qxj )[2 cos(qd) − 1] cos(qd/2), (37c)

FAv
j = −(Mj−1 × Ajj−1 + Mj+1 × Ajj+1)

= −ayM{e(qxj )[2 cos(qd) + 1] + ẑ} sin(qd/2), (37d)

where e(qxj ) = {ẑ cos(2qxj ) + x̂ sin(2qxj )}. Here, s and a are
the magnitude of the oscillating antisymmetric and symmetric,
scalar and vectorial couplings. The symmetric scalar force
(37a) does not vanish in the limit q → 0. The symmetric vector
(37b) and antisymmetric vector force (37d) vanish in the limit
q → 0, but have otherwise in addition to the oscillations also
a constant term in the ẑ direction, where the z component goes
as {(2 cos qd + 1) cos(2qxj ) + 1} sin qd/2.

b. Helix. For the helical spin spiral state, the antisym-
metric interaction has two nonvanishing components, since
θc2x Aij = Aij , and from the symmetry relations at qx = 0
and qx = π/2 they have to exhibit also an oscillatory behavior.
This leads to a force at atom j as

FAv
j = − (Mj−1 × Ajj−1 + Mj+1 × Ajj+1)

= − M{(cos qd + 1)(ay + az) − ay}
× sin(qd/2) sin(2qxj )x̂, (38)

which is also purely oscillatory.
To summarize, for the magnetic textures with wave vector q

discussed in Secs. V C and V D, we observe an oscillating force
with the double wave vector. In particular for the cycloidal spin
wave, we obtained a constant force in addition to the oscillating
force. When the conical wave has xz as the rotational plane
and x as propagating vector, this “offset force” will be along
the ẑ direction. This is in good accordance with the inverse
Dzyaloshinskii-Moriya effect discussed by Katsura et al. [67],
Mostovoy [68], and Sergienko et al. [69], who demonstrated
that a cycloidal spiral gives rise to a polarization P ∝
(ẑ × ê) × q with contributions both from electronic charge
displacement [67,69] and from ionic displacement [68,69].
This ferroelectric polarization for cycloidal spirals is unique,
since neither a helical spiral nor sinusoidal spin wave state
gives rise to polarization.

VI. COMPARISON WITH EXPANSION OF SPIN
EXCHANGE PARAMETERS

As mentioned before this bilinear formulation of spin-
lattice coupling differs from the standard approach. In the
standard formulation the effective model Hamiltonian corre-
sponding to Eq. (5) takes the form

H̃MQ = −1

2

∑
ij

(
Qi · T cc

ij · Qj + Mi · T̃ ss
ij [{Q}] · Mj

)
, (39)

where T̃ ss depends on all the ionic displacements {Q}. Such
an expression gives that there is a contribution Fsc

k to the total
force on site k from an effective spin lattice coupling,

Fsc
k = 1

2

∑
ij

Mi · ∂T̃ ss
ij

∂Qk

· Mj , (40)

which in general involves a double sum and can be fairly cum-
bersome to calculate. However, physically such a derivative

can be analyzed in some simple limits. First, in the case of pure
Heisenberg exchange in the nearest neighbor approximation
where the isotropic exchange J parameter is dependent on the
distance between the two atoms, the exchange tensor can be
written as

T̃ ss
ij [{Q}] = J (|Rij + Qi − Qj |) 1, (41)

with the unit tensor 1. For such a model the force of Eq. (40)
is only nonvanishing for the two interacting atoms and leads
to a derivative

∂T̃ ss
ij

∂Qi

= −∂T̃ ss
ij

∂Qj

≈ J ′(|Rij |)1 R̂ij . (42)

The resulting force is in the direction as to gain in Heisenberg
exchange energy. Such a force give rise to qualitatively
similar results as the present method in the examples of
the double antiferromagnet in Sec. V B and the sinusoidal
spin density wave in Sec. V C. Second, in the case of the
anisotropic Dzyaloshinskii-Moriya interaction DDM between
two magnetic sites i and j over a bridging ligand site k, the
interaction vector can in the superexchange approximation be
written as [69]

DDM ≈ D Rij × Qk, (43)

which gives rise to a force on the ligand atom

Fsc
k = 1

2D Rij × (Mi × Mj ). (44)

This result is in qualitative agreement with the present result
of the cycloid in Sec. V D. In this case Rij lies in the plane
spanned by Mi and Mj and a resulting nonoscillating force
would be in the same plane but perpendicular to the bond
direction, i.e., what is called ẑ in the example above.

To conclude this section we note that in those insulating
magnets where the spin texture simultaneously breaks time
and spatial reversion, third-order spin-lattice coupling in
Eq. (40) is commonly considered when describing ferroelectric
polarization and multiferroic phases [67–70], and is also held
to be responsible for the dynamic magnetoelectric response
in the electromagnetic field driven dynamics in the GHz and
THz regime [11,12,71,72]. We hope that we have here made it
plausible that the same effects can also be treated in a bilinear
spin-lattice coupling, but a more direct comparison of the two
different approaches is left for future studies.

VII. EQUATIONS OF MOTION

A. General dynamical equations

Here, we make a brief derivation of the equations of motion
that can be obtained from the effective action in Eq. (3). Hence,
in order to access the physics in the spin-lattice system we
have to convert the time integration on the Keldysh contour
to real times. While all steps in the conversion are shown
in Appendix B, we here notice that the transformation leads
to a natural introduction of slow and fast spin and lattice
variables which, in principle, have to be treated coherently
for a complete description. Nevertheless, here we will only
address the dynamics of the slow variables in the presence
of a mean field generated by the fast variables. Accordingly,
by differentiating the effective action with respect to the fast
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variables we can retain a description solely in the slow vari-
ables. The conversion to real times does, however, introduce
contributions to the model which are quadratic in the fast
variables, see Appendix B, such that there remain contributions
in the description explicitly depending on these even after
differentiating. The simplest solution to this problem is to
neglect their existence under the assumption that their overall
contribution to the dynamics is negligible. While this approach
is somewhat uncontrolled and nonsystematic, the equations of
motion presented in the main text are obtained in this fashion.
A more sophisticated and controlled way to deal with this issue
is by application of the Hubbard-Stratonovich transformation,
see Appendix C, which leads to that the quadratic terms are
replaced by linear ones, however, at the cost of introducing
random fields corresponding to quantum fluctuations related
to the quadratic spin and lattice interactions.

