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High-throughput first-principles computational methods, such as density functional theory (DFT), offer the
ability to predict the properties of materials, provided their crystal structures are known. However, there are many
compounds for which the structure is unknown and, consequently, many potentially useful materials cannot
be assessed by high-throughput DFT searches. Here, we demonstrate an automated tool to solve the structures
of materials from powder diffraction patterns based on the first-principles-assisted structure solution (FPASS)
method. We validate this tool by using it to solve 95 already-known crystal structures and find that FPASS can
determine the correct structure in all cases. We then tuned FPASS to improve its performance on the most-difficult
test cases, which include structures with larger numbers of symmetrically unique atoms. We also used FPASS to
solve the structures of 10 materials and found, using DFT, several are interesting candidates for semiconductor
applications.
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I. INTRODUCTION

Determining the crystal structure of a material is often
the first step in being able to understand or predict its
properties. In fact, crystal structure is the only requirement to
predict the properties of a compound with density functional
theory (DFT). Recent applications of high-throughput DFT
demonstrate how it can be used to automatically screen
promising compounds for many potential applications [1–7].
However, despite significant advances in techniques to solve
crystal structures from powder diffraction data, there are many
materials for which the structure is currently unknown. For
example, there are thousands of diffraction patterns that are not
associated with a crystal structure in the powder diffraction file
(PDF) and tens of thousands of entries in the inorganic crystal
structure database (ICSD) that are incomplete [8,9]. Beyond
simply filling in gaps in scientific knowledge, solving these
structures would significantly expand the databases of material
properties computed using high-throughput DFT [3,5,10,11].

Reconstructing three-dimensional crystal structures from
one-dimensional powder diffraction data is a nontrivial prob-
lem, even in an ideal case [12]. Conventionally, solving a crys-
tal structure involves first determining the shape, symmetry,
and content of the unit cell, and then performing the “structure
solution” step to determine atomic positions [13]. A variety of
techniques exist for performing structure solution, which all
require varying degrees of expert judgement to employ [14].
Given the large number of unsolved structures, the solution
by conventional means by experts is intractable. What would
enable the solution of these crystals is a set of automated tools
for crystal structure solution.

One potential tool for automated crystal structure solution is
the first-principles-assisted structure solution (FPASS) method
[15]. Like other direct-space crystal structure solution methods
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[14], FPASS uses a global optimization algorithm to find a
crystal structure that best explains the experimental data. As
FPASS is designed to solve crystal structures given composi-
tion, lattice parameters, and symmetry; it is well-suited to solve
the many incomplete structures in the PDF for which these are
already known. The other key feature of FPASS is that it uses
energies calculated from DFT to search for structures with
a combination of low DFT energy and an optimal match to
experimental data. The combination of symmetry-constrained
genetic algorithm and DFT energies employed by FPASS
make it possible to easily solve structures that are difficult
to determine with conventional techniques [15]. The inclusion
of energy in structure solutions, in particular, has been shown
to be beneficial in FPASS and other methods as well [13,16].
As DFT is used to compute the energy of candidate crystal
structures, no problem-specific selection of an empirical
potential is required—making it possible to run large numbers
of FPASS calculations without any need to first validate an
empirical potential [13,16–18]. All of these features suggest
that FPASS would be a suitable tool for automated structure
solution. However, to date, FPASS has only been tested in a
few case studies [15,19,20] and no automated implementation
of this method exists.

In this work, we present a new implementation of the FPASS
method and demonstrate that it can be used to automatically
solve crystal structures. Our method includes a modified
version of the original genetic algorithm and an automated
method for matching candidate solutions to raw diffraction
patterns. To evaluate the performance of this method, we first
validate the ability of the algorithm to solve 95 common
crystal structures given the known diffraction pattern, unit
cell, and symmetry—and found that FPASS correctly solves
all of them. During these validation tests, we determined that
crystal structures with large numbers of possible combinations
of Wyckoff sites are difficult to solve with FPASS and show
how the algorithm that be tuned to perform better on such
cases. With this knowledge, we applied FPASS to dozens
of unsolved crystal structures from the PDF and were able
to solve a significant fraction of them automatically. We
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FIG. 1. Flow chart describing the process of solving a crystal structure from powder diffraction data using FPASS. The typical solution
process starts by measuring the composition, diffraction pattern, and gravimetric density of a compound, which are then used to determine
the unit cell contents, lattice parameters, and symmetry group of a crystal. Once this information is determined, FPASS is used to find the
lowest-energy structure within these constraints.

then added these structures to the Open Quantum Materials
Database (OQMD) [3,10] and used high-throughput DFT to
predict their properties, and found several have band gap
energies of approximately 1 eV—making them interesting for
semiconductor applications. As our method requires minimal
human interaction, we plan to continuously apply it to unsolved
structures and then automatically predict the properties of these
materials using high-throughput DFT.

II. METHODS

A general outline of how crystal structures are solved from
powder diffraction data using FPASS is shown in Fig. 1.
FPASS is used to determine atomic positions in a crystal
after the lattice parameters, unit cell contents, and space
group have been determined with peak indexing techniques.
In this section, we will describe the theory and techniques
behind FPASS. In particular, we will discuss the method
used to compute the energy of a candidate structure, how our
software determines how well a structure matches a powder
diffraction pattern, and the details of the genetic algorithm
used to efficiently solve the structure.

A. FPASS software

The FPASS algorithm is implemented as part of the
materials interface (Mint) software [21], which performs all
steps in FPASS automatically. Mint itself was designed to
perform many common tasks in the atomic-scale simulation of
materials, including symmetry determination and generating
input files for various simulation packages. Consequently,
many of the analyses required by FPASS (e.g., symmetry
determination) are present in Mint. Mint is written in C++
and available freely under the LGPL license [21]. A practical
example of running FPASS with Mint is given in the Supple-
mental Material [22].

