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First-principles-based thermodynamic modeling of cubic α and β phases of Mn represent a challenge due to
their structural complexity and the necessity of simultaneous treatment of several types of disorder (electronic,
magnetic, and vibrational) that have very different characteristic time scales. Here we employ mean-field
theoretical models to describe the different types of disorder and then we connect each layer of theory to the
others using the adiabatic principle of separating faster and slower degrees of freedom. The slowest (vibrational)
degrees of freedom are treated using the Moruzzi, Janak, and Schwarz formalism [Phys. Rev. B 37, 790 (1988)] of
the Debye-Grüneisen model parametrized based on the first-principles calculated equation of state which includes
the free-energy contributions due to the fast (electronic and magnetic) degrees of freedom via the Fermi-Dirac
distribution function and a mean-field theory of transverse spin fluctuations. The magnetic contribution due to
transverse spin fluctuations has been computed self-consistently within the disordered local moment picture of the
paramagnetic state. The obtained results for thermodynamic properties such as lattice parameter, linear thermal
expansion coefficient, and heat capacity of both phases show a good agreement with available experimental
data. We also tested the assumption about the nature (localized versus delocalized) of magnetic moment on
site IV in α-Mn and site I in β-Mn on the thermodynamic properties of these two phases. Similar to the
findings of experimental studies, we conclude that magnetic moment on site IV in α-Mn is not of a localized
character. However, a similar analysis suggests that the magnetic moment of site I in β-Mn should be treated as
localized.
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I. INTRODUCTION

Because of its practical and theoretical importance, ele-
mental manganese has been the subject of many studies. The
first of four allotropic forms of manganese, α-Mn is stable
from 0 to 1000 K and is believed to be the most complex
of all elements considering its magnetic and atomic structure.
Below the Néel temperature of 97 K, α-Mn forms a long-range
antiferromagnetic (AFM) order. In the paramagnetic state
ranging from 100 to 1000 K, α-Mn has a complex cubic
structure with 58 atoms per body-centered unit cell with
four inequivalent sites. As will be discussed thoroughly in
Sec. II A, neutron diffraction data [1–4] suggest a noncollinear
antiferromagnetic structure below 97 K. Below the Néel
temperature, a tetragonal distortion appears and the symmetry
of crystal structure becomes lower due to magnetoelastic
effect [4]. The distorted tetragonal unit cell still contains
58 Mn atoms, but instead of four there are six magnetically
inequivalent sites though the number of crystallographically
inequivalent sites remains the same. It is worth mentioning
that magnetoelastic effect has been observed in other elements
and compounds [5]. For example, it occurs upon quenching
of γ -Mn, a high-temperature face-centered-cubic phase, that
also undergoes an antiferromagnetic ordering.

Manganese is in the middle of the 3d transition metal
series and has a half-filled electron shell. One might expect
that such an electronic configuration causes various crystal
structure instabilities. However, experimentally we know that
α-Mn phase is stable in a wide temperature range. One
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reason for the structural stability of α-Mn could be that
Mn atoms with different magnetic moments in the unit cell
behave like atoms having different sizes [6]. In this way,
a self-intermetallic compound is formed where elemental
Mn actually forms an intermetallic compound of Mn atoms
with different electronic configurations [7]. Using Laguerre
tessellation and by constructing different atomic environments
for inequivalent Mn sites, as will be discussed in Sec. III,
we effectively take into account the fact that the electronic
structure of Mn atoms occupying one inequivalent site should
be different from that of Mn at another inequivalent site of the
same crystal structure.

At temperatures above 1000 K, α-Mn transforms into
another phase of Mn called β-Mn. This phase is a complex
cubic crystal structure, with 20 atoms per cell. The β phase can
also be quenched down to very low temperatures. The magnetic
properties of β-Mn at low temperatures seem to be quite
unusual. As we discuss in the Sec. II B, there is evidence for
large spin fluctuations on site II at very low temperatures and
that site I is probably nonmagnetic. We will then address the
effect of nonzero magnetic moment at site I on thermodynamic
properties of the β phase. Theoretically and experimentally, it
has been confirmed that no magnetic order appears in β-Mn
down to 1.4 K. Several authors conjectured that this behavior
is a result of the geometric frustration of Mn on the site II
which forms a three-dimensional triangular lattice.

There are a number of theoretical studies addressing the
structural and magnetic properties of α- and β-Mn [6,8–12].
Nevertheless, the thermodynamic properties of paramagnetic
α- and β-Mn have not been subject to extensive research.
In both cases, we are dealing with a paramagnetic state
at elevated temperatures. Treating paramagnetic disorder in
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FIG. 1. Analysis of crystal structure of α-Mn. (a) Cubic representation of α-Mn. MnI atoms, located at center and corners of the cell,
denoted by purple color and MnII, MnIII, and MnIV atoms by dark blue, light blue, and red colors, respectively. (b) Tetrahedra around MnI
composed of MnII atoms (For details please see the text). (c) Solid color is Friauf polyhedron made of MnIV atoms around MnI. Wireframe
structure is a truncated tetrahedron of MnIV atoms. (d) First NN shell around MnI. (e) Second NN shell around MnI made of MnIII atoms.
Coordination shells around (f) MnII, (g) MnIII, and (h) MnIV.

complex structures such as α- and β-Mn is a formidable task
due to the rather large number of atoms in the respective
unit cells. One has to also include other types of thermal
disorder (electronic, vibrational) in the first-principles-based
simulations in order to compute the thermodynamic properties.

The bridge between the macroscopic properties and mi-
croscopic properties is the partition function. To calculate the
Helmholtz free energy, the partition function must be sampled
with respect to possible degrees of freedom. It is a highly
multidimensional phase-space that must be sampled in the case
of complex structures. Considering the purpose of such a task,
which includes obtaining statistically averaged quantities in
the thermodynamic limit, direct sampling such phase-spaces
with the accuracy required for thermodynamic modeling is
not feasible, so one must find alternative approaches. In such
cases, suitable approximations and models can be quite useful.
Following this line of reasoning, in this work we employ
adiabatic approximation to study thermodynamic properties
of α- and β-Mn at elevated temperatures. Similar approach
has been employed to study finite temperature properties of
high-entropy alloys [13,14].

