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Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such
as quantum emitters and quantum computation. The advancement of these technologies requires a rational design
of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of
defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle
defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve
critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the
accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various
defects in monolayer hexagonal boron nitride (h-BN) for their charge transition levels, stable spin states, and
optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most
promising defect candidate for scalable quantum bit and emitter applications.
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Two-dimensional (2D) materials such as graphene, hexago-
nal boron nitride (h-BN), and transition-metal dichalcogenides
exhibit a wide range of remarkable properties at atomic-scale
layer thicknesses, holding promise for both conventional
and new optoelectronic functionalities at drastically reduced
dimensions [1–5]. It is well established that point defects play
a central role in the properties of bulk three-dimensional (3D)
semiconductors but their corresponding role in 2D materials
is not yet well understood. In particular, the weak screening
environment surrounding the defect charge distribution and the
strong confinement of wave functions due to the atomic-scale
thickness could lead to vastly different behaviors compared to
conventional semiconductors.

Defects in 2D materials such as h-BN show promise
as polarized and ultrabright single-photon emitters at room
temperature [6,7], with potentially better scalability [8,9] than
the long-studied nitrogen-vacancy center (NV) in diamond
[10–12] for emerging applications in nanophotonics and quan-
tum information [13]. Progress beyond the initial experimental
demonstration of promising properties requires the rational
design and development of quantum defects in 2D materials
that exhibit a high emission rate, long coherence time, single
photon purity, and stability. Specifically, the promising defects
should have the following properties: Defect levels should
be deep (far from the band edges) to avoid resonance with
the bulk band edges and thereby exhibit a long coherence
time [6,14,15]; optically addressable spin conserving excita-
tions facilitate exploiting spin-selective decays in high-spin
defect states, similar to the NV center in diamond [16–18];
anisotropic polarization of the defect states in combination
with quantum bits could provide a pathway to quantum optical
computation. A recent work [18] performed density functional
theory (DFT) and constraint DFT calculations to obtain the
Huang-Rhys factor and photoluminescence spectrum for mul-
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tiple neutral defects in h-BN, while the possibility of forming
charged defects has not been examined. Most importantly,
a higher level of theory beyond DFT is necessary to obtain
accurate defect charge transition levels, which has not been
carried out for charged defects in 2D materials due to several
technical difficulties that will be resolved here.

In this Rapid Communication, we use first-principles
methods to theoretically investigate the suitability of several
complex defects in monolayer h-BN for quantum bit and
emitter applications. We choose n-type defects which are
closely related to common intrinsic and extrinsic defects in BN
and can potentially create several occupied defect levels in the
band gap and high spin states. For each candidate defect, we
examine the charge transition level (CTL) which determines
the stability ranges of various charge states of each defect. For
each stable charge state, we evaluate spin states and optical
excitations along different polarization directions. With these
calculations, we will show CBVN (a nitrogen vacancy adjacent
to boron substituted by carbon, as shown in Fig. 1) to be the
most promising defect in 2D h-BN, analogous to the NV center
in 3D diamond, which has a stable triplet ground state and a
bright anisotropic optical transition between defect levels.

However, calculating the properties such as CTLs and
optical excitations of charged defects in 2D materials present
serious challenges for state-of-the-art first-principles methods,
which have so far limited the accuracy of previous calcula-
tions. We start this Rapid Communication by outlining these
challenges and then discuss our methodology to address them.

The formation energy of a defect in charge state q, ionic
coordinates R, and electron chemical potential εF (often set to
the valence band maximum for insulators or semiconductors)
is given by [19]

Ef
q (R)[εF ] = Eq(R) − Epst +

∑
i

μi�Ni + qεF . (1)

Here, Eq(R) is the total energy of the system with the charged
defect, and Epst is the total energy of the pristine system.

2475-9953/2017/1(7)/071001(6) 071001-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevMaterials.1.071001


RAPID COMMUNICATIONS

WU, GALATAS, SUNDARARAMAN, ROCCA, AND PING PHYSICAL REVIEW MATERIALS 1, 071001(R) (2017)

FIG. 1. Left: CBVN defect energy levels in monolayer BN
with spin up (up arrow) and spin down (down arrow) channels,
respectively. The black solid arrows represent occupied states and
open arrows represent unoccupied states. The red arrow represents the
bright transition between two defect states. Right: The wave functions
for the two defect states (“A” and “B”) that have the bright optical
transition. “Perpendicular” and “Along” are two orthogonal directions
in the plane; only the “Along” direction has the bright transition.