B. Density functional theory energy of candidate structures

We use DFT to compute the energy of candidate structures,
which enables the reliable prediction of energies without the
need to fit or select appropriate empirical potentials. DFT
only requires the crystal structure as input and is known
to be able to reliably predict the ground state structure and

formation energy of many inorganic systems [3,10,23,24]. As
a result, DFT makes an excellent choice for a high-throughput
solution tool—one can be confident in the accuracy of the
calculated energies for a broad variety of crystal structures
without needing to validate the energy calculation method
before each solution.

For this work, we performed all DFT calculations using the
Vienna ab initio Simulation Package (VASP) [25–28]. Unless
otherwise stated, all calculations were performed with projec-
tor augmented-wave basis sets [29,30]: the GGA exchange-
correlation functional of Perdew, Burke, and Ernzerhof [31],
a cutoff energy of 1.3 times the maximum cutoff energy
of all of the provided pseudopotentials, and 1000 K-points
per reciprocal atom. We employed the DFT settings used by
the OQMD, a collection of the structures and DFT-predicted
formation energy of hundreds of thousands of crystalline
materials, when comparing the stability of a candidate crystal
structure against others [10].

C. Matching candidate structures against
powder diffraction patterns

Another component of FPASS is methods to determine
how well a proposed structure agrees with the experimental
diffraction pattern. Comparing a structure to an XRD pattern
requires methods for computing XRD patterns for hypothetical
structures, processing experimentally-measured patterns, and
adjusting structures to better match the diffraction pattern.
Each of these techniques are detailed in the following subsec-
tions.

1. Diffraction pattern calculation

Techniques to calculate the diffraction pattern of a crystal
structure are well-established in the crystallography commu-
nity [32,33]. At a high level, the powder diffraction pattern is
calculated by first finding all reflections that will occur within a
certain range of diffraction angles. Next, reflections that would
cancel each other out in a powder diffraction pattern due to the
symmetry of the crystal are removed, and symmetrically iden-
tical peaks are grouped together for computational efficiency.
These two steps generate a list of diffraction peaks that should
be observed in a powder diffraction pattern and are automati-
cally performed by Mint based on the unit cell and symmetry of
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the structure. Once the list of peaks is generated, the intensity
of each individual peak is computed based on the following
relation [12]:

Ihkl = K × mhkl × LP (θ ) × Thkl × |Fhkl|, (1)

where K is a scaling factor, mhkl is the number of symmetri-
cally equivalent planes corresponding to this peak, and LP (θ )
is the Lorentz and polarization factors at the diffraction angle
for a particular reflection, θ . Mint uses the version of this
function for patterns that were created without a monochro-
mater. Thkl describes the effect of preferred grain orientations
(i.e., texturing). We use the March-Dollase function, which
describes texturing using the direction of preferred orientation
and a single parameter to describe the magnitude [34]. |Fhkl|2
is the structure factor component of the diffracted intensity. We
account for thermal vibrations using a single isotropic thermal
factor, B, for each symmetrically-distinct group of atoms

2. Raw diffraction pattern processing

Comparing a calculated diffraction pattern to an experimen-
tal pattern is easiest when comparing the integrated intensities
of each peak. As the experimental data available for use may be
the raw diffraction signal (intensity as a function of angle), we
needed to implement an automated scheme for detecting the
positions and integrating the intensities of each peak. As illus-
trated in Fig. 2, our implementation uses a version of the pro-
cessing algorithm described by Pecharsky and Zavalij [12]:

(1) Noise filter: The raw x-ray pattern is first passed
through a noise filter that smooths the data by averaging the
diffracted intensities of points with similar diffraction angles.

(2) Background removal: First, the background signal
determined by calculating a running average where every
point in a 2-degree window is assigned a weight inversely
proportional to the 4th power of the intensity at that point.

This background signal is then subtracted from the smoothed
data from step 1.

(3) Peak detection: Once the background has been re-
moved, the locations of diffraction peaks are found by
identifying local minima in the second derivative of intensity
with respect to diffraction angle. By identifying peaks based
on the second derivative, we can easily separate peaks that are
slightly overlapped [12].

(4) Intensity extraction: A pseudo-Voight function, which
is known to describe the peaks in x-ray diffraction patterns
well [12], is fit to the intensity values for each peak. We
then integrate the area under each function to determine
the intensity of each diffraction peak. The fitting functions
corresponding to overlapping peaks are fitted concurrently
in order to accurately determine the contribution of each
individual peak.

3. Matching structures to diffraction pattern

Before measuring how well a structure matches an experi-
mental diffraction pattern, we adjust the candidate structures
so that its computed pattern better matches the reference
pattern—a technique known as structure refinement. Refine-
ment is accomplished by minimizing the function:

R =
∑

peaks (Icalc − Iobs)2

∑
peaks Iobs

, (2)

where Icalc is the calculated integrated intensity a single
diffraction peak, and Iobs is the integrated intensity of the
same peak in the experimental pattern. Both sums are over all
peaks in the calculated and observed patterns. Each peak in
the calculated pattern is assigned to the closest peak of any
peak in the observed pattern that is within 0.15 degrees. If
multiple calculated peaks match a single peak in the observed
pattern, their intensities values are added together. Peaks from

FIG. 2. Illustration of our method for automatically determining peak positions and intensities from powder x-ray diffraction (XRD)
patterns. (a) The original XRD pattern. (b) The XRD pattern after noise removal, the automatically detected background signal is shown in
red. (c) The XRD pattern with background removed and after peak detection. The pseudo-Voight functions fit to each detected peak are shown
in red and blue. (d) Peak locations and integrated intensities.
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both the calculated and observed pattern that are not able to
be matched are treated as being matched to a hypothetical
peak of zero intensity. The computed intensity, Icalc, is a
function of the factors listed in Eq. (1) (e.g., atomic positions,
thermal factors, texturing). We optimize all parameters using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, as
implemented in Dlib [35]. Following the procedure described
by Pecharsky and Zavalij [12], we sequentially add more
fitting parameters (starting with the scale factor) during the
optimization. After refinement, we use the optimized R to
describe the match to the diffraction pattern.