In particular, we address the problem of computing the ther-
modynamic properties of α- and β-Mn from first-principles
based models of the Helmholtz free energy. A partitioning
approach [15] was employed to calculate the free energy. In
this scheme, different contributions (vibrational, magnetic and
electronic) are separated following the rationale of adiabatic
approximation and using a suitable mean field theory each
contribution is calculated. Once the free energy is known,
thermodynamic properties such as the thermal expansion
coefficient and the heat capacity of two paramagnetic phases of

Mn in their respective temperature ranges of thermodynamic
stability will be calculated.

The present paper is organized as follows. In Sec. II the
crystalline and magnetic structure of α- and β-Mn will be
briefly reviewed. Section III describes our modeling approach
to these systems. In Sec. IV, the results of calculations are be
presented and analyzed.

II. MAGNETIC AND CRYSTAL STRUCTURE

A. α-Mn

The crystal structure of α-Mn is body-centred cubic (BCC),
space group T 3

d − I43̄m, with 29 atoms in the primitive cell
(58 atoms per unit cell). These 58 Mn atoms occupy four
crystallographic inequivalent sites. Type I sites (MnI) are
located at the center and every corner of the unit cell (2 sites per
cell). Eight type II atoms form two differently sized tetrahedra
around site I; see Fig. 1(b). An edge of the smaller tetrahedron
measures to 0.518a, where a is the lattice parameter of the
cubic unit cell, and an edge of the bigger tetrahedron equals
to 0.897a. The nearest-neighbor (NN) shell of site I consists
of 12 atoms of type IV forming a polyhedron that is shown in
yellow color in Fig. 1(c). The remaining 12 MnIV atoms form
a truncated tetrahedron around the central MnI site; an edge of
the truncated tetrahedron is 0.8896a, shown as red wire-frame
object in Fig. 1(c). The angle between the edges of the bigger
and the smaller MnIV truncated tetrahedra is 90◦ and they are
intertwined. The complete coordination shell of a MnI atom
consists of the first neighbor shell of 12 MnIV atoms and
the second neighbor shell of 4 MnII atoms that together form
a Friauf polyhedron with the coordination number (CN) 16;

073803-2



THERMODYNAMIC PROPERTIES OF PARAMAGNETIC . . . PHYSICAL REVIEW MATERIALS 1, 073803 (2017)

TABLE I. Crystallographic information and magnetic moments on inequivalent sites in α-Mn.

MnI MnII MnIII MnIV

Number of atoms 2 8 24 (8+16) 24 (8+16)
Coordination Number(CN) 16 16 13 12
Atomic radii ratio 1.21 1.11 1.10 1.00
Volume ratio 1.75 1.42 1.31 1.00
NN distance 0.309a 0.289a 0.263a 0.252a

Type of NN MnIV MnIII MnIV MnIV
Magnetic moment (μB )—Experiments
Ref. [2], CL-AFMa 2.50(1.54)b 2.50(1.54)b 1.70(3.08)b 0.0(0.0)b

Ref. [3], CL-AFM 1.4 1.02 0.82 0.10
Ref. [4], CL-AFM 1.36 1.32 0.99 0.22
Ref. [4], NCL-AFMc 1.90 1.78 0.50(0.55)d 0.25(0.38)d

Ref. [7], NCL-AFM 2.83 1.83 0.76(0.48)d 0.60(0.66)d

Magnetic moment (μB )—Calculations
Ref. [9], LMTO, CL-AFM 2.67 2.29 −0.59 0.52
Ref. [6], PAW, NCL-AFM 2.79 −2.22 1.00(−1.00)d 0
Ref. [6], LMTO, NCL-AFM 3.26 −2.69 1.11(−1.10)d −0.06(0.07)d

Ref. [10], ASW, CL-AFM 1.79 ±1.43 −0.40 −0.17
This work, EMTO, DLM 2.13(2.15)e 1.42(1.44)e 0.59(0.61)e 0.00(0.27)e

aCollinear (CL) model of antiferromagnetic (AFM) state.
bAccording to two different models for magnetic form factor, cf. Sec. II A.
cNoncollinear (NCL) model of AFM state.
dIn NCL-AFM state, MnIII and MnIV split into two inequivalent sites.
eAveraged value assuming the magnetic moment on MnIV is quenched (allowed).

see Fig. 1(d). The next NN shell around MnI consists of
24 MnIII atoms and has a truncated cube shape with an
edge of 0.717a; it may also be viewed as eight equilateral
triangles and their connections; see Fig. 1(e). The coordination
polyhedron around MnII is also a Friauf polyhedron with
CN=16, composed of 1 MnI, 6 MnIII, and 9 MnIV type atoms;
see Fig. 1(f). The coordination polyhedron around MnIII is
composed of 6 MnIII, 5 MnIV, and 2 MnII atoms (CN=13);
see Fig. 1(g). The coordination polyhedron around MnIV is an
icosahedron (CN=12) composed of 1 MnI, 3 MnII, 5 MnIII,
and 3 MnIV, as can be seen in Fig. 1(h). Experimentally,
the low- and high-temperature crystal structures of α-Mn
have been studied extensively [2,7,16]. There is a consensus
among different experiments about the x,y,z parameters of the
different atomic positions in the structure. We have adopted
the structural parameters reported Ref. [16]. All the lengths
reported above correspond to that set of values for internal
coordinates.

The low-temperature magnetic structure of α-Mn has been
the subject of debate. It is now accepted that α-Mn has
a noncollinear antiferromagnetic structure below the Néel
temperature TN of 97 K. In spite of the unanimous agreement
on the crystal and magnetic structure of the antiferromagnetic
α-Mn phase, there are still ambiguities regarding the values of
magnetic moments to be assigned to every site. The difficulty
arises from the fact that different form factors lead to different
magnetic moments. Shull and Wilkinson [1] were the first
to study the antiferromagnetic structure of low-temperature
α-Mn. For the high-temperature paramagnetic phase, they
suggested that straightforward interpretation of the cross
section data of neutron diffraction would lead to an average
moment of 0.5 μB for each atom. However, they argued that a
more realistic interpretation of results is to consider magnetic

moments of 1.0 μB for 40% of atoms and and no moments for
the remaining 60%.