Here, we adopt the former approach and refer to Ap-
pendix C for the details concerning inclusion of the quadratic
terms. Our strategy can be justified from the perspective that
we here aim to address the general structure of the coupled
equations of motion for the spin-lattice system with focus on
the contribution that arise from the bilinear coupling between
these subsystems. The resulting equations of motion can
be generalized to also include the stochastic field of, e.g.,
Langevin type both addressing the quadratic interaction but
also randomness caused by temperature among others. We
refer to Appendix C for a discussion of quantum fluctuations
caused by rapid spin-spin correlations.

It should also be noted that through the conversion into
real times the interaction fields Tpq are transformed into
retarded/advanced forms, Tr/a

pq , which are naturally accessible
from electronic structure calculations in terms of the Green’s
functions; see Sec. II. In this form, we obtain a practical
and convenient method to systematically address spin and
lattice dynamics at the same level of sophistication and
approximation.

Taking the saddle point solution of the total effective
spin-lattice action with respect to the fast spin and displace-
ment variables, see Appendix B for details, and requiring
∂t |M(x)|2 = 0 for the spin variable, we derive a set of coupled
equations of motion given by

Ṁ(x) = M(x) ×
{
−γ Bext(x)

+
∫ [
Tr

sc(x,x ′) · Q(x ′) + Tr
ss(x,x ′) · M(x ′)

]
dx ′

}
,

(45a)

MionQ̈(x) = γEEext(x) +
∫

Vrr′ · Q(x ′)δ(t − t ′)dx ′

+
∫ [
Tr

cs(x,x ′) · M(x ′) + Tr
cc(x,x ′) · Q(x ′)

]
dx ′,

(45b)

in the presence of external magnetic and electric fields Bext

and Eext, respectively. Here, Ṁ ≡ ∂tM and Q̈ ≡ ∂2
t Q, whereas

the dyad Vrr′ ≡ ∇r(∇r′V0) represents the ionic contribution
to the interatomic force constants. The system in Eq. (45)
for M and Q provides a general framework for a coupled

treatment of magnetization and lattice dynamics. One should
note that Eq. (45) emphasizes that the temporal and spatial
evolution of both Q and M depend nonlocally on both the
time-dependent magnetization and ionic displacements for the
entire structure. The consequence of this nonlocal description
is that all retardation effects within the spin-lattice system that
are associated with their coupling to the electronic structure
are included in Eq. (45), despite the seemingly absence
of contributions arising from, e.g., damping and moment
of inertia [26]. Conceptually, these and other retardation
effects are included in the full integration over space and
time; however, as we shall see in Sec. VII B it can be
shown that damping and moment of inertia are related to
temporal expansion of the spin moments. Analogously, the
spin-transfer torques can be related to gradient expansion of the
magnetization. In this context it is interesting to observe that
the time evolution of a local mode [73] is nonlocally influenced
by the magnetization at different points in space and time.
Due to the coupling it can, moreover, be concluded that the
ionic dynamics can be controlled by external magnetic fields,
e.g., Bext(x), something that was experimentally demonstrated
in Ref. [74], and reciprocally that magnetic ordering can be
driven by electric fields, such as when the electric component
of a THz electromagnetic pulse couples to a dipole active
phonon mode and excites electromagnons [11,71,72].

Here it is worth pointing out that the uncoupled version of
Eq. (45b), which describes the ionic vibrations, or phonons,
is related to the linear response equations commonly used
for such calculations [75]. At first glance they look different,
but it is easy to show that they are closely connected to
one formulation of linear response, the so-called dielectric
approach [76,77].

The equations of motion presented in Eq. (45) represent a
generalized form of the equations of motion typically used
in practical simulations and we will address this issue in
Sec. VII B. Before entering the next level of approximations,
however, it is useful to discuss the general structure of the
derived equations.

The first observation one can make is that one retains the
uncoupled equations of motion whenever the interaction fields
Tr

sc/cs → 0. In this limit, respective descriptions for lattice
and spin dynamics are recovered, however, here provided in
a more generalized form since the full retardation (memory)
is included in the equations of motion. Second, we notice that
the coupling terms

∫
Tr

sc(x,x ′) · Q(x ′)dx ′ and
∫
Tr

cs(x,x ′) ·
M(x ′)dx ′ essentially add the effect of an additional magnetic
and electric field to the respective equation. These fields are,
however, strongly dependent on the properties contained in
the interaction tensors Tr

sc/cs and their couplings to the ionic
displacements Q and magnetic moments M. The meaning
of the statement lies in the fact that these fields may be
possible to control through the properties of the electronic
structure. In effect, it also leads to that these induced fields
can be canceled or amplified by appropriately choosing and
controlling the external electromagnetic fields. Along with
the first statement then, this should open up opportunities to
make continuous transitions between coupled and uncoupled
dynamics by tuning the external fields [78]. As a further
implication of this transitioning between the coupled and
uncoupled regimes it should become possible to make direct
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measurements of the frequencies of the uncoupled systems
and frequency shifts associated with the coupled dynamics.