Rietveld refinement. When matching the computed XRD
pattern against the raw intensity measurements, we employ
the Rietveld refinement method [36]. In contrast to the
previous section where only the integrated intensities of
each peak are considered, the computed x-ray pattern of a
structure is compared to the entire, unprocessed experimental
x-ray diffraction pattern (i.e., without any of the previously-
described processing steps) in Rietveld refinement. Here, the
match between two patterns is defined by

R =
∑
2�

|Icalc − (Iobs − Ibackground)|
/∑

2�

|Iobs − Ibackground|,

(3)

where Iobs is the observed diffracted intensity, Icalc is the
computed diffraction intensity, and Ibackground is the back-
ground signal [37]. Unlike in Eq. (2), the intensities here
are the measured intensity at a single diffraction angle, and
not the integrated intensity of an entire peak. We describe
the background signal using Chebyshev polynomials and the
shape of each diffraction peak using pseudo-Voight functions.
The parameters for the background and peak shape are fit in
addition to those that describe peak intensity [i.e., those from
Eq. (1)]. As this optimization problem is significantly costlier
than when using only integrated peak intensities, we only em-
ploy Rietveld refinement when automated pattern processing
has failed and also when reporting the match to diffraction data
for a proposed structure (i.e., only for the final structure of an
FPASS run and not during the structure solution process).

D. Efficiently locating the optimal crystal structure
solution—The FPASS method

The FPASS method is based on a genetic algorithm
designed to efficiently search through candidate crystal struc-
tures. FPASS requires the unit cell parameters and content
(i.e., number of atoms of each type) as input, and can
use the measured diffraction pattern, space group, and the
known position of any atoms in the structure to guide and
constrain the search. In particular, including the symmetry as
a constraint can dramatically accelerate the solution process
[15,19]. With this symmetry and/or diffraction information as
constraints, the FPASS algorithm can be used to determine
the positions of atoms that minimize the energy. Genetic
algorithms, in general, work by mimicking natural selection:
better-performing solutions are mixed to create new candidates
that are similar to them. As shown in Fig. 3, this process is
repeated for several generations until the algorithm converges
on an optimal solution. In the following sections, we will

FIG. 3. Flowchart for genetic algorithm used by FPASS. The
algorithm starts by generating a random population of candidate
crystal structures, and then evaluating their properties. After the
initial population, new generations are created by a mixture of
the best-performing compounds from the previous generation and
compounds created using genetic operators. These new structures are
then evaluated, and the process is repeated until the best structure
does not change after N generations.

describe the two parts of the genetic algorithm that are specific
to our implementation of the FPASS method: how the initial
population is generated and how new generations are created.
We note that these operations are similar to, but not exactly
equivalent to those of the original implementation of FPASS
[15].

1. Generating initial population

The genetic algorithm used in our implementation of
FPASS starts with an initial population of randomly-generated
structures. Each initial structure is created by first selecting a
combination of Wyckoff sites from the known space group that
leads to a unit cell with the correct numbers of atoms. Then,
for each Wyckoff site, we assign random positions to each free
parameter of that site. This process is repeated until we have
the desired number of structures.

To more efficiently search the structure space, we bias
the selection of the Wyckoff sites to be statistically similar
to information mined from a large number of known crystal
structures. We first determined number of Wyckoff sites and
minimum possible number of Wyckoff sites consistent with
space group and number of atoms for 74680 structures the
Inorganic Crystal Structure Database [8]. Of these, 38% of
the structures have only one possible number of sites. Of
the 50820 structures that have >1 possible number of sites,
the majority (56%) have the minimum possible number of
Wyckoff sites, as shown in Fig. 4. See the Supplemental
Material for further details [22]. To bias our GA to search
mostly structures with small numbers of Wyckoff sites when
generating new structures, we first generate a list of all possible
combinations of Wyckoff sites that will lead to the correct
number of atoms in the unit cell, provided the symmetry group
given as input to FPASS. Each of those possibilities is assigned
a weight related to the fraction of structures in the ICSD with
the same ratio between the number of Wyckoff sites in that
crystal to the fewest-possible number of sites. We adjust the
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FIG. 4. Distribution of 74680 structures in the ICSD based on the
ratio between number of Wyckoff sites (n) in the crystal structure and
the minimum possible number of Wyckoff sites (n0) consistent with
the space group and size of the unit cell. Many structures (56%) have
the minimum number of possible Wyckoff sites. This analysis only
includes structures with more than one possible number of sites.

weights with a single biasing factor that varies between 0 (no
biasing) and 1 (weight for a site is equal to the proportion of
structures in the ICSD with that ratio). These weights influence
the selection of combinations of sites when creating random
crystal structures, and can be tuned using one of the input
parameters for the genetic algorithm.

2. Creating new generations

Each new generation in FPASS is generated from a
combination of: (i) the best-performing structures in the
previous generation (elitism), and (ii) structures created using
genetic operations. Before creating the new generation, we first
rank each structure in the previous generation based on the sum
of its rank in both energy and match to diffraction pattern (e.g.,
the structure with the lowest energy and second-best match to
the pattern would have a score of 3). The entries with the
best score are included in the new generation to ensure the
best-performing structure is always considered when making
the following generations.