In another neutron diffraction study, Kasper and Roberts
[2] showed that each crystallographically inequivalent site has
a different magnetic moment. Using two collinear magnetic
models, they obtained two sets of magnetic moments that
are shown in Table I. Using neutron diffraction method,
Oberteuffer et al. [3] obtained magnetic moments for several
temperatures that are also listed in Table I, assuming a collinear
magnetic structure. The results of Kasper and Roberts and
those of Oberteuffer et al. agree on the magnitude of moments.
Using single crystals of α-Mn grown by the distillation
method, Kunitomi et al. [4] studied the structural and magnetic
properties of α-Mn by means of neutron diffraction. Based on
collinear and noncollinear models, several sets of magnetic
moments for different sites have been reported. A general
trend for magnetic moments of different sites, |μI | > |μII | >

|μIII | > |μIV |, obtained in previous neutron diffraction stud-
ies, was also confirmed in their study. Comparing the various
form factors, they concluded that a better agreement can be
obtained if one assumes a noncollinear magnetic structure.

A different characterization method could shed more light
on the magnetic structure. X-ray photo-emission spectra (XPS)
measurement of paramagnetic α-Mn by McFreely et al.
[18] provided new perspective about the nature of magnetic
structure of the high-temperature α-Mn. Their results show that
a localized moment of 2.5 μB exist on each site. It was noted in
their study that this large magnetic moment, which contradicts
the results of neutron scattering measurements, could be
related to the correlation time that each of the two techniques
can capture. XPS measurements can capture correlation time
of 10−15 and longer, while neutron diffraction measurements
can detect correlation time of 10−12. So, the smaller moments
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on sites MnIII and MnIV can be related to faster fluctuations
on these two sites. The magnetic susceptibility measurements
of Nagasawa and Uchinami [19] yielded an effective moment
of 2.5 μB , which is comparable to that obtained by McFreely
et al. [18].

Sliwko et al. [10] employed the augmented-spherical-wave
(ASW) method to study α- and β-Mn based on the local-
spin-density approximation (LSDA) for the exchange and
correlation functional. For α-Mn, they assumed a collinear
antiferromagnetic structure. In their model, the moments of
two MnI sites are assumed to be antiparallel to each other.
The four MnII atoms around a MnI site are assumed to
form an antiferromagnetic configuration (two up and two
down), while the 12 MnIV neighbors of each MnI site are
assumed to be all coupled parallel to each other and antiparallel
to the central MnI site. An objection has been raised by
Hobbs et al. [6] that such a magnetic structure contradicts the
experimental results of Kunitomi et al. [4] as well as the group
theoretical analysis of the magnetic structure [20]. In their
study, Sliwko et al. used the experimental lattice parameter
in the calculations of magnetic structure and properties. It has
been pointed out that there is a direct correlation between
the nearest-neighbor distance (and coordination number) of
an atom and its magnetic moment, which can also be seen
from Table I. MnI has the longest NN distance, the highest
coordination number, and the largest magnetic moment, while
MnIV has the smallest NN distance, the lowest coordination
number, and a vanishing magnetic moment.

The linear muffin-tin orbital (LMTO) method combined
with the generalized gradient approximation (GGA) for the
exchange-correlation functional has been used by Asada [9]
to study the antiferromagnetic and paramagnetic states of
α- and β-Mn. Asada calculated the equilibrium volume by
minimizing the total energy with respect to lattice parameter. A
collinear magnetic structure was assumed in the calculations.
He reported that a magnetic structure in which the magnetic
moment on MnIII is coupled antiparallel to the other three
sites had a lower total energy than the paramagnetic state. As
pointed out by Hobbs et al. [6], this magnetic structure is in
clear contrast to experimental results. Since the equilibrium
volume is overestimated in the study by Asada, the reported
values of magnetic moments for the theoretical equilibrium
volume are rather high. However, using experimental volume,
lower values were reported for magnetic moments and they
were closer to experimental data.

Hobbs et al. [6] comprehensively studied the noncollinear
and collinear antiferromagnetic structures of α-Mn using the
LMTO and the projector augmented wave (PAW) methods.
They showed that the triangular network of MnIV atoms in
the α-Mn causes a magnetic frustration and drives the system
to develop a non-collinear magnetic structure. The results of
Ref. [6] concerning the crystal and magnetic structure agree
well with experimental data. In that study, it was further
suggested that MnIII and MnIV could even be divided into
three rather than two subgroups, causing the magnetic structure
to have a lower symmetry than assumed before. Such lowering
of magnetic symmetry may cause stronger deviation from the
cubic symmetry, as discussed in Ref. [6]. However, it has been
argued that the experimentally reported tetragonality of the
low-temperature structure is small (c/a = 0.99955), so that

the theoretically obtained additional lowering of the symmetry
is on the border of accuracy of the calculations and a firm
conclusion cannot be drawn.

B. β-Mn

Crystallographically, β-Mn is a complex simple cubic
A13-type structure with 20 atoms in the unit cell, space
group P 4132, with two inequivalent Mn sites: MnI in the
8(c) Wyckoff positions and MnII in the 12(d) positions. Like
α-Mn, most substances with this symmetry are compounds or
alloys. The coordination polyhedron around MnI is a distorted
icosahedron consisting of 3 MnI and 9 MnII atoms that can
be seen in Fig. 2(b). There are four type of distances in the
first NN shell around MnI; a MnI-MnI distance of 0.374a

(a is the lattice parameter of the cubic phase) and three
MnI-MnII distances, 0.408a, 0.417a and 0.424a. MnII is
coordinated by 14 atoms which form a Friauf polyhedron
consisting of 6 MnI and 8 MnII atoms; see Fig. 2(c). The
distances between the 6 MnI and MnII atoms were mentioned
above and the distances between the surrounding 8 MnII atoms
and the central MnII atom fall into three categories, 0.41899a,
0.42317a, and 0.51793a.