B. Adiabatic limit

The temporal nonlocality inherited in the equations of
motion, Eq. (45), is of principle value for investigations of the
dynamics as it carries the full memory of the time evolution.
In this sense the equations of motion are non-Markovian.
Nonetheless, for practical simulations the non-Markovian
character presents undesired complications since it requires
integrations over all time in addition to keeping track of the full
memory of the past at each evaluation of the time evolution.
Moreover, as the equations of motion given in Eq. (45) are
opaque regarding the physical interpretation, the physical
meaning of the dynamical exchange interactions Tr

pq(x,x ′)
is nontrivial to grasp. Therefore, it is meaningful to resort
to approximations in the time domain, if not over all space
and time. As we remarked in Sec. II B, we shall refer to the
adiabatic limit in our discussions of slow temporal and spatial
variations of the spin and lattice quantities.

Assuming a slow time evolution of the spin and dis-
placement variables, we can Taylor expand in the temporal
argument to linear order f (t ′) ≈ f (t) − τ ḟ (t), where τ =
t − t ′. We will, moreover, restrict ourselves to the case
of small spin fluctuations around a ferromagnetic ground
state such that Ṁ(r′,t) ≈ Ṁ(x), as well as slow varia-
tions in the displacements such that Q̇(r′,t) ≈ Q̇(x). Fi-
nally, we assume that the interaction tensors have a simple
time dependence, that is, Tr

pq(x,x ′) = Tr
pq(r,r′; t − t ′) which

allows us to introduce Tr
pq(r,r′) = limω→0 Tr

pq(r,r′; ω) ≡
limω→0

∫
Tr

pq(x,x ′)eiωτ dt ′. Effecting these assumptions into
Eq. (45), the result can be written as

Ṁ(x) = M(x) × [−γ B(x) + Ĝss(r) · Ṁ(x)

+ Ĝsc(r) · Q̇(x)], (46a)

MionQ̈(x) = γEE(x) +
∫

Urr′ · Q(r′,t)dr′

+ Ĝcc(r) · Q̇(x) + Ĝcs(r) · Ṁ(x). (46b)

In this set of coupled equations we have introduced the
effective magnetic and electric fields B and E which both
contain the corresponding external fields and while B also
includes both mean fields induced by the surrounding spin
and displacement fields, the effective electric field E only
additionally includes the mean field of the surrounding spin
structure. The effective fields are given by

B(x) = Bext(x) − 1

γ

∫ [
Tr

ss(r,r
′) · M(r′,t)

+Tr
sc(r,r′) · Q(r′,t)

]
dr′, (47a)

E(x) = Eext(x) + 1

γE

∫
Tr

cs(r,r
′) · M(r′,t)dr′. (47b)

In this sense the effective magnetic field reduces to the con-
ventional definition in the uncoupled limit while effects of the
displacement-induced pseudomagnetic field are included in
the coupled regime. Simultaneously, the effective electric field
is in the coupled regime modified by the induced electric field

from the surrounding spins. Possible displacement-induced
modifications to the electric field are not included in this
contribution. Instead we redefine the ionic contribution to the
interatomic force constant to include this field in the expression

Urr′ =Vrr′ + Tr
cc(r,r′). (48)

The dissipative contributions, comprising the rates of
change of the spin and displacement variables, can be collected
into the four different damping tensors

Ĝpq(r) = i lim
ω→0

∂ω

∫
Tr

pq(r,r′; ω)dr′, p,q = s,c. (49)

The properties of the indirect exchangeTr
pq(r,r′) and damping

Ĝpq(r,r′) can now be discussed in terms of the dynamical inter-
action Tr

pq(r,r′; ω) and employing the decoupling introduced
in Sec. II B, we can express it as

Tr
pq(r,r′; ω) = −

∫
f (ε) − f (ε′)

ω − ε + ε′ + iδ

�p(r,ρ)

2δps

�q(ρ ′,r′)
2δqs

× spσ pImGr (ρ,ρ ′; ε)σ qImGr (ρ ′,ρ; ε′)

× dε

2π

dε′

2π
dρdρ ′. (50)

Thus, taking the static limit, ω → 0, we can write the exchange
interaction according to (see Sec. III for more details)

Tr
pq(r,r′) = − 1

2
Im sp

∫
�p(r,ρ)

2δps

�q(ρ ′,r′)
2δqs

× f (ε)σ pGr (ρ,ρ ′; ε)σ qGr (ρ ′,ρ; ε)
dε

2π
dρdρ ′.

(51)

Analogously, we find the damping tensor given by

Ĝpq(r,r′) = − 1

2
sp

∫
�p(r,ρ)

2δps

�q(ρ ′,r′)
2δqs

× f ′(ε)σpImGr (ρ,ρ ′; ε)σ qImGr (ρ ′,ρ; ε)

× dε

2π
dρdρ ′. (52)

Written in these forms it becomes clear that while the indirect
exchange interaction strongly depends both on the structure of
the electronic density of states as well as its occupation, the
Fermi sea property, the properties of the damping are strongly
determined by the electronic structure near the Fermi surface,
the Fermi surface property.

VIII. SUMMARY AND CONCLUSIONS

In summary we have constructed a formalism that merges
spin and lattice dynamics in a consistent form at the same
conceptual level. Starting from a microscopic model of a
material, comprising interactions between the delocalized
electrons and local magnetic structure, on the one hand, and
the lattice distortions, on the other, we derive an effective
model which includes the well known contributions for bilinear
spin-spin and lattice-lattice interactions. Our effective model
summarizes the interactions between the spin and lattice
degrees of freedom in a bilinear form. We, moreover, showed
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that the interactions are of a tensorial nature which preserves
time-reversal and inversion symmetries between the spin and
lattice subsystems.