To create the rest of the generation, we generate structures
using genetic operations. For each new structure, we first
select two parent structures out of the list of better-performing
structures from the previous generation. To bias our selection
towards better-performing candidates, we select parents by
first randomly selecting 0.6

√
n entries from the previous

generation, where n is the number of entries in the population,
and then selecting the candidate from that list with the highest
fitness. Each time we generate a new structure, we repeat
this tournament selection process until two different parent
structures are selected, then generate a new structure with
crossover, and, finally, randomly perturb that structure.

Crossover is performed by combining groups of
symmetrically-equivalent atoms (i.e., both the Wyckoff site’s
identity and free parameters) from either parent. For example,
suppose one parent structure has a total of eight Na atoms on
two different 4c Wyckoff positions and the second parent has
four Na atoms on a 4c position, two atoms on a 2b, and two
on a 2a position. Our crossover method could produce a child
structure that includes one of the two groups of Na atoms on
the 4c position from the first parent and the atoms on the 4c

position from the second parent. Or, it could generate structure
that contains the second group of Na atoms on the 4c position in

the first parent and the atoms on the 2a and 2b positions in the
second. In total, there are six possible ways of combining the
Na atoms from the two parents that will have the same total
number of Na atoms for this example. We randomly select
exactly one of these possibilities. This procedure is repeated
for each type of atom and will create a new structure with the
same space group and composition as the parent structures.

After crossover, for randomly selected children, we perform
up to two different mutations: (1) perturbing the atomic
positions of a group of symmetrically equivalent atoms, or
(2) selecting a different combination of Wyckoff sites and
assigning random values to the free parameters of each new
site. Both operations are designed to preserve the original
symmetry of the structure. The probability of performing either
type of mutation is adjustable, and the random magnitude of
each perturbation allows the mutations to range from small
alterations to completely random structures. It is also important
to note that none of these mutations or crossover operations
affect the lattice parameters of the structure. We implicitly
assume that these lattice parameters were correctly determined
during the peak indexing step.

An important caveat for structure creation is that we
automatically screen out structures with exceptionally small
distances between atoms. Here, we define “exceptionally
small” distances as those where two atoms are closer than 50%
of the sum of their radii (using radii from Codero et al. [38]).
To enforce this constraint, we will not accept structures with
short bond distances when generating the initial population,
performing crossover, or mutating structures. Our exception
to this rule is when our software fails to generate a valid
structure after 100 attempts. For these rare cases, we use the
structure from those 100 attempts that violates our distance
rule the least.

III. RESULTS: TESTING VALIDITY AND IMPROVING
EFFICIENCY OF FPASS

Before using FPASS to solve unknown structures, we first
determined whether FPASS can reliably find the correct crystal
structures across a broad variety of test cases. We also adjusted
the settings of the algorithm to minimize the computational
cost. The results from our validation and tuning efforts are
described below.

A. Validating the algorithm

While the FPASS method has been shown to be able
to accurately determine the crystal structures in a few test
cases [15,19,20], we further validated our new implementation
before using it in an automated manner. We determined how
often FPASS finds the correct structure for 95 test compounds
with a wide variety of symmetry groups and cell sizes. As
shown in Fig. 5, we selected compounds from all crystal
symmetry families except triclinic and with sizes ranging from
between 1 and 30 atoms in the primitive cell. This wide variety
of structures also enabled us to study how symmetry and unit
cell size affect the performance of FPASS.

For each test case, we ran at least ten individual FPASS
calculations to determine how often the algorithm finds the
correct structure. In each test, FPASS was supplied with the
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FIG. 5. (a) Distribution of crystal families and (b) number of atoms in the primitive cell for all 95 compounds used to validate FPASS.
Candidates were intentionally chosen to sample a wide variety of cell sizes, sizes, and chemistries.

lattice parameters, symmetry group, powder diffraction pattern
from the PDF, and the number of atoms of each type in the
unit cell. In all test cases, we found that the lowest-energy
candidate structure for that compound agreed with the known
structure. In other words, FPASS found the correct structure
in all 95 test cases. But, we also analyze the “success rate” of
the FPASS runs: for each test structure, how many of the runs
produced the correct solution. As shown in Fig. 6(a), we found
that FPASS returns the correct structure in at least 90% of the
runs for 67 (71%) of the 95 test structures. In several of these
test cases, the high success rate of FPASS is not surprising
because there were fewer than five structures that match the
known space group and number of atoms. Even so, FPASS
was still able to determine the correct structure of the 29-atom
primitive cell of α-Mn 11 out of 15 times.

We also studied the characteristics of structures that
correspond to especially low and high success rates. As shown
in Fig. 6, the success rate correlates with the quality of
the diffraction pattern, and the success rate decreases with
larger minimum possible number of symmetrically unique
atoms, and larger difference in the maximum and minimum
number of Wyckoff sites. In fact, the compound that FPASS
solved correctly the least often, MgNi2, has a large number
of minimum number of unique atoms (4), a large difference
between the maximum and minimum number of unique atoms
(4), and a poor-quality x-ray pattern (a “B” rating from
the ICDD). Many of the other structures with low FPASS
success rates have similar characteristics. In general, we found
that FPASS performs best when solving structures with high
symmetry and small number of atoms in the unit cell and is

FIG. 6. (a) Histogram of how often FPASS determines the correct structure for all 95 test cases. Note that FPASS correctly solves all
structures (success rate > 0) for all 95 cases. (b)–(d) Variation in how often FPASS determines the correct structure as a function of (b) quality
of diffraction pattern, (c) minimum possible number of unique atoms, and (d) difference between maximum and minimum number of unique
atoms. Generally, the success rate for FPASS is the worst when poor-quality x-ray data is provided and for crystals with large unit cells.
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provided with a high-quality x-ray pattern. However, even with
these caveats, we note that ten FPASS runs was sufficient in
every case to correctly solve the structure.