O’Keefe and Anderson [17] fascinatingly described the
crystal structure of β-Mn as a body-centered cubic “rod
packing” structure in which the rods are infinite and made of
strings of atoms that can metaphorically be considered as rods.
In their view, a rod consists of two MnI-3MnII tetrahedra and a
metaprism of 6 MnII atoms being sandwiched between the two
tetrahedra. A picture of such unit string is shown in Fig. 2(d),
lower panel. These rods can be equivalently envisaged as a
sequence of two metaprisms connecting back-to-back with
each other. One metaprism is built by 6 MnII and 1 MnI in the
center and the other one is the previously mentioned metaprism
of 6 MnII (see Fig. 2(d), upper panel). These rods form a
compact body-centered cubic structure that is schematically
shown in Fig. 2(e). O’Keefe and Anderson [17] figured out the
ideal crystal structure for β-Mn based on purely geometrical
considerations. They argued that if the side of an equilateral
face of the 6 MnII metaprism becomes equal to its other
edges, which are also the edges of another crossing metaprism,
then we will have as many equal MnII-MnII distances as
possible in the structure. This ideal structure corresponds to
a symmetry parameter y = 9−√

33
16 = 0.20346. An interesting

observation is that the y value reported by Shoemaker et al.
[21] is 0.2022 and the one reported by Preston [22] is 0.206.
The former predicts a shorter side for MnII metaprism and
the latter a shorter side for the metaprism. It seems rational
to believe that the ideal y value must be the one anticipated
by O’Keefe and Anderson. Assuming the ideal y value for
the structure, the number of different NN distances around an
MnII relative to the surrounding 8 MnII reduces from 3 to 2.
For the internal parameter x, assuming the six short distances
between MnI-MnII to be equal, we get x = 1

9+√
33

= 0.0678.
This value is comparable to the values reported by Shoemaker
et al. [21] (0.0636) and by Preston [22] or Kasper and Roberts
[2] (0.061). In our study, we have adopted the internal structural
parameters from Shoemaker et al. [21]. Therefore, all of
the distances mentioned above correspond to their set of x

and y values.
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FIG. 2. Analysis of crystal structure of β-Mn. (a) Crystal structure of β-Mn, MnI is denoted by purple and MnII by dark blue. Coordination
polyhedra around (b) MnI and (c) MnII. (d) Units of atomic strings in rod packing scheme composed of a metaprism and a tetrahedron lower
figure and two metaprism upper figure. (e) Rod packing scheme of O’Keefe and Anderson [17] represented using the metaprism introduced in
(d). (f) Three-dimensional corner-sharing triangular network made of MnII atoms.

The magnetic structure of β-Mn is closely related to its pe-
culiar crystal structure. Experimentally it is known that at high
temperatures β-Mn is paramagnetic [19,23] and, surprisingly,
it remains paramagnetic down to temperatures as low as 1.4 K
[24], where the β phase can be obtained by quenching. A large
electronic specific heat and the existence of a sizable moment
on MnII site are indicative of strong magnetic fluctuations at
very low temperatures which may be related to a “quantum spin
liquid” state. The effect of geometrical frustration on magnetic
properties of low-dimensional lattices such as the Kagomé
lattice has been the subject of comprehensive research. This
concept has been extended to three-dimensional lattices like
fcc lattice and the corner-sharing tetrahedral lattice [25]. The
pyrochlore structure is one example where frustration due
to the corner-sharing tetrahedra can be found. A frustrated
lattice lacks any form of magnetic order down to very low
temperatures. For β-Mn as a three-dimensional structure, there
is no corner-sharing tetrahedral structure. However, one can
modify the concept of corner-sharing triangles, i.e., Kagomé
lattice, to explain the magnetic properties of β-Mn. If we
consider only MnII atoms in the lattice, we observe that there is
a corner-sharing three-dimensional Kagomé like lattice where
the dihehral angle between two adjacent triangles is cos−1(1/3)
[see Fig. 2(f). Canals and Lacroix [26] studied the possibility
of magnetic ordering in such a network using a mean field
classical Heisenberg model. They showed that such a model
predicts no order at any temperature on this lattice.

Kasper and Roberts [2] tried to experimentally analyze the
magnetic structure of β-Mn using neutron diffraction at 4.2 K.
They observed no coherent magnetic scattering and, therefore,

could not assign any magnetic moment to any crystallographic
site in the structure. Nakamura et al. [24] used nuclear
magnetic resonance (NMR) technique and polarized neutron
scattering to thoroughly investigate the magnetic structure and
thermodynamic properties of β-Mn alloyed with Al as well
as of pure β-Mn. Their results indicate that the MnII atoms
possess a sizable paramagnetic moment, while the MnI atoms
are either nonmagnetic or have very small magnetic moments.
They also reported that, upon alloying β-Mn with Al, Al atoms
preferentially occupy MnII sites and cause the formation of
local moments on MnII. This way, the frustration is released
and causes a transformation from the paramagnetic state to a
spin-glass state.

ASW calculations of β-Mn by Sliwko et al. [10] predicted
a nonmagnetic ground state for the experimental volume. For
expanded volume by 3%, a ferrimagnetic state was predicted
with moments of 0.15μB on MnI and −0.57μB on MnII.
Asada [9] calculated the magnetic structure of β-Mn using the
LMTO method. Three magnetic structures were considered:
nonmagnetic, ferrimagnetic, and nearly least-frustrated (NLF)
antiferromagnetic. For the NLF setup, the moments on MnI
were parallel, but the moments on MnII were forced to form
a configuration to make the frustration “least” possible. At the
experimental volume, calculations for NLF-AF structure gave
almost nonmagnetic MnI and a moment of ∼2μB on MnII.
At the expanded theoretical lattice parameter of 6.366 Å, a
moment of 0.2μB for MnI and a moment of 2.38μB for MnII
have been predicted.

Hafner and Hobbs [8] extended their study of α-Mn to
other allotropes of Mn, including β-Mn. In their study, first-
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TABLE II. Crystallographic and magnetic moment data for
β-Mn. All the magnetic moments have been computed at the
theoretical equilibrium volume.

MnI MnII

Number of atoms 8 12
Coordination number 12 14
Atomic radii ratio 1.00 1.13
Volume ratio 1.00 1.43
NN distance 0.374a 0.408a

Type of NN MnI MnI
Magnetic Moment (μB )—Calculations
Ref. [9], LMTO, AFMa 0.337 1.435
Ref. [9], LMTO, NLFb 0.090 2.423
Ref. [8], PAW, FIMc −0.143 0.410
This work, EMTO, DLM 0.75(0.0)d 2.25(2.03)d

aAntiferromagnetic (AFM) structure.
bNearly least frustration (NLF) magnetic structure, cf. Sec. II B.
cFerrimagnetic (FIM) structure.
dAveraged value assuming magnetic moment is allowed (quenched)
on site MnI.