Our findings provide a fundamental perspective in the
theoretical modeling of coupled spin and lattice reservoirs for
both dynamical and static properties. For this purpose, multiple
achievements were put into practice: (i) Both spin and lattice
reservoirs are treated on the same footing by means of local
couplings of the electronic structure with the magnetization
on one hand and with lattice distortions on the other hand.
These local couplings lead to an effective electron-mediated
spin-lattice coupling. Such type of spin-lattice coupling was
obtained from the effective action of the system, shown not to
violate fundamental symmetry operations of the total energy.
Couplings of this nature were, moreover, numerically deter-
mined and analytically corroborated from model electronic
structure theory for certain magnetic textures, that exists in
nature and are already cataloged [66,79–81]. On the sidelines,
a Green’s function formalism for pure spin-spin and lattice-
lattice second-order rank couplings in agreement with already
established methods [43,64] was realized. (ii) The derived
equations of motion account for the most general dynamics of
the coupled spin-lattice reservoir, including space-time retar-
dation that causes, for instance, energy dissipation through the
Gilbert damping [29,82] as well as higher order conservative
forces such as the moment of inertia [26,31]. In principle,
also thermal microscopic fields beyond the white-noise and
Markovian ansatz [83,84], due to the fluctuation-dissipation
theorem, are considered. The Gilbert damping Ĝss given in
terms of multiple scattering was provided in Ref. [26], but
the corresponding ionic displacement damping Ĝcc and the
mixed spin-lattice damping tensors Ĝcs and Ĝsc are provided
as generalizations of these expressions.

The proposed analytical formalism and first numerical
results encourage more detailed theoretical studies. In par-
ticular, they motivate including bilinear spin-lattice coupling
in combined classical atomistic spin-lattice dynamics [38,85],
but also accounting for exact energy dissipation caused by
space-time retardation in the equation of motion. All proposed
terms {T pq} and {Ĝpq},p,q = s,c, can be implemented in
first-principles calculations in a similar manner to that for
the magnetic exchange interactions, which is nowadays a
standard tool in various codes. A detailed materials-specific
characterization of bilinear spin-lattice couplings is necessary
to propose classes of materials with large {T cs}. The strong
hybridization of the spin and lattice quasiparticle spectra
caused by this type of coupling and, thus, possibly enhanced
group velocities of the quasiparticles could lead to significant
improvements in magnonics and phononics applications.

In particular, finite-temperature phenomena pertaining to
the bilinear spin-lattice coupling are highly interesting in, for
instance, how critical indices of magnetic or ferroelectric phase
transitions change or how phonon and spin temperatures in
terms of disorder in the system are affected.

Our study requests also novel experiments, such as neutron
scattering measurements, to prove the existence of a bilinear
spin-lattice coupling in the here proposed magnetic textures.
Within the formalism, higher order interactions, such as three
and four body interactions including lattice anharmonicity,
are accessible in a systematic way, something which would

be of great value for deeper investigations of nonequilibrium
dynamics on ultrafast time scales.
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APPENDIX A: DERIVATION OF EFFECTIVE
SPIN-LATTICE MODEL

Throughout Appendices A–C the notation will refer to
quantities that are continuous in the spatial dimensions, that is,
A = A(r), where r denotes the spatial coordinates. While this
is made for mathematical convenience it is straightforward to
reduce to discrete lattice structures by defining the quantity
A on the lattice through A(r) = ∑

m Amδ(r − rm), where rm

denotes the lattice coordinate.

1. Microscopic model

We model the magnetic interactions by assuming that the
magnetization M(r) interacts with the surrounding spin density
ss(r) via the interaction Hamiltonian

HM = −
∫

v(r,r′)M(r) · ss(r′)drdr′. (A1)

Here, ss(r) ≡ ψ†(r)σψ(r)/2 is defined in terms of the
spinor ψ(r) = (ψ↑(r) ψ↓(r))T , whereas v(r,r′) = v(r′,r) cor-
responds to the direct exchange contribution from the Coulomb
integral.

The charge n(r) = sc(r) ≡ ψ†(r)ψ(r) is subject to the
potential φ(r) = ∫

φ(r,Q(r′))dr′ due to electron-ion interac-
tions, where Q(r) is the ionic displacement from its equi-
librium position. Here, we do not assign any specific nature
of the displacement. For small displacements, we employ
the expansion φ(r,Q(r′)) ≈ φ0(r) + Q(r′) · ∇r′φ0(r), where
φ0(r) = limQ→0 φ(r), which gives the interaction between the
charge and lattice vibrations

Hep =
∫

Q(r′) · λ(r,r′)n(r)drdr′, (A2)

where the electron-phonon coupling is denoted by λ(r,r′) =
limr′→r ∇r′φ0(r′).

2. Effective action

Given the general nonequilibrium conditions in the system,
e.g., temporal fluctuations and currents, we define the corre-
sponding action on the Keldysh contour [26,45,48,49,86–88]
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according to

S =
∫

(HM +Hep)dt + S0 + SB + SWZWN + Slatt + SE.

(A3)

Here,

SB = − γ

∫
Bext(x) · M(x)dx, (A4)

x = (r,t), describes the Zeeman coupling to the external
magnetic field Bext(x), whereas

SWZWN =
∫∫ 1

0

M(x; τ )

|M(r)|2 · [∂τ M(x; τ ) × ∂tM(x; τ )]dτdx

(A5)

accounts for the Berry phase accumulated by the spin. The free
lattice is represented by, e.g.,

Slatt =
∫ {[

iQ(x) · ∂tQ(x) − Mion

2
{∂tQ(x)}2

]
δ(r − r′)

− Q(x) · Vrr′ · Q(r′,t)
}
dr′dx, (A6)

with the ionic mass Mion and the dyad Vrr′ = ∇r(∇r′V0)
is the ionic contribution to the interatomic force constant,
and where V0 is the ionic potential at equilibrium (vanishing
displacements). Finally, the coupling between the lattice and
the external electric field Eext(x) is given by

SE =
∫

γE(x)Eext(x) · Q(x)dx, (A7)

where γE(x) essentially comprises the displaced charge at x.
We obtain an effective actionSMQ for the coupled magneti-

zation and lattice dynamics through a second-order cumulant
expansion of the partition functionZ[M(x),Q(x)] = Tr TCeiS

and tracing over the electronic degrees of freedom (Tr). The
result can be written