B. Tuning the algorithm

To improve the reliability of FPASS for difficult-to-solve
crystal structures, we adjusted parameters of the genetic
algorithm and evaluated changes in success rate for ten of
the more difficult test cases. For this process, we selected a
set of problems we determined to be more difficult based on
the metrics studied in the previous section: α-Mn, β-SiO2,
Mg2Ni, CdI2, GeS2, PdS, CuS, NiS, α-Np, and SiU3. FPASS
had high rates of determining the correct structure for four of
these structures (α-Mn, GeS2, PdS, NiS), even though they
were expected to be difficult based on the metrics established
in the previous section. For the other six test cases, FPASS
had low success rates. By selecting cases with a variety of
success rates for FPASS, we can ensure that changes in the
parameters that improve the performance on difficult cases do
not negatively affect other cases.

We first tuned factors that do not directly affect the computa-
tion time: the Wyckoff-site biasing factor and mutation proba-
bilities. As described in the Methods section, these parameters
correspond to how much we bias our initial population and how
new generations are created. Originally, we used a Wyckoff site
and atomic position mutation probabilities of 0.5 and a biasing
parameter of 0.5. To tune these parameters, we first adjusted
the mutation probabilities and biasing parameter and found
that the biasing parameter had the strongest impact on success
rate. We then held all mutation parameters fixed, and found that
the performance of FPASS was the best with the biasing turned
off (i.e., a parameter of 0). We then held the bias factor fixed
at 0, and repeated the tuning process to adjust the mutation
probabilities and found that the original selections of 0.5 for
each type of mutation were optimal. By adjusting mutation
probabilities and biasing, we were only able to increase the
average success rate of FPASS slightly from 64% of these
difficult cases to 68%.

We studied the changes in success rates for individual test
cases in order to better understand the effect of the Wyckoff
site biasing. We found that the biasing factor can indeed have
a significant positive effect in cases where the known structure
has the fewest-possible number of Wyckoff sites. For example,
the success rate for solving SiU3 increases from 60 ± 9%
to 74 ± 9% when the biasing factor is increased from 0 to
0.5. Conversely, the success rates for solving compounds with
the maximum-possible number of Wyckoff sites are generally
worsened by increasing biasing parameters. However, there
are cases where biasing does not have the anticipated effect.
For example, the success rate for α-Np with a biasing factor
of 0.5 is 60 ± 11% and 74 ± 7%, even though α-Np has
the fewest-possible number of sites. We hypothesize that this
unexpected decrease in success rate could be explained by
biasing reducing the diversity in the structures being assessed,
which is detrimental to the effectiveness of the GA [39,40].
Alternatively, the observed decreases in success rate could be
explained by the positive effect of biasing being smaller than
the inherent randomness of FPASS calculations. Regardless
of the cause, the results from our tuning suggests that, on the

whole, Wyckoff site biasing leads to lower success rates (64 ±
3% with a biasing of 0.5 vs 68 ± 2% without biasing) on the
more difficult test cases and, therefore, should not be used.

Once we finished tuning the mutation probabilities and
biasing factor, we iteratively increased the population size.
As the population size directly controls the calculation time,
we also considered computational efficiency when adjusting
this parameter. We found that by increasing the population
size from 10 to 20 we could increase the success rate to 82%.
Achieving a one part in a million chance of not finding the
correct structure in at least one calculation would require
12 calculations for a success rate of 68% and only 8 for an
82% success rate. However, this increase in population size
increases the total time for each calculation at a faster rate.
Considering that the average FPASS calculation for a popula-
tion size of 10 evaluated only 119 structures before converging
and the average for a generation size of 20 was 219, the
population size of 20 would require evaluating more structures
and, thereby, more resources to achieve a certain likelihood of
finding the correct structure. For that reason, we recommend
a population size of 10 and running large numbers of FPASS
calculations for more-difficult solutions. A summary of our
recommended values for each parameter are shown in Table I.

IV. RESULTS: AUTOMATED SOLUTION OF CRYSTAL
STRUCTURES FROM FPASS

After validating and tuning FPASS, we employed it to solve
the structures of several entries that lacked crystal structures
in both the Powder Diffraction File and OQMD. We selected a
total of 20 compounds from the PDF that had both high-quality
diffraction patterns and unit cell parameters, but lacked atomic
positions. We preferentially selected compounds with small
numbers of atoms per unit cell.

To further automate the solution process, we created
a software package designed to automate starting FPASS
calculations, checking output for errors, and performing
several validation checks. This automation software, named
“fpassmgr,” is available under an open-source license [41].
Using fpassmgr, we run FPASS at least ten times and until at
least five FPASS results are identical to help ensure we capture
the ground state. When then relax the candidate solution with
DFT and compute the stability and volume with qmpy [10].
Once the calculation is complete, the code generates a webpage
summary that includes structure files for the proposed solution
and all of the validation results. For most cases, the only human
interaction required is starting the calculation and reviewing
the validation summary in order to decide whether FPASS has
found a correct solution.

A. Strategy to validate structure solutions

Our validation strategy is based on several different tests:
(1) agreement between several independent FPASS calcula-
tions, (2) match to experimental diffraction pattern, (3) ener-
getic stability, and (4) difference between the experimentally
measured and DFT-relaxed volume. First, we run FPASS
at least ten times and conclude a solution has been found
when at least five calculations agree with the lowest-energy
structure. Once we reach this level of agreement, we select
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TABLE I. Adjustable parameters for the FPASS algorithm and their recommended values.