principles spin-density calculations have been performed using
the PAW and LMTO methods where the crystalline, magnetic,
and electronic structure of β-Mn were optimized without any
symmetry constraint and allowing for nonmagnetic, collinear,
and noncollinear magnetic configurations. They reported that
nonmagnetic and ferrimagnetic (with small moments on
MnII) states are similar in energy for volumes lower than
11.8 Å3/atom. At expanded volumes, similar to the findings
of Sliwko et al., a ferrimagnetic state with large moments
on MnII and small but nonnegligible moments on MnI has
been observed. A summary of calculated magnetic moments
for the β phase is provided in Table II. Hobbs and Hafner
[8] suggested that the observed persistence of the magnetic
moment on MnII over a wide range of volumes could imply a
high degree of frustration of magnetic interactions, a situation
quite similar to the behavior of MnIV in α-Mn. Predicted fer-
rimagnetic state is in contrast with commonly shared opinion
that the antiferromagnetic interactions between MnII atoms
are stronger than any possible magnetic interaction between
MnI and MnII. Repeated predictions of ferrimagnetic state in
different studies are indicative of a strong antiferomagnetic
interaction between MnI and MnII, which is not surprising
considering the NN distances of MnII (see Table II).

III. METHODOLOGY

The present electronic structure calculations are based on
density functional theory [27] and employ the exact muffin tin
orbitals (EMTO) formalism [28–30]. The coherent potential
approximation (CPA) [31] has been exploited to treat magnetic
disorder where the paramagnetic state is modeled using the
disordered local (magnetic) moment (DLM) approach [32,33].
The electronic structure of the DLM state is represented by that
of a disordered alloy consisting of atomic species with spin-
up (↑) and spin-down(↓) orientations of magnetic moments,
distributed randomly over the sites of the underlying lattice.

The total energies were calculated using GGA [34,35]
within the full charge density (FCD) formalism [30,36]. Self-
consistent EMTO-CPA calculations were performed using an
orbital momentum cutoff lmax = 3 for partial waves. Integra-
tion over the Brillouin zone was performed using 7 × 7 × 7 k-
point girds generated according to the Monkhorst-Pack scheme
[37]. As mentioned in Sec. II, due to the difference in atomic
coordination of each site, α-Mn forms a self-intermetallic
compound. A similar argument holds for β-Mn. Therefore, the
fact that Mn atoms on inequivalent sites have different atomic
volume, and consequently different electronic structure, must
be fully accounted in the calculations.

It is known that total energy calculations for site-centered
electronic structure methods require computing three dimen-
sional integrals over Voronoi polyhedra [38]. In EMTO for-
malism, a site centered method, a Voronoi tessellation is also
required in order to construct the potentials for self-consistent
calculations in the spherical cell approximation. After self-
consistent calculations, the total energies are computed using
FCD technique. In FCD calculations, integrals are evaluated
inside Voronoi polyhedron of each atom which is to consider
the effect of anisotropy of charge and potential. Furthermore,
there is a one-to-one correspondence between atomic volumes
determined through Voronoi tessellation (VT) and magnetic
moments. Since the magnetic contribution to the free en-
ergy is directly proportional to magnetic moments, correct
temperature dependence of magnetic moments yields more
accurate results. In regular VT, the volume that corresponds to
each atom depends on geometry and can be considered as an
output rather than an input parameter. However, there are other
tessellation methods that can take into account and control the
difference in atomic radii in the crystal.

Laguerre tessellation is one of them and we have imple-
mented in the EMTO code the Laguerre tessellation technique
using Voro++ code developed by C. Rycroft [39,40]. To
start the calculation, relative atomic radii must be specified
for the atoms occupying the different sites. The atomic radii
have been calculated by overlapping atomic Hartree potentials
and locating the the maximum point on the bond between
neighboring atoms, i.e., the point where to atomic Hartree
potentials intersect. Having obtained the ratio of these radii,
Lauguerre tessellation can be carried out. The relative atomic
radii and corresponding atomic volumes obtained as a result
are given in Tables I and II.

Thermodynamics of materials in first-principle-based
schemes can be described by means of the Helmholtz free
energy calculated as a function of volume and temperature
(i.e., canonical ensemble). To calculate the Helmholtz free
energy, F = −kBT ln(Z), the partition function Z must be
known for all relevant degrees of freedom, i.e., electronic,
magnetic, and vibrational. For a disordered magnetic system
at elevated temperature, the phase-space to be considered is
intractably huge. Therefore, some approach other than direct
sampling must be considered to deal with such a system.
One fact that can considerably simplifies the problem is that
not all degrees of freedom have the same dynamic. In other
words, there are faster and slower degrees of freedom. Our
approach similar to previous studies [13–15] is to separate
fast and slow degrees of freedom and treat them adiabatically.
This so called coarse-graining of free energies can be done
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for the system under study by equilibrating the atoms first
with respect to the faster degrees of freedom (electronic and
magnetic); see Refs. [41,42] for a comprehensive introduction
to coarse-graining of free energy. The so obtained partial
free energy is then used as a potential energy to describe
lattice vibrations (the slower degrees of freedom). Anharmonic
effects beyond the expansion of lattice, which play important
role near to melting point [43,44], is not explicitly considered
in this study. It is also noteworthy that electronic and magnetic
contributions calculated in this work correspond to static lattice
approximation, it has been shown that there is a significant
influence of considering explicit vibrations in the case of Fe
[45,46]. The procedure of calculating each contribution to the
free energy is explained below.

The electronic free-energy contribution is considered
through the introduction of the Fermi-Dirac distribution func-
tion in the electronic structure and total energy calculations
[47]. The Fermi-Dirac distribution introduces a smearing of
the density of states near the Fermi level. In ab initio Green’s-
function-based methods such as EMTO, the Fermi-Dirac
distribution is introduced into all the contour integrals over
complex energy, with additional computations of residues at a
number of complex energy points corresponding to Matsubara
frequencies (poles of the Fermi function) [48]. The electronic
entropy, Sel is evaluated using an additional contour integral,

Sel = kB

∫
(n(z){f (z) ln[f (z)]

+ [1 − f (z)] ln[1 − f (z)]})dz, (1)

where kB is the Boltzmann constant, n(z) is the electron density
of states at complex energy z, and f is the Fermi-Dirac
distribution function. The above integral is self-consistently
evaluated on a contour which starts from below the bottom of
the valence band on the real energy axis and extends to a cutoff
energy well above the Fermi level.