SMQ = − 1

2

∫
{Q(x) · [Tcc(x,x ′) · Q(x ′) + Tcs(x,x ′) · M(x ′)]

+ M(x) · [Tsc(x,x ′) · Q(x ′) + Tss(x,x ′) · M(x ′)]}
× dxdx ′, (A8)

where we have defined the interaction tensor

Tpq(x,x ′) =
∫

�p(r,ρ)Kpq(ρ,ρ ′; t,t)�q(ρ ′,r′)dρdρ ′,

(A9a)

Kpq(ρ,ρ ′; t,t ′) = (−i)〈Tsp(ρ,t)sq(ρ ′,t ′)〉, (A9b)

with the notation �c(r,ρ) = ∇rφc(ρ), and �s(r,ρ) =
−v(r,ρ), for p,q = c,s.

APPENDIX B: EQUATIONS OF MOTION

The time integrals in Eq. (3) run over the (Keldysh) contour,
C, in the complex plane and have to be converted into real-time
integrals. This can be done by the following procedure. The
contour C has one branch above and one below the real
axis, and we therefore label the involved variables M and Q

with superscripts u and l for the upper and lower branches,
respectively. Likewise, we introduce the real-time-ordered
and anti-time-ordered propagators Tt/t̄

pq(x,x ′) for times t, t ′

both on the upper/lower branch and T</>
pq (x,x ′) for t on the

upper/lower branch and t ′ on the lower/upper. Using this
notation we have, for instance,∫

M(x) · Tss(x,x ′) · M(x ′)dxdx ′

=
∫ ∞

−∞
(Mu(x) − Ml(x))

·
(
Tt

ss(x,x ′) T<
ss(x,x ′)

T>
ss(x,x ′) Tt̄

ss(x,x ′)

)
·
(

Mu(x ′)
−Ml(x ′)

)
dxdx ′.

(B1)

Here, the dot (·) between the matrices is retained as a reminder
that each contribution to this expression is composed of a
product of the type M · T · M. Using the unitary rotation

R = 1√
2

(
1 1

−1 1

)
, (B2)

the above expression becomes

1

2

∫
(2Mc(x)Mq(x))

·
(

0 Ta
ss(x,x ′)

Tr
ss(x,x ′) TK

ss(x,x ′)

)
·
(

2Mc(x ′)
Mq(x ′)

)
dxdx ′, (B3)

where we have introduced new (slow/fast) variables Mc ≡
(Mu + Ml)/2 and Mq = Mu − Ml , requiring Mc · Mq = 0,
and the retarded/advanced/Keldysh propagators Tr/a/K

ss with

Kr/a
ss (ρ,ρ ′; t,t ′) = (∓i)θ (±t − ∓t ′)〈[s(ρ,t),s(ρ ′,t ′)]〉,

(B4a)

KK
ss(ρ,ρ ′; t,t ′) = (−i)〈{s(ρ,t),s(ρ ′,t ′)}〉. (B4b)

Here, the brackets, Eq. (B4a), and braces, Eq. (B4b),
refer to commutation and anticommutation, respectively.
Noticing that

∫
Mc(x) · Ta

ss(x,x ′) · Mq(x ′)dxdx ′ = ∫
Mq(x) ·

Tr
ss(x,x ′) · Mc(x ′)dxdx ′, we can write

2
∫

Mq(x) · [
Tr

ss(x,x ′) · Mc(x ′) + 1
4T

K
ss(x,x ′) · Mq(x ′)

]
× dxdx ′. (B5)

In this fashion, we obtain one contribution which is linear,
and one which is quadratic, in the fast variables. For now, we
will omit the quadratic contributions. In Appendix C we will
return to this issue and show how those quadratic contributions
can be related to quantum (spin-spin, lattice-lattice, and spin-
lattice) fluctuations and included in the formalism through
introduction of random variables.

The equations of motion for the magnetization M and
displacement Q are found by variation of the total action S
with respect to fast fluctuations; see, e.g., Ref. [26] for details.
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Requiring ∂t |M(x)|2 = 0, we obtain

Ṁ(x) = M(x) ×
{
−γ Bext(x) +

∫ [
Tr

sc(x,x ′) · Q(x ′)

+Tr
ss(x,x ′) · M(x ′)

]
dx ′

}
, (B6a)

MionQ̈(x) = γE(x)Eext(x) +
∫

Vrr′ · Q(r′,t)dr′

+
∫ [
Tr

cs(x,x ′) · M(x ′) + Tr
cc(x,x ′) · Q(x ′)

]
dx ′,

(B6b)

where the superscript r refers to retarded propagators.

APPENDIX C: QUANTUM FLUCTUATIONS

The expansion of the action on the Keldysh contour leads
to contributions which are quadratic in the superscript q, and
have thus been omitted so far. Here, we shall study the effect of
those contributions by bosonization as accomplished through
the Hubbard-Stratonovich transformation.

Following Ref. [89] we note that, e.g., the contribution

e− i
4

∫
Mq (x)·TK (x,x ′)·Mq (x ′)dxdx ′

=
∫
Dξe

i
4

∫
ξ (x)·TK,−1(x,x ′)·ξ (x ′)dxdx ′

e− i
2

∫
ξ (x)·Mq (x)dx, (C1)

where the measure Dξ = limε→0
∏ √

det εTK,−1/i2πdξ ,
whereas the random fields ξ can be related to the spin
susceptibilityTK through the following procedure. In Eq. (C1),
by TK,−1 we mean the inverse of TK . Assume that there is a
random magnetic field ξ coupled to the magnetization variable
Mq through Hξ = −γξ ξ · Mq . Then, with respect to these
random fields, the partition function can be written

Z[ξ ] = tr ξe
− ∫
Hξ (t)dt ≈ e− 1

2

∫ 〈Hξ (t)Hξ (t ′)〉dtdt ′

= e−γ 2
ξ

∫
Mq (x)·〈ξ (x)ξ (x ′)〉·Mq (x ′)dxdx ′/2.