The third term on the right-hand side accounts for the change
�Ni in the number of atoms of element i between these two
configurations, with μi being the atomic chemical potential
of that element in its stable form. The thermodynamic charge
transition level (CTL) is the value of the electron chemical
potential at which the stable charge state of the defect changes
from q to q + 1, which corresponds to equal formation
energies of the q and q + 1 states, and is therefore given by

εq+1|q = Ef
q (Rq) − E

f

q+1(Rq+1), (2)

where Rq are the ionic coordinates of the charge state q.
We note that the defect ionization energies associated with
thermodynamic CTLs include the vertical excitation energy
between two charge states and a geometry relaxation energy
at the final charge state [19]. The vertical excitation energy
is related to the optical CTLs, which can be directly obtained
from quasiparticle band structures. In this Rapid Communica-
tion, we denote the thermodynamic charge transition level as
“CTL,” unless specified.

Within density functional theory (DFT), CTLs can be
determined by calculating the formation energies in Eq. (2) in
their respective equilibrium geometries, but this introduces two
problems. First, DFT calculations of defects employ periodic
boundary conditions on a supercell; the formation energies
of charged defects converge very slowly with supercell sizes
due to periodic charge interactions, and this is even more
problematic for 2D materials. Second, the well-known band
gap problem and self-interaction errors within standard DFT
methods introduce significant errors in calculated CTLs, even
if the supercell convergence issue could be dealt with.

The second issue above can be effectively solved by
combining DFT with the many-body perturbation theory GW
method [20–23]. This involves rewriting the CTL calculation
as [23–25]

εq+1|q = Ef
q (Rq) − E

f

q+1(Rq)︸ ︷︷ ︸
EQP

+E
f

q+1(Rq) − E
f

q+1(Rq+1)︸ ︷︷ ︸
Erlx

,

(3)

by adding and subtracting E
f

q+1(Rq) [we note that the results
are insensitive to the choice of path for defects in monolayer

BN, as discussed in the Supplemental Material (SM) [26]].
The second pair of terms on the right-hand side of Eq. (3)
is the structural relaxation energy Erlx at the charge state q,
which can be calculated with reasonable accuracy at the DFT
level (provided we solve the periodic charge interaction issue).
The first pair of terms in Eq. (3) is the quasiparticle (QP)
excitation energy EQP at the fixed geometry Rq , which can
be calculated accurately using the GW method [20,27,28].
However, GW calculations of quasiparticle energies in 2D
materials exhibit serious convergence difficulties [29–31] that
make the calculations of charged defects that require large
supercells extremely challenging.

At this stage, Eq. (3) provides accurate CTLs in principle,
provided we can address the periodic charge interaction issue
in the formation energies of charged defects at the DFT level,
and resolve convergence issues for GW calculations of 2D
materials. Below, we discuss each of these two issues and our
methodology to overcome them.

First, the basic problem in charged defect formation
energy calculations in DFT is the spurious interaction of the
charged defect with its periodic images and with the uniform
compensating background charge (necessary to make the total
energy finite). For 3D systems, correction schemes [32–35]
by removing the spurious periodic interaction from the DFT
results using a model charge distribution for the defect and a
model dielectric response for the bulk material work reliably
well, because the self-energies of a model charge distribution
both with periodic boundary conditions and without, i.e., the
isolated case can be computed easily [32].

However, for 2D materials, the dielectric screening is
strongly anisotropic and localized to one atomic layer; cor-
rection schemes now require a spatially dependent anisotropic
dielectric function, whose spatial profile is not unambiguously
defined. Most importantly, the calculation of the isolated
charge self-energy for the correction has so far relied on
extrapolating periodic calculations in various supercell sizes
[36], an approach we find here to be problematic due to
its strong nonlinear dependence on the supercell sizes [as
shown in Fig. 2(a)]. This nonlinearity comes from both the
highly anisotropic screening in monolayer 2D materials and
the spatial distribution of the bound charge in the dielectric
surrounding the model charge, which is even more important
for the charged defects of MoS2 [37], which has a larger
in-plane dielectric constant than h-BN.

We recently developed a robust scheme for calculating the
formation energies of charged defects in bulk and interfaces
[38], that (a) redefines DFT electrostatic potentials to avoid
strong oscillations near the atom centers, improving supercell
convergence with geometry optimization, (b) unambiguously
defines a spatial dielectric profile ε−1(z) = −∂�V (z)

E0∂z
as the

change in the now-smooth total potential �V (z) upon applying
a normal electric field E0, and, importantly, (c) it also com-
pletely avoids the problematic extrapolation between supercell
sizes [36] (or convergence issues in image charge methods
[33]) by using a spectral expansion in cylindrical Bessel
functions for the isolated electrostatic energy. Here, we extend
all aspects of that approach to handle the anisotropic dielectric
response in 2D materials (see SM [26]), including an exact
calculation of the isolated electrostatic self-energy. Figure 2(a)
shows that the conventional extrapolation techniques line up to
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FIG. 2. Electrostatic self-energies of a model charge in a 2D
slab with the periodic boundary condition (black dots) and the
isolated boundary condition (black line). Dashed red, blue, and green
lines are fitting curves to the periodic electrostatic self-energies
with a different order of polynomials. (b) Formation energies of
CB (+1) defect at different supercell sizes L (where a = 2.50 Å is
the lattice constant of h-BN). With conventional periodic Coulomb
interactions (red squares), the cell size scales with Lz = Lx , while
with truncated Coulomb potentials (blue diamonds), Lz is constant
with a 15-bohr vacuum. With our correction scheme (black dots),
results are converged to within 10 meV in a 6 × 6 a2 cell. The
extrapolated result (blue triangle) includes a correction based on the
fitted results from (a).

this result, but only when those fits are done to a high enough
order (e.g., fifth order).