The magnetic free-energy contributions are evaluated in
this work within the mean-field approximation based on
the entropy expression accounting for the transverse spin
fluctuations [49] in a paramagnetic lattice gas,

Smag = kB

∑
i

Ni ln(μi + 1). (2)

Here μi is the magnitude of local magnetic moment an atom
at site i in the DLM state treated using EMTO-CPA and Ni

is multiplicity (the number of type i positions in the primitive
cell). The magnetic moments are calculated self-consistently
as to minimize the partial Helmholtz free energy [50],

Fel,mag(T ,V ) = E(T ,V ) − T (Smag(T ,V ) + Sel(T ,V )). (3)

In the linear response treatment the minimization can be
achieved by adding a rigid shift to the one electron potentials
for the spin-up ↑ and spin-down ↓ electrons (in the local spin
coordinate framework on every atom),

�U
↑,↓
i = ± kBT

μi + 1
, (4)

to enhance or induce the magnetic moment.
Vibrational contribution to the free energy is calculated

using Debye-Grüneisen model (DGM) following closely the

formalism of Moruzzi, Janak, and Schwarz (MJS) [51].
According to the adiabatic approximation, DGM is the next
step based on the obtained partial free energy, Eq. (3). The
relation that is used to compute the Debye temperature is

�D = 41.63

[
rwsB

M

]1/2

, (5)

where �D is Debye temperature, rws is Wigner-Seitz radius, B
is bulk modulus, and M is the atomic weight. The coefficient
41.63 in above equation follows from the argument proposed
in MJS approach that an experimental relation can be used
to relate the sound velocity to the bulk modulus in cubic
nonmagnetic metals. However, in contrast to MJS’s approach,
we circumvent the use of Grüneisen parameter. Instead, Eq. (5)
is evaluated for each volume. The total Helmholtz free energy
of the system can be expressed as the sum of partial free energy
contributions,

F (V,T ) = Fel,mag(V,T ) + ED(V,T ) − T SD(V,T ). (6)

Here ED and SD are the energy and entropy expressions in the
Debye model. The final expression for the free energy is

F (V,T ) = Fel,mag(V,T ) − kBT [D(�D/T )

− 3 ln(1 − e−�D/T )] + 9

8
kB�D, (7)

where D(x) is the Debye function and the last term corresponds
to zero-point energy.

IV. RESULTS AND DISCUSSION

The DLM picture of paramagnetic state can be considered
a good approximation for paramagnetic phase when there
is evidence for presence of local moments. Experimental
data on magnetic susceptibility may indicate the presence
of local moments or spin fluctuations. As mentioned in
Sec. II A, Nagasawa and Uchimani measured the magnetic
susceptibility of pure α-Mn as well as dilute α-MnV, α-MnCr,
α-MnFe, and α-MnCo alloys. An interesting observation in
their experiment is that there exists a susceptibility maximum
somewhere above the Néel temperature. For example, for
pure α-Mn the susceptibility maximum occurs at 165 K and
varies systematically with alloying. Above the maximum, the
susceptibility exhibits a Cure-Weiss behavior. One explanation
to this phenomenon was suggested by Misawa [52] who related
the anomalous susceptibility maximum to the logarithmic
term in Fermi liquid theory. With regards to the evidence for
temperature-induced magnetic moments or spin fluctuations
in α-Mn, nuclear magnetic resonance (NMR) measurements
[53] of Knight shift clearly indicated the existence of local
moments on sites I, II, and III. As discussed in Sec. II, there is
no consensus about the nature and magnitude of the magnetic
moment on site IV. This issue will be addressed in Sec. IV.

Regarding β-Mn phase, there are two sets of experimental
data available on high-temperature magnetic susceptibility
[23,54]. These datasets disagree with each other on the
temperature dependence of susceptibility: Ref. [54] reports a
temperature independent behavior, while the data of Ref. [23]
suggest a temperature dependent behavior. Sliwko et al. [10]
stated that in this system because of the shape of density of
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FIG. 3. Variation of magnetic moments as a function of temper-
ature on the four inequivalent sites in α-Mn and the two sites in
β-Mn. For α-Mn lines with (without) symbols show the results of
calculations when magnetic excitation on MnIV is switched off (on)
and for β-Mn when the magnetic excitation on MnI is switched on
(off).

states n(ε) and its derivatives at the Fermi level εf , n′(εf ) <

0,n′′(εf ) → 0, the magnetic susceptibility (Pauli paramagnetic
contribution) χ (T ) should rise with increasing temperature.
At elevated temperatures, Curie-Weiss behavior could be
expected if local moments or spin fluctuation are present. So,
there could be a competition between the effect mentioned
above to increase the susceptibility and the 1/T Curie-law-
type behavior (local moment or spin fluctuations paramag-
netism) to decrease χ . It is therefore logical to conclude that χ

could be weakly temperature dependent or even temperature
independent depending on which contribution plays a more
significant role. It is mentioned above that the experimental
results of Nagasawa [19] show a temperature independent
trend. In contrast, another set of experimental data [23] confirm
the prediction of calculations that there is a slight increase in χ

with the increase of temperature. To resolve this disagreement
for existence of a local moment, low temperature experimental
data could be helpful. Measurements by Nakamura et al. [24]
give rather sizable moments on site II at temperatures as low as
1.4 K (see Sec. II B for more details). So, it seems reasonable to
believe that at elevated temperatures, the magnetic moment on
MnII is well developed, i.e., is well localized, and its magnitude
is larger than 1.4 K.

Figure 3 shows the variation of magnetic moments for
the inequivalent sites in α- and β-Mn with temperature. The
general trend for all moments is to grow with temperature.
This type of behavior, corresponding to temperature-induced
or temperature-enhanced magnetic moments (also referred to
as spin fluctuations) has been the subject of extensive research
(for a detailed explanation, the reader is referred to the book by
Mohn [59]). In the fluctuating spin picture of finite temperature
moments, a typical trend is the reduction of magnetic moment
due to spin fluctuations below Curie-Néel temperature, and
the increase of the averaged paramagnetic moments above the

transition temperature. For this reason, it seems plausible to
compare the values of the magnetic moments (averaged over
the temperature intervals for the two Mn phases in Fig. 3) with
the available literature data on low temperature moments. This
comparison is made in Tables I and II.