(C2)

Inspection of the two equations suggests that the random
variables ξ have to satisfy the condition

〈ξ (x)ξ (x ′)〉 = i

2γ 2
ξ

TK (x,x ′). (C3)

Recall thatTK (x,x ′) denotes the Keldysh field defined in terms
of the kernel in Eq. (B4b). We also remark that this relation
is a clear manifestation that the quantum-correlation-induced
noise is not necessarily of white Gaussian nature. It also shows
that the quantum noise strongly depends on the electronic
structure. We can generalize this procedure to the whole action
Sq since we can write (omitting the superscripts q and K)

eiSq = exp

{
− i

4

∫
(MQ) ·

(
Tss Tsc

Tcs Tcc

)
·
(

M
Q

)
dμ(x,x ′)

}
= exp

{
− i

4
aiAij aj

}
, (C4)

i

j

j

i

FIG. 5. Interactions (full lines) between two sites i and j that are
connected (dashed lines) to sites i ′ and j ′ by inversion.

where a1 = M(x) and a2 = Q(x). By means of the Hubbard-
Stratonovich transformation we now obtain

eiSq =
∫
Tφe

i
4

∫
φ(x)A−1(x,x ′)φ(x ′)dμ(x,x ′)e− i

2

∫
φ(x)·a(x)dμ(x).

(C5)

Defining the random variables ξ and ζ such that φ · a =
ξ · M + ζ · Q, we can relate those random variables to the
correlation functions Tpq through

〈φ(x)φT (x ′)〉 = i

2

(
1

γξ

1

γζ

)(
TK

ss(x,x ′) TK
sc(x,x ′)

TK
cs(x,x ′) TK

cc(x,x ′)

)(
1
γξ

1
γζ

)
,

(C6)

where φ(x) = (ξ (x) ζ (x))T .
The contribution to the spin-lattice coupled system can,

thus, be written as

Sq = − 1

2

∫
[γξ ξ · Mq(x) + γζ ζ · Qq(x)]drdt. (C7)

This action, which is due to the fast correlations between the
magnetization and lattice dynamics, adds correlation effects to
the equations of motion for M and Q via the random fields ξ

and ζ . The random fields ξ and ζ relate to the spin-spin, lattice-
lattice, and spin-lattice interactions via their corresponding
correlation function. Those new bosonic degrees of freedom
represent collective modes that are associated with fluctuations
in the magnetic and lattice structure, that is, spin waves
(magnons) and lattice vibrations (phonons).

APPENDIX D: INVERSION SYMMETRY

If inversion ι is a symmetry operation that brings site i to
site i ′ as in Fig. 5, we can focus on the two pair interactions ij

respectively i ′j ′. In order to study these in detail we introduce
the average quantities

Q = Qi + Qj + Qi ′ + Qj ′ = Qii ′ + Qjj ′ ,

q1 = Qi − Qj + Qi ′ − Qj ′ = Qii ′ − Qjj ′ ,

q2 = Qi + Qj − Qi ′ − Qj ′ = qii ′ + qjj ′ ,

q3 = Qi − Qj − Qi ′ + Qj ′ = qii ′ − qjj ′ , (D1)
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and

M = M i + Mj + M i ′ + Mj ′ = M ii ′ + Mjj ′ , m1 = M i − Mj + M i ′ − Mj ′ = M ii ′ − Mjj ′ ,

m2 = M i + Mj − M i ′ − Mj ′ = mii ′ + mjj ′ , m3 = M i − Mj − M i ′ + Mj ′ = mii ′ − mjj ′ , (D2)

that all have well defined parity properties

ι Q = − Qii ′ − Qjj ′ = − Q, ιq1 = − Qii ′ + Qjj ′ = −q1,

ιq2 = −qii ′ + qjj ′ = q2, ιq3 = qii ′ − qjj ′ = q3, (D3)

and

ιM = M ii ′ + Mjj ′ = M, ιm1 = M ii ′ − Mjj ′ = m1,

ιm2 = −mii ′ − mjj ′ = −m2, ιm3 = −mii ′ + mjj ′ = −m3. (D4)

Then since the individual quantities can be obtained by reversing Eqs. (D1) and (D2),

Qi = 1
4 ( Q + q1 + q2 + q3), Qj = 1

4 ( Q − q1 + q2 − q3), Qi ′ = 1
4 ( Q + q1 − q2 − q3), Qj ′ = 1

4 ( Q − q1 − q2 + q3),

(D5)

and

M i = 1
4 (M + m1 + m2 + m3), Mj = 1

4 (M − m1 + m2 − m3),

M i ′ = 1
4 (M + m1 − m2 − m3), Mj ′ = 1

4 (M − m1 − m2 + m3), (D6)

we can rewrite the pair tensors interactions between sites i and j of Eq. (26) as

Iij = Sij ( Qi Mj + Qj M i) +Aij ( Qi Mj − Qj M i) = 1
8Sij { QM + Qm2 − q1m1 − q1m3 + q2 M + q2m2 − q3m1 − q3m3}

+ 1
8Aij {− Qm1 − Qm3 + q1 M + q1m2 − q2m1 − q2m3 + q3 M + q3m2}, (D7)

while the corresponding interactions between i ′ and j ′ become

Ii ′j ′ = Si ′j ′ ( Qi ′ Mj ′ + Qj ′ M i ′) +Ai ′j ′ ( Qi ′ Mj ′ − Qj ′ M i ′)

= 1
8Si ′j ′ { QM − Qm2 − q1m1 + q1m3 − q2 M + q2m2 + q3m1 − q3m3}
+ 1

8Ai ′j ′ {− Qm1 + Qm3 + q1 M − q1m2 + q2m1 − q2m3 − q3 M + q3m2}. (D8)