Figure 2(b) shows that our charge correction scheme (black
dots) converges the CB (+1) charged defect formation energy
within 10 meV in a 6 × 6 supercell, with a converged value
of −0.59 eV. The formation energy without the correction
and with an isotropic supercell extrapolation by a third-order
polynomial (red line) gives a similar result with Ref. [36],
but fails to account for the nonlinearity of the periodic model
charge self-energy with the supercell sizes. The difference
between our method (black dots) and this extrapolated result
(red line) in Fig. 2(b) is 0.12 eV, which lines up exactly with
the difference between third- and fifth-order extrapolations in
Fig. 2(a). We therefore expect that previous predictions of
the charged defect formation energies in 2D materials could
routinely contain inaccuracies of this magnitude, or even larger
for 2D materials with a higher in-plane dielectric constant.

The second major issue is the extremely slow numerical
convergence of the GW method for 2D materials, in part
because of the rapid spatial variation in screening along
the vacuum direction [29,39]. These issues have produced
large discrepancies in the literature even for the properties of
pristine 2D materials [29,31]. As an example, converging GW
calculations of pristine monolayer MoS2 require at least 6000
bands, 25 Å vacuum spacing, and a 24 × 24 × 1k-point grid
for Brillouin zone integration [29]. Adopting such parameters
for large supercell calculations containing defects would make
them impractical.

The slow convergence with respect to the number of bands
can be overcome by using a recent implementation of the GW

0 20 40 60 80 100
Vacuum thickness (Bohr)

5

6

7

8

9

G
W

 B
an

d 
G

ap
 (e

V
)

Coulomb trunc
No Coulomb trunc

6 8 10 12
Lx (a)

-2.1

-2

-1.9

-1.8

-1.7

-1.6

G
W

 C
or

re
ct

io
n 

to
 V

B
M

 (e
V

)

With Coulomb trunc
-1.51-A/x^2
-1.48-A(B/x-ln(B/x+1))

(a) (b)

FIG. 3. (a) Coulomb truncation substantially improves conver-
gence of the GW band gap of h-BN with respect to vacuum spacing
(with a 3 × 3 a2 lateral supercell size). (b) GW correction to the
valence band maximum (VBM) extrapolates reliably with a lateral
supercell size. The black dots are the computed values with Coulomb
truncation and the dotted blue and dashed green lines are extrapolated
values with two different formulas.

method that does not explicitly require any empty states as
implemented in the WEST code [20,21,28,40–42], based on
density functional perturbation theory [43] and the projective
dielectric eigenpotential (PDEP) algorithm [44,45].

For 2D materials, the remaining convergence issues arise
from the long-range nature of the dielectric matrix and GW
self-energy (in contrast to DFT), which have not been solved
by current implementations. Here, the polarization of repeated
images in the direction perpendicular to the plane spuriously
screens the Coulomb interaction and lowers the QP gap [29].
These image interactions can be avoided in the correlation part
of the self-energies by using a truncated Coulomb potential,

v̄(k) = 4π

k2

(
1 − e−kxyLz/2 cos

kzLz

2

)
, (4)

expressed here in reciprocal space [46]. In Eq. (4) we have
k = q + G, where q is a wave vector in the first Brillouin
zone and G denotes the reciprocal lattice vectors. Figure 3(a)
shows that this truncation results in excellent convergence
with vacuum spacing for the GW QP gap of monolayer BN
[specifically, we performed G0W0 calculations in which the
self-energy is approximated from DFT states with the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [47]].
At 30 bohrs (16 Å), the QP gap is converged within 10 meV,
while the conventional treatment results in a smaller gap, as
discussed above, which does not converge even at 100 bohrs.