Another point to realize from Fig. 3 is the relationship
between the NN distance and the magnitude of magnetic
moment for the different crystallographic sites in both α- and
β-Mn. To check the debated nature of magnetic moment of
MnIV in α-Mn, we switched off magnetic excitations in the
self-consistent treatment, Eqs. (2)–(4), of magnetic moment on
this site as a localized moment and recalculated the electronic
structure and properties. (This treatment causes the magnetic
moment of MnIV to vanish.) A very interesting fact is that
although MnIV constitutes 75% of the coordination shell
around MnI, 56% around MnII, and 38% around MnIII (see
Table I), switching on or off the magnetic moment on this site
does not have a significant effect on the magnitude of magnetic
moments of the other sites. This observation can be compared
to previous ASW calculations [10] where it was concluded that
magnetic moment on site IV is induced by the moments on
other sites (in Sec. II A we noted that the coordination polyhe-
dron of site IV is an icosahedron made up by 1 MnI, 3 Mn II, 5
Mn III, and 3 MnIV). In contrast, switching off the debatable
magnetic moment of MnI atoms in β-Mn, which constitute of
about 43% of the coordination polyhedron around a MnII, has
a more pronounced effect on the magnetic moment of MnII, as
can be seen in Fig. 3. Switching off the paramagnetic moment
on MnI causes a shrinking of the lattice constant, Fig. 4(b),
which in turn reduces the paramagnetic moment on MnII.
As will discussed in the following paragraphs, the treatment
of magnetic moment of MnI has a greater effect on the heat
capacity and thermal expansion of β-Mn. In Fig. 3 we can
see that MnII possesses a rather large magnetic moment and
despite this, it remains to be paramagnetic. Model calculations
perhaps can shed more light on this question.

The lattice parameter is plotted as a function of temperature
in Fig. 4(a) for α-Mn and in Fig. 4(b) for β-Mn. Along
with the calculated results, available experimental data for
the lattice parameter are plotted. The background of these
Figures shows contour plots of Helmholtz free energy as a
function of temperature and lattice parameter. Figure 4(a) also
shows that switching off the paramagnetic moment on MnIV
in α-Mn has a visible effect on the lattice parameter only at
very high temperatures. Even at those temperatures, the effect
is small. The calculations systematically underestimate the
lattice parameter, by about 2.8% at 100 K in comparison with
experimental data by Lawson et al. [7] and by ∼3.14% at
1000 K in comparison with experimental data of Ref. [56].
Since the temperature variation of the lattice parameter turns
out to be nonlinear, in Fig. 4(a) we also show a nonlinear
fit to the experimental data obtained in the thermodynamic
modeling of Mn by Qiu and van der Zwaag [57] (green line).
The comparison of our results with the curve confirms that the
present calculations systematically underestimate the lattice
parameter in the considered temperature range.

Let us now consider the effect of switching on and off
the paramagnetic moment of MnI on the thermal expansion
of β-Mn. One can see from Fig. 4(b) that the lattice
parameter of β-Mn is also systematically underestimated by
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the present calculations in the considered temperature range.
The deviation from experimental data of Ref. [58] is 3.37% at
1000 K and increases to 4.19% at 1350 K. Contrary to the α-Mn
case where the deviation is almost constant over the whole
considered temperature range, for β-Mn the error increases
with the increase of temperature which means that the linear
thermal expansion coefficient (TEC) is underestimated. When
the paramagnetic moment on site I is switched off, the error in
lattice parameter further increases to ∼4% at 1000 K and
∼5% at 1350 K. The TEC extracted from a linear fit to
data of Ref. [58], a(T ) = 6.2777 + 3.1826 × 10−4T (Å), is
48.6 × 10−6 K−1 while the present calculations with (without)
the magnetic moment on site I yield 24.0 × 10−6 K−1 (9.0 ×
10−6 K−1). These results imply that the entropy contribution
due to the paramagnetic moment of MnI is important for
describing the thermal expansion of β-Mn. Consequently,
from a thermodynamic consideration, we conclude that there
is a possibility for the existence of a paramagnetic moment
on site I in β-Mn at elevated temperatures. This is in line
with a recent neutron scattering study of β-Mn1−xCox alloy by
Stewart and Cywinski [60] which gives experimental evidence
for the existence of such a moment on site I.

The calculated bulk modulus from the electronic partial free
energy of α-Mn at 300 K is 192.9 GPa that is appreciably larger
than an experimentally obtained value of 158 GPa (at ambient
conditions) reported by Ref. [63]. Hobbs et al. [6] reported a
calculated value of 188 GPa for the antiferromagnetic structure
and about 260 GPa for a nonmagnetic setup. Sliwko et al.
[10] reported a bulk modulus of 139 GPa for a collinear
antiferromagnetic structure at the experimental volume, which
shows that there is a considerable scatter even among similar
theoretical treatments. For 1000 K, we get a bulk modulus
value of 121 GPa which is by 44% lower than the value at
100 K. The rather strong softening effect of temperature on
the bulk modulus can be schematically seen in Fig. 4(a) where
the curvature of free energy around the equilibrium volume,

which is proportional to the bulk modulus, gets shallower
as the temperature increases. The softness of elemental Mn
is rather well-known, but the cause to this softness is not
well understood. Obviously, the magneto-volume effect plays
a crucial role in this case, but quantifying this effect from
first-principles remains to be a challenge.

The calculated bulk modulus from the electronic partial
free energy of β-Mn at 1000 K is as high as 247 GPa, while
it is 208 GPa at 1350 K, which is a 15.9% reduction. Similar
values of bulk modulus corresponding to 0 K were reported
by Hobbs and Hafner [8], 269 GPa for the ferrimagnetic and
300 GPa for the nonmagnetic state. These bulk modulus values
are exceptionally high and comparable to those reached in 4d
or 5d metals. A high value of the bulk modulus of β-Mn can
be anticipated from Fig. 4(b) where it corresponds to a rather
strong curvature of the Helmholtz free energy (and a moderate
decrease in the curvature with temperature).