As

ι{ QM + Qm2 − q1m1 − q1m3 + q2 M + q2m2 − q3m1 − q3m3}
= −{ QM − Qm2 − q1m1 + q1m3 − q2 M + q2m2 + q3m1 − q3m3},

ι{− Qm1 + Qm3 + q1 M − q1m2 + q2m1 − q2m3 − q3 M + q3m2}
= −{− Qm1 + Qm3 + q1 M − q1m2 + q2m1 − q2m3 − q3 M + q3m2}, (D9)

in order to preserve the inversion symmetry, i.e., that ιIij =
Ii ′j ′ , we can identify that both interaction parameters have to
have odd parity,

ιSij = −Si ′j ′ , ιAij = −Ai ′j ′ . (D10)

APPENDIX E: EXAMPLES

We assume a simple two-dimensional electrons gas, for
example, surface states on a metallic surface or an analogous
setup, in which magnetic defects are embedded. We model this
system by the Hamiltonian

H =
∑

k

�
†
kεk�k +

∫
�†(r)V(r)�(r)dr, (E1)

where the spinor �k = (ck↑ ck↓)t annihilates electrons with
energy εk = εkσ

0 at the momentum k and spin σ = ↑,↓,
whereas the scattering potential V(r) = ∑

m Vmδ(r − rm)
defines a collection of defects Vm = Vmσ 0 + Mm · σ .

In this model, the unperturbed Green’s function gk is
defined for the first term and is given in reciprocal and real
space by the expressions

gk(ω) = σ 0

ω − εk + iδ
, g(r,ω) = − i

N0

2
H

(1)
0 (κr)σ 0, (E2)

where κ2 = 2N0ω and N0 = me/h̄
2, whereas H (1)

m is the
Hankel function of the first kind and order m, and me is
the effective electron mass. In this way we have defined
gk(ω) = g0(k,ω)σ 0 while g1(k,ω) ≡ 0.
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(a)

(b)

xmxm-1

xm+1

a

a
xm=ma
q=π/4a

Fm

F(x)

FIG. 6. Two possible realizations of the collinear, or sinusoidal,
density wave. (a) Double-antiferromagnetic structure where pairs
of ferromagnetic spins are antiferromagnetically configured which
leads to a dimerization of the ions. (b) Gradual variation of the
local moment in a globally antiferromagnetic configuration leads to
a gradual variation of the force [blue (bold)] between the ions with
halved period to that of the lattice.

We calculate the dressed Green’s function G in terms of the
T -matrix expansion of the impurity potential, that is,

G(k,k′) = δ(k − k′)gk +
∑
mn

gke
−ik·rmT(Rmn)eik′ ·rngk′ , (E3)

where Rmn = rm − rn, whereas the T matrix is given by

T(Rmn) = Vm(t−1)mn, (E4a)

tmn = δmnσ
0 + g(Rmn)Vn. (E4b)

Here, since the scattering potential is partitioned into a non-
magnetic and a magnetic component, we can write T(Rmn) =
T0(Rmn)σ 0 + T1(Rmn) · σ .

For sufficiently large separation between the scattering
impurities, the T matrix reduces to

T(Rmn) = δ(Rmn)
[
V−1

m − g(r = 0)
]−1

= δ(Rmn)[t0(rm)σ 0 + t1(rm) · σ ]−1, (E5a)

t0(rm) = Vm + i
(
V 2

m − |Mm|2)N0/2

1 − (
V 2

m − |Mm|2)(N0/2)2 + iVmN0
, (E5b)

t1(rm) = Mm

1 − (
V 2

m − |Mm|2)(N0/2)2 + iVmN0
, (E5c)

where the lowercase notation has been used to stress the
assumed simplification.

The expansion of the T matrix into charge and magnetic
components further allows us to write the corrections δg0 and
δg1 to the Green’s function as, in general,

δg0(k,k′) = g0(k)
∑
mn

e−ik·rmT0(Rmn)eik′ ·rng0(k′), (E6a)

δg1(k,k′) = g0(k)
∑
mn

e−ik·rmT1(Rmn)eik′ ·rng0(k′), (E6b)

which leads to the corresponding real-space expressions

δg0(r,r′) =
∑
mn

g0(r − rm)T0(Rmn)g0(rn − r′), (E7a)

δg1(r,r′) =
∑
mn

g0(r − rm)T1(Rmn)g0(rn − r′). (E7b)

The subscript notation Apq where p = 0,1 (q = 0,1) refers to
even or odd time-reversal symmetry (parity), and we note that

G00 = g0 + δg0, G01 = 0, (E8a)

G10 = δg1, G11 = 0. (E8b)

It can be noticed that the nonmagnetic component G00 is
merely renormalized by the presence of the magnetic defects;
however, since there is no fundamental change introduced
by the correction δg0 we shall omit this contribution in the
discussions below, for simplicity. The components with q = 1
vanish due to the absence of, for instance, spin-orbit coupling
in the system. The effect of the defects is, however, to break
the translation invariance in the system, something which has
a profound influence on certain magnetic configurations as we
shall see next.