Name Description Recommendation

gaoptPopSize Size of population 10

gaoptConverge Number of generations after which if no better structure is found, the optimization is terminated 7

wyckoffBias The biasing factor used when selecting new combinations in new Wyckoff site combinations. 0
Larger values of this parameter bias selection towards fewer Wyckoff sites

gaoptWyckMutProb Probability that a new structure will be mutated by selecting new Wyckoff sites 50%

gaoptPosMutProb Probability that a new structure will be mutated by perturbing atomic positions 50%

gaoptNumToKeep Number of top entries to retain in new generation 1

the lowest-energy solution as the putative structure, refine the
structure to best match the experimental pattern, and measure
the R factor. As our Rietveld refinement code is simple, we
assume an R of below 0.5 is a satisfactory match (typically, R
can be refined to below 0.05).

We also validate the structure by assessing the DFT-
computed formation enthalpy and equilibrium volume of
the candidate structure. To assess energetic feasibility, we
compute the stability with respect to decomposition to all other
phases in the OQMD [42]. We then compare this stability
to that of all structures from the 36566 inorganic crystal
structure database in the OQMD, and determine whether it is
within below 2 interquartile ranges above the median (below
128 meV/atom)—as shown in Fig. 7(a). While a low-stability
value is no guarantee that our solution is the ground state,
it does verify that it is energetically feasible. Once we
have computed the formation enthalpy, we also compute the
change in volume during relaxation and compare the fractional
change to the fractional changes of all compounds in the ICSD
[see Fig. 7(b)]. We flag structures as potentially incorrect if
the volume change is outside of 2 interquartile ranges from the
median (below −8.1% or above 7.9%).

B. Solved structures

The following subsections are descriptions of ten structures
we were able to solve using FPASS. The complete structures

of some of these compounds had been solved previously
but were not present in the OQMD, which made them ideal
candidates for further testing of our solution and structure
validation strategy. For other compounds, like NaTmMo2O8

and LiSbO3, the unit cell and symmetry of the structure have
been determined, but the atomic positions were not known. In
all cases, the solution of the structures with FPASS enabled
adding these materials to the OQMD. The full set of computed
properties for these materials will be made available in a future
public release of the OQMD.

As shown in the summary table, Table II, and Fig. 9,
the compounds who structures we solved sample a broad
variety of types of materials. Two of these materials are
polyanionic compounds (CaCoSO and Tb2O2CN2), one is a
lithium-containing oxide (LiSbO3), and two are intermetallics
(CeAl3Pt and Al3FeGe2Y3). Once we solved the structures and
added these compounds to the OQMD, we found that several
of the materials are semiconductors with band gap energies
in the desired range for photovoltaics or thermoelectrics
(Pb2ZnTeO6, CaCoSO, Ba2CdTeO6). Complete information
about the solved structures (e.g., atomic coordinates and com-
puted diffraction patterns) can be found in the Supplemental
Material [22].

Solving these structures also provided an opportunity to
study the performance of FPASS and to analyze our validation
strategy. In terms of performance, we found that the average
solution required evaluating 1823 structures and consumed

FIG. 7. Distributions of (a) DFT-computed stability and (b) fractional difference between the measured and DFT-computed volume of all
36565 compounds from the Inorganic crystal structure database (ICSD) in the OQMD. Stability was measured as the difference between the
computed formation enthalpy of a compound and the minimum-energy combination of all other phases in the OQMD at the same composition.
The red, dashed lines indicate two interquartile ranges away from the median, which the threshold used to determine whether a candidate
structure solution should be carefully reviewed as potentially incorrect.
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TABLE II. Compositions, symmetry groups, and DFT-predicted properties of structures solved using our automated implementation of
FPASS. Stability is computed with reference to all other compounds in the OQMD [3,10]. Negative stability indicates that a compound is stable
against decomposition into other structures.

Volume (Å
3
/atom)

Composition Space group Experiment DFT δ (%) �Hf (eV/atom) Stability (meV/atom) Eg (eV)

Al3CePt I4mm 19.84 20.44 3.0 −0.840 − 32 0
Pb2ZnTeO6 Fm3̄m 12.78 12.85 0.5 −1.375 70 1.3
Sr2TaZnO6 Fm3̄m 13.36 12.79 − 4.2 −2.721 58 0
CaCoSO P 63mc 17.02 16.99 − 0.2 −1.872 46 1.1
Al3FeGe2Y3 P 6̄2c 19.46 19.47 0.1 −0.686 − 20 0
Ba2CdTeO6 Fm3̄m 14.61 14.73 0.8 −2.159 − 100 1.2
KFe2Se2 I4/mmm 21.44 20.80 − 3.0 −0.504 31 0
Mo2NaTmO8 I 4̄ 12.55 12.24 − 2.5 −2.663 − 55 3.1
LiSbO3 C2/m 11.55 11.47 − 0.7 −1.954 1 2.9
Tb2O2CN2 P 3̄m1 14.25 14.03 − 1.5 −2.175 − 206 4.1

5000 h of CPU time (we used a cluster with 3.0 GHz
Intel Xeon 5160 s). We also found that the compute times
vary significantly between structures. Many FPASS solutions
evaluated only the minimum number of structures to achieve
convergence (120, given our settings), which means FPASS
found the best solution in the first generation of the GA. In
general, we found that crystals with small, high-symmetry unit
cells (e.g., Ba2CdTeO6) completed the most quickly, and that
larger structures with low symmetry (e.g., LiSbO3) required
the most resources to solve.