The calculated heat capacity, Cp, and its decomposition to
various contributions, is plotted as a function of temperature
in Fig. 5(a). We compare our results with the compilation of
experiments by Desai [61] where the available experimental
data for heat capacity of Mn have been critically assessed and
a set of most reliable and consistent data was recommended.
With respect to the recommended values by Desai [61], our
calculations slightly underestimate the heat capacity of α-Mn
below 300 K and overestimate it above that temperature. The
maximum difference with Desai’s data is at 1000 K where the
deviation is about 8.97% (18.50%) for the magnetic moment
on site IV treated as switched off (on). The treatment of
magnetic moment on site IV did not have a significant effect
on the lattice parameter and magnetic moments of Mn atoms
occupying the other sites. However, switching on the magnetic
moment of MnIV causes a considerable overestimation of Cp.
On the basis of thermodynamic consideration, we suggest that
site IV could carry a paramagnetic moment. This suggestion
is in agreement with experimental data on the Knight shift

073803-9



HOSSEIN EHTESHAMI AND PAVEL A. KORZHAVYI PHYSICAL REVIEW MATERIALS 1, 073803 (2017)

100 250 400 550 700 850 1000 1150 1300

10

20

30

40

α−Mn β−Mn

Temperature (K)

C
p 

(J
 m

ol
−1

 K
−1

)

Ref. [61]
Vib+El+Mag
Vib+El
Vib
Vib+El+Mag

200 400 600 800 1000

0

1

2

3

4

5

Temperature (K)

α 
(×

 1
05  K

−1
)

Ref.[62]
Ref.[57]
MnIV−off
MnIV−on

(a) (b)

FIG. 5. (a) Heat capacity Cp as a function of temperature for α- and β-Mn. Black solid line with 	 markers represents critically assessed
experimental data compiled by Desai, Ref. [61]. For α-Mn, solid lines with ◦ markers correspond to heat capacity contributions evaluated with
the magnetic moment of MnIV switched off and the dashed line represents the total heat capacity calculated with the magnetic moment on
MnIV switched on. For β-Mn, the solid lines with ◦ markers show the results obtained with the magnetic moment MnI switched on and the
dashed line represents the total heat capacity calculated with the MnI switched off. (b) Linear thermal expansion coefficient of α-Mn as function
of temperature. Experimental points are from Ref. [62], the black line is from thermodynamic modeling Ref. [57]. The meaning of labels for
the solid and dashed blue lines is the same as in Fig. 4(a) for α-Mn.

for paramagnetic α-Mn by Nagasawa and Murayama [53,64].
They found that the Knight shift is the greatest for sites I
and II, while for site III it is small and for site IV the shift
is nearly zero. This experimental result is consistent with the
trend observed in Figs. 3 and 5(a).

One can see from Fig. 5(a) that the balance of different
contributions to Cp of α-Mn is rather temperature dependent.
Around 1000 K, where the different contributions should have
their greatest magnitude, lattice vibrations contribute 81%
while magnetic and electronic excitations together contribute
18% to the Cp. Unlike the case of α-Mn, the calculated Cp of
β-Mn is underestimated in comparison to Desai’s data in whole
temperature range. Excluding the magnetic moment on site I
leads to further underestimation of the Cp. Lattice vibrations
account for 78% of Cp while the electronic and magnetic
excitations contribute the remaining 22%, on average.

The calculated TEC, α = d ln(a)/dT , for α phase is plotted
as a function of temperature in Fig. 5(b). To calculate TEC,
we fitted the calculated lattice parameter data shown in
Fig. 4(a) with a second-order polynomial. We also tried fitting
other functions to calculate TEC, the lower and intermediate
temperatures appear to be independent of type of fitting
function but at high temperatures, the TEC is very sensitive
to the choice of fitting function. The reason for choosing the
second-order polynomial was that it is the best representation
of the calculated data of the lattice parameter. In comparison
with the experimental data of Ref. [62], we have overestimated
the thermal expansion. For instance at 287 K, the thermal
expansion is overestimated by 15%. It is known that below
the Néel temperature 97 K, there is a negative TEC and above
it, the TEC becomes positive [65]. So, the highly nonlinear
behavior of experimental points observed in Fig. 5(b) around
100 K is due to the second-order magnetic phase transition.
Unfortunately, the available experimental data are concerned

with low/intermediate temperatures and there is a lack of data
for TEC of α-Mn at high temperatures. From the available
experimental information, it is difficult to speculate about the
behavior of TEC at high temperatures. Therefore, from the
calculated lattice parameter and its difference to experiment,
we can expect that the present form of TEC should not be very
different from the experimentally observed one.

At 100 K, lattice vibrations contribute 73.5% to TEC and at
1000 K the lattice contribution increases to 85.2% according to
the present calculations. On the other hand, the magnetic and
electronic contributions to TEC are substantial: they amount to
26.5% of TEC at 100 K and 14.8% of it at 1000 K. It is expected
that lattice vibrations give the main contribution to TEC.
Furthermore, the effect of vibrational disorder becomes the
dominant one at high temperatures, and this is a reason that any
thermodynamic model should include it. Above we discussed
the effect of switching on and off the magnetic excitations
of MnI on TEC of β-Mn. The vibrational contribution to
TEC of β-phase is about 68.6% and is rather independent
of temperature. Together electronic and magnetic degrees of
freedom contribute 31.4% to the lattice expansion, a more
substantial contribution than in the case of α-Mn.

V. CONCLUSION

The thermodynamic properties of α- and β-Mn have
been computed using first-principles modeling of free energy.
To study paramagnetic state at elevated temperatures, one
must solve the computationally expensive problem of treating
thermal, magnetic, and electronic disorders simultaneously.
Using adiabatic approximation, we derived thermodynamic
properties of these phases in the paramagnetic state. In this
approximation, faster degrees of freedom, i.e., electronic and
magnetic, are equilibrated and thereafter slower degree of
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freedom, i.e., vibrational. The modeling approach used in
this study is computationally much more efficient than direct
sampling methods, and, from the formalism point of view, is
more straightforward. To treat electronic disorder, the Fermi-
Dirac distribution is introduced in the electronic structure cal-
culations. To treat magnetic disorder, a mean-field expression
for the transverse spin fluctuations in a paramagnetic lattice
gas has been used. To treat vibrational disorder the Debye-
Grüneisen model (DGM) has been employed. We closely
follow the Moruzzi, Janak, and Schwarz (MJS) formalism to
set up parameters of DGM from partial free energies. In this
way, we adiabatically connect different degrees of freedom.
Considering the discussion about the nature of paramagnetic
moments of site IV of α-Mn and site I of β-Mn, we show,
based on thermodynamic arguments, why the former should
be zero and the latter nonzero. The present results for the
lattice parameter, thermal expansion coefficient, and heat
capacity are in good agreement with available experimental
data.
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