When G = 0 and qz = 0, the potential in Eq. (4) diverges
as 2πLz/qxy for qxy → 0 and the inverse dielectric matrix
has a “dip” feature in this limit [29]. Accordingly, around the
� point, a fine q mesh is required to compute absolute QP
energies [31]. Explicit q-mesh convergence is not practical
for large supercell calculations with defects. Instead, since
discarding the qxy = 0 component introduces an error propor-
tional to L−2, we extrapolate quasiparticle corrections to the
L → ∞ limit from three supercell sizes (L2 = 6 × 6, 9 × 9,
12 × 12 a2). Figure 3(b) shows that this extrapolation works
very well, with a deviation within 0.03 eV with respect to more
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FIG. 4. Charge transition levels of various defects in h-BN
computed by DFT (left panel) and GW (right panel) methods. Solid
lines indicate the thermodynamic charge transition levels [Eq. (1) for
DFT, Eq. (3) for GW], while dashed lines indicate the optical charge
transition levels. We note that the optical CTLs are obtained from
the eigenvalues at the DFT and GW levels of theory, respectively, at
a fixed geometry. The Fermi level εF is set to the VBM of pristine
h-BN. All defects have (+1/0) and (0/ − 1) CTLs inside the band
gap, except CB, which only has (+1/0).

sophisticated models for the q → 0 contribution [31] (see
Ref. [48]). The QP correction for the 12 × 12 a2 is converged
within 0.1 eV compared to the extrapolated value.

We implemented the DFT charge correction scheme dis-
cussed above in JDFTX [49] and the method to treat 2D
materials in GW calculations in WEST [42]. Optimized geom-
etry and DFT eigenvalues and wave functions are obtained
using QUANTUM ESPRESSO [50]. (See SM [26] for further
computational details.)

Having eliminated all the roadblocks in calculating the
CTLs of 2D materials, we now predict the properties of
the simple [CB (carbon substitution of boron), VN (nitrogen
vacancy)] and complex [CBVN, NBVN (nitrogen substitution
of boron adjacent to a nitrogen vacancy)] charged defects
(CBVN; see Fig. 1). As discussed earlier, promising candidate
defects should have stable high-spin states, localized and deep
defect levels, spin-conserved excitations, and an anisotropic
optical response [10,13]. Figure 4 shows their optical (without
geometry relaxation at the final charge state, dashed lines) and
thermodynamic CTLs (solid lines) at both the DFT (left panel)
and GW (right panel) levels of theory (see Ref. [51]).

Figure 4 directly leads to several important conclusions.
At both the DFT and GW levels of theory, all four types of
defects have deep CTLs and localized defect wave functions
(not shown). We note that we also performed hybrid functional
calculations for the defective system, which partially correct
the self-interaction errors in DFT, and found the defect
geometry, ground spin state, and defect wave functions are
similar between hybrid and semilocal functionals (see SM
[26] for more details). The difference of thermodynamic CTL
by DFT+GW in Eq. (3) and optical CTL by GW QP energies,
which is the geometric relaxation energy, is less than 0.5 eV.
The large difference between thermodynamic and optical

TABLE I. Physical properties of defects in monolayer h-BN
relevant for quantum technologies. Below, “S,” “D,” and “T” denote
singlet, doublet, and triplet spin states, respectively.

Defects CB VN NBVN CBVN

Deep level Yes Yes Yes Yes
Spin at q = 0 D D D T
Spin at q = ±1 S S S D
Bright transition between defect states No No Yes Yes
Optical anisotropy No No Yes Yes

CTLs in DFT is consistent with the fact that the total energies in
DFT are more reliable than the eigenvalues, as the optical CTLs
are directly computed from the eigenvalues, which do not have
a strict physical meaning in DFT and cannot be interpreted as
quasiparticle excitation energies. In fact, correcting the VBM
(and CBM) reference in the DFT thermodynamic CTLs [using
Eq. (1)] with GW QP energies yields a 0.1 eV difference
compared to the full DFT+GW calculations of the CTLs [using
Eq. (3)].

All four defects have deep CTLs with the neutral state
being stable for a wide range of εF , but their spin and optical
properties are rather different, as Table I shows. The CBVN

center has a spin triplet ground state, as shown in the left panel
of Fig. 1, which is advantageous for quantum applications [10],
distinct from the doublet state in other defects. Furthermore,
we computed the optical transitions and absorption spectra
for all defect cases and found both CBVN and NBVN have
bright defect-to-defect state transitions well separated by
over 1 eV from any defect-bulk and bulk-bulk transitions. A
strong in-plane polarization anisotropy was also found in their
absorption spectra (see Fig. 1 and SM [26] for details of the
absorption spectra and selection rules).

In summary, we developed a methodology to reliably
calculate thermodynamic CTLs in 2D materials by solving
several critical issues in charged defect formation energies
and GW QP energies for 2D systems in general. The source
of difficulties originates from the highly anisotropic and
localized screening of 2D systems, which necessitates a proper
treatment of the electrostatic potentials of charges near a 2D
plane and of the screened Coulomb interaction in the GW
approximation. Using this methodology, we examined several
possible defects in h-BN and identified the CBVN center to be
promising for quantum technologies, which has multiple deep
defect levels, a triplet ground state, and bright defect-to-defect
transitions.
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