Our validation strategy was successful in that there was a
clear distinction between solutions we deemed to be correct
and those we rejected. As shown in Fig. 8, we concluded
all structures with acceptable pattern matches (<0.5) have
stabilities below 100 meV/atom to be correct after further
analysis (described below). Solutions with diffraction pattern
matches near 0.6, on the other hand, are ambiguous. One
solution, CaCoSO, has a poor pattern match of 0.65, yet
we found our solution to match the experimentally reported
structure (see discussion below). On the other hand, ThAl2Ni3
has a slightly better pattern match (0.62), but we label it is an
incorrect solution as we are not sufficiently confident in the
match to the pattern. The five structures that failed our volume
change criterion also failed the stability and pattern match

FIG. 8. Stability measured with respect to all other compounds in
the OQMD and match to diffraction pattern data for the solutions to
20 structures we attempted to solve in this work. Blue circles indicate
structures that passed our validation criteria and we deemed to be
correctly solved. Red squares indicate structures that we determined
FPASS failed to solve.

checks, which suggests that the volume change criterion is not
particularly useful. Our main conclusion from these findings is
that we should improve our Rietveld refinement software to be
able to more clearly decide whether solutions match available
XRD data.

1. Al3FeGe2Y3

The crystal structure for Al3FeGe2Y3 is not reported in the
literature, and we could not even find reports of its synthesis
in the literature [43]. As a starting point for our solution,
we used the diffraction pattern from the PDF, along with
the composition, space group, and lattice parameters. Using
FPASS, we solved this structure and found this compound to be
isostructural to the chemically similar compound, Al3NiGe2Y3

[44]. We repeated the FPASS solution ten times and found
that each repetition returned the same structure. The stability
(measured with respect to all other competing phases) is
negative, which indicates that it is thermodynamically stable at
T = 0 K. The fractional difference between the experimentally
determined and DFT-predicted volume of this structure is well
within the distribution of other structures from the ICSD,
which also indicates the structure is accurate. Finally, as shown
in Fig. 10, the agreement between the computed and measured
powder diffraction pattern is qualitatively excellent. Overall,
these validation tests suggest our structure is likely the correct
solution for Al3FeGe2Y3.

2. Al3CePt

Al3CePt was originally synthesized in 1994, is known
to have the BaNiSn3-type crystal structure [45,46], and our
FPASS calculation also finds this structure. While this structure
has been solved before, the solution was not present in the
Powder Diffraction File when we performed FPASS and is
currently listed only under the ThCr2Si2 structure type in the
ICSD. Both ThCr2Si2 and BaNiSn3 are based on the BaAl4
structure (with Ce in the body center position), but differ in
the fact that ThCr2Si2 is centrosymmetric and BaNiSn3 is
not [46]. As in the solution for Al3FeGe2Y3, we found the
same structure in all ten FPASS calculations, the structure is
stable in DFT, and that the DFT and experimental volumes of
the structure are in agreement. Also considering the acceptable
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FIG. 9. Crystal structures determined in this work using an automated implementation of the FPASS algorithm.

match to the x-ray diffraction pattern (see Supplemental
Material [22]), we conclude our solution is correct. While
our work is not the first solution for this structure, our solution
does match the literature and we were still successful in adding
a missing crystal structure to the OQMD.

3. Pb2ZnTeO6, Ba2CdTeO6, and Sr2TaZnO6

We found Pb2ZnTeO6, Ba2CdTeO6, and Sr2TaZnO6 to all
have the double perovskite structure. Of these, Pb2ZnTeO6

and Ba2CdTeO6 are both known to be double perovskites
[47,48], but were not present in the ICSD and OQMD. As far
as we could tell, Sr2TaZnO6 has not yet been reported in the
literature and is not present in the ICSD or Crystallography
Open Database (COD) [8,49]. For all three cases, FPASS
found the same structure ten out of ten calculations, and
all of our other validation checks indicate these structures
are reasonable. Each structure was either stable or slightly
metastable (<75 meV/atom) and the volume difference
between the experimental were all within bounds (<5%)—as
shown in Table II. According to our FPASS calculations,
there are only two possible structures given the A2B′B′′O6

stoichiometry, the known symmetry (Fm3̄m), and the number
of atoms in the unit cell: a structure where each A atom is
coordinated with 12 O atoms, and one where A is coordinated
with six. As the only difference between these two structures
is the positions of O atoms, these two structures have the

FIG. 10. Calculated (red, dashed line) and measured (blue, solid
line) powder diffraction patterns of our proposed solution for the
structure Al3NiGe2Y3, as calculated using the materials interface
(Mint).

same symmetry and have similar diffraction patterns when
O scatters x-rays weakly compared to other atoms in the
structure. However, the energy difference between the struc-
tures can be quite large (>1 eV/atom for Pb2ZnTeO6), which
makes the solution unambiguous with FPASS and shows the
value of adding energetic validation to the structure solution
problem.

4. CaCoSO

According to its entry in the powder diffraction file,
CaCoSO is a hexagonal structure with a space group of P 63mc.
Using this information and the unit cell parameters available
in the PDF, we found the structure to be similar to that of
CaClOH, with Co occupying the tetrahedrally coordinated site
[50]. This finding is consistent with the very recent structure
solution of Salter et al. in 2016 [51]. We were unaware of this
recent report when we solved the structure with FPASS. We
found this structure in nine out of ten FPASS calculations, and
we were able to confirm that it is only slightly metastable
(46 meV/atom). Therefore, we agree with the structure
proposed by Salter et al.

5. KFe2Se2

KFe2Se2 is the nominal composition of a superconducting
compound discovered in 2010 and is known to have the
ThCr2Si2 structure [52]. At the time we performed our FPASS
calculation, this structure was not available in the OQMD but
already established in the literature [52]. We did confirm the
ThCr2Si2 structure with our FPASS calculation and found it
to pass all validation checks. As in the solution of Al3CePt,
we did not solve this structure for the first time but were
able to improve the OQMD by adding this structure to our
database.