1. Double antiferromagnetic

Assume that the magnetic moments are positioned along
a linear chain in the x̂ direction according to Mm ≡ M(xm),
where rm = xmx̂ is the coordinate of the magnetic moment
Mm and xm+1 − xm = a. Analogously, we let Qm ≡ Q(xm).
We also assume the double-antiferromagnetic structure of
the magnetic moments, illustrated in Fig. 6(a). We wish
to calculate the net force exerted on the moment Mm by
the nearest neighbor moments Mm±1. The procedure is to
evaluate the derivative F(xm) = −(∂/∂Qm)〈HMQ〉, given the
Hamiltonian

HMQ = −1

2

∑
mn

(
Mm · T ss

mn · Mn + Mm · T sc
mn · Qn+Qm · T cs

mn · Mn + Qm · T cc
mn · Qn

)
, (E9)

which gives

F(xm) = 1

2

∑
n

(
Mn · T sc

nm + T cs
mn · Mn + Qn · T cc

nm + T cc
mn · Qn

)
. (E10)

In the following we shall omit the forces by the lattice-lattice coupling since we are mainly interested in the forces induced
between the spin and lattice subsystems. Our interest is concerned with effects that may arise from the spin-lattice couplings
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{T sc} and {T cs}. According to the theoretical framework developed in the main text, we find that we can write these interaction
fields in the nonrelativistic limit as

T sc
nm = − 4

π
v(xn)

[
Im

∫
f (ω)G00(xn,xm)G10(xm,xn)dω

]
λ(xm), (E11a)

T cs
mn = − 4

π
λ(xm)

[
Im

∫
f (ω)G10(xm,xn)G00(xn,xm)dω

]
v(xn). (E11b)

Using the results for the Green’s functions derived above, we obtain, for instance,

G10(xm,xn)G00(xn,xm) = δg1(xm,xn)g0(xnm) =
∑
μν

g0(xmμ)T1(xμν)g0(xνn)g0(xnm), (E12)

where xmn = xm,n = xm − xn.
For a simple estimate of the net force we go to the limit of large separation between the defects. Then, the correction

δg1(x,x ′) = ∑
mn g0(x − xm)t1(xmn)g0(xn − x ′). We also notice that t1(xm) ∼ Mm and that g0(−r) = g0(r). Considering the

effects from the nearest neighbors, we then obtain

G10(xm,xm±1) =
∑

s=−1,0,1

g0(xm,m+s)t1(xm+s)g0(xm+s,m±1) ∼ g0(a){g0(0)[Mm,m±1 + Mm] + g0(2a)Mm,m∓1}, (E13)

where a is the lattice constant (|xm − xm±1| = a). We also notice that G10(xm,xm±1) = G10(xm±1,xm) and since G00(xm,xn) =
G00(xn,xm), it is clear that T sc

m±1,m = (T cs
m,m±1)T . Then, summarizing the force on the mth ion exerted by its two surrounding

nearest neighbors, assuming that v(xm) = v, for all m, under the condition that, for instance, Mm−1 = Mm = −Mm+1, we obtain∑
s=±1

T cs
m,m+s · Mm+s ∼ − 2vλ(xm)|Mm|2Im

∫
f (ω)g2

0(a)[g0(0) − g0(2a)]dω. (E14)

Hence, the finiteness of the force on ion m exerted by the nearest neighbors is determined by the real-space electronic structure
between the ions since g0(0) − g0(2a) ∼ H

(1)
0 (0) − H

(1)
0 (2κa) �= 0, unless a = 0. It is therefore clear that there is a net force

acting on ion m. The sign of the net force depends on the distance between the ions which means that the dimerization of the
ions can lead to either ferromagnetic or antiferromagnetic pairs, details that are beyond the scope of the present context.

2. Sinusoidal spin density wave

Next, we consider planar collinear, or sinusoidal, spin density waves. Therefore, we assume that the magnetic moments are
positioned along a linear chain according to Mm ≡ M(xm) = M0ẑ cos qxm, where xm is the coordinate of the magnetic moment
Mm, as is illustrated in Fig. 6(b). Following the procedure introduced previously, we obtain the product

G10(xm,xn)G00(xn,xm) = δg1(xm,xn)g0(xnm) =
∑
μν

g0(xmμ)T1(xμν)g0(xνn)g0(xnm), (E15)

where xmn = xm,n = xm − xn. Again, we go to the limit of large separation between the defects, which leads to that we can write

G10(xm,xm±1) =
∑

s=−1,0,1

g0(xm,m+s)t1(xm+s)g0(xm+s,m±1) ∼ M0g0(a){g0(0)[cos qxm±1 + cos qxm] + g0(2a) cos qxm∓1}ẑ.

(E16)

Then, summarizing the force on the mth ion exerted by its two surrounding nearest neighbors, assuming that v(xm±1) = v, we
obtain∑

s=±1

T(cs)
mm+s · mm+s ∼ M2

0 vλ(xm)Im
∫

f (ω)g2
0(a)({g0(0)[cos qxm−1 + cos qxm] + g0(2a) cos qxm+1} cos qxm−1

+ {g0(0)[cos qxm+1 + cos qxm] + g0(2a) cos qxm−1} cos qxm+1)dω

= M2
0 vλ(xm)Im

∫
f (ω)g2

0(a)(g0(0){cos2 qxm−1 + cos qxm[cos qxm−1 + cos qxm+1] + cos2 qxm+1}

+ 2g0(2a) cos qxm−1 cos qxm+1)dω. (E17)

Letting x = xm such that we can write xm±1 = x ± a, the trigonometric expression in the term proportional to g0(0) can be
rewritten as

1 + cos qa + (cos qa + cos 2qa) cos 2qx, (E18)
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whereas the corresponding expression in the term proportional to 2g0(2a) as
1
2 (cos 2qx + cos 2qa). (E19)

With these equalities, we can write the force as proportional to

M2
0 vλ(x)Im

∫
f (ω)g2

0(a)(g0(0)[1 + cos qa] + g0(2a) cos 2qa + {g0(0)[cos qa + cos 2qa] + g0(2a)} cos 2qx)dω. (E20)

Here, taking q = π/4a, see Fig. 6(b), this expression reduces to
√

2

2
M2

0 vλ(x)Im
∫

f (ω)g2
0(0)

{
(1 +

√
2)g0(0) + [g0(0) +

√
2g0(2a)] cos

πx

2a

}
dω. (E21)

The spatial variation of the resulting forces has a period which is half that of the lattice.
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