6. Mo2NaTmO8

We found the first report of Mo2NaTmO8 to be in a 1964
paper by Ayala et al. [53]. The authors reported the unit
cell parameters of the structure and that Mo2NaTmO8 was
based on the scheelite (CaWO4) structure, but not the atomic
positions [54]. Using FPASS, we confirmed the structure of
Mo2NaTmO8 is based on the scheelite structure and equivalent
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to that of Li2CaHfF8 [53]. FPASS found this structure in ten out
of ten calculations. Our validation DFT calculations found a
similar volume to that observed in experiment and that this
structure is stable. Considering that the diffraction pattern
match is also acceptable, we conclude we have determined
the correct structure.

7. LiSbO3

The monoclinic phase for LiSbO3 was discovered by
Nalbandyan et al. in 2006 [55]. While the authors were
unable to determine its crystal structure, they hypothesized
LiSbO3 is a distorted rock salt structure [55]. Using the
known unit cell parameters and symmetry group (C2/m)
proposed by Nalbandyan et al. as input to FPASS, we found
a layered structure similar whose network of Sb-O bonds is
similar to the Mn-O network in Li2MnO3—a distorted rocksalt
structure consistent with the hypothesis of Nalbandyan et al.
[56]. The Sb atoms form a 2D network of face sharing
octahedra, with the Li atoms occupying tetrahedral sites in
the space between these layers (as opposed to octahedral
sites in Li2MnO3). This structure is nearly degenerate with
the known, orthorhombic phase of LiSbO3 [57], being only
1 meV/atom higher in energy than the orthorhombic structure
according to our DFT calculations. We ran FPASS 30 times and
found the layered structure in 8 of the calculations. The other,
higher energy solutions, include a version of this structure
where the Li is in octahedral sites (as in Li2MnO3), which
is slightly higher in energy (42 meV/atom). Also consider-
ing the acceptable match with the experimental diffraction
pattern and small difference between experimental and DFT-
predicted volumes, we conclude our solution to LiSbO3—
a layered structure with Li on the tetrahedral sites—is
correct.

8. Tb2CN2O2

According to the powder diffraction file, Tb2CN2O2 has a
hexagonal unit cell with P 3̄m1 symmetry. Starting with this
information and the lattice parameters listed in the PDF, we
found that this compound shares the same crystal structure
as 11 other lanthanoid dioxymonocyanamides [58,59]. All ten
FPASS calculations we performed found this structure, and we
also found it to be stable in the OQMD. The volume change on
relaxation and match to diffraction pattern are also reasonable,
which lead us to conclude that this is the correct structure for
Tb2CN2O2.

C. Current limitations of FPASS

We just described ten successful examples of FPASS
solutions. However, for ten other compounds we attempted,
FPASS failed at least one of the validation tests, each of
which could be a result of several factors. First of all, our
technique is based on the assumption that the hypothesized
lattice parameters and space group are correct. If any of these
are inaccurate, our algorithm may converge to an incorrect
solution. Also, FPASS may have failed to find the correct
solution within the search space—though this is unlikely if
the algorithm returned the same structure from multiple runs.
Furthermore, our implementation of FPASS currently supports

only perfectly ordered materials. If the true solution contains
partially occupied sites (e.g., mixing between two types of
elements on a single site), FPASS will fail to find the correct
structure. Overall, these failures highlight potential avenues
for improving FPASS (e.g., accounting for disorder) and the
necessity of automated validation tests.

A potential route for accelerating the solution process is
to utilize already-known crystal structure types in the search
process. Such a route seems especially promising when con-
sidering that nine out of ten of our solutions are isostructural
with another material. Integrating structure prototypes into
our automated tool could be accomplished several ways. The
first step to any of these approaches would be to search
the ICSD or another database for structures that match the
stoichiometry and symmetry of the structure being solved. One
route to integrating this information into FPASS is including
these candidate structures into the initial population of the
genetic algorithm, thereby biasing it toward more-feasible
solutions. Alternatively, we could check whether any of the
prototype structures are valid solutions before employing
FPASS. Hautier et al. were able to solve the structures of
approximately 200 ternary oxides from the PDF using only
known structures, so this approach could be successful for
other classes of materials [60]. By combining information
about already-known structure types with the ability of
FPASS to determine previously unknown structure types (as
in LiSbO3), we could further accelerate FPASS and make it
possible to solve the structures of even more materials.

Another possible route for improving FPASS is to incor-
porate techniques developed for Crystal Structure Prediction
(CSP) and by other direct-space structure solution tools into
our genetic algorithm. Both communities have developed
many unique and successful global optimization algorithms
that accelerate the search for the crystal structures with
desirable properties (e.g., low energy, high agreement with
diffraction patterns) by maintaining local structural motifs, in-
cluding slicing-based mating operations [39], treating clusters
of atoms as building blocks [14], “ripple” mutation operations
[40], and many others [13,14,17,39,61–65]. Alternatively,
techniques such as intelligent random structure searches [66],
particle swarm optimization [65,67], and minima hopping [68]
could also prove to be viable routes for crystal-structures
solution. Exploring how to do so could be a valuable research
direction.

V. CONCLUSION

In this work, we described an implementation of the
FPASS algorithm capable of being used to automatically solve
incompletely determined crystal structures. We validated this
algorithm by determining the structures of 95 known crystal
structures and found that FPASS identified the correct structure
in each case. We found that FPASS performed worse when
provided lower-quality XRD patterns and for structures with
large numbers of symmetrically unique atoms. Once validated,
we tuned the algorithm to increase its reliability for crystal
structures that were difficult to solve and then applied it
to attempt to solve 20 yet-undetermined structures from the
powder diffraction file. To date, we have solved the structures
of ten compounds and added these structures to the OQMD,
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thereby increasing the completeness of this database. We
propose that FPASS can be further improved by accounting
for partially occupied structures and including information
of known crystal structure prototypes into the solution
process.
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