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Conceptual and practical bases for the high accuracy of machine learning interatomic potentials:
Application to elemental titanium
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Machine learning interatomic potentials (MLIPs) based on a large data set obtained by density functional
theory calculation have been developed recently. This study gives both conceptual and practical bases for the
high accuracy of MLIPs, although MLIPs have been considered to be simply an accurate black-box description
of atomic energy. We also construct the most accurate MLIP of elemental Ti ever reported using a linearized
MLIP framework and many angular-dependent descriptors, which also corresponds to a generalization of the
modified embedded atom method potential.
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I. INTRODUCTION

Interatomic potentials (IPs) have played a central role in
performing atomistic simulations, such as molecular dynamics
simulation. A wide variety of conventional IPs have been
developed by considering the nature of chemical bonding in
specific systems of interest, such as Lennard-Jones [1], em-
bedded atom method (EAM) [2–4], modified EAM (MEAM)
[5,6], and Tersoff [7–9] potentials. However, the accuracy and
transferability of conventional IPs are often lacking owing to
the simplicity of their potential forms. As an example, the
phonon dispersion relationships of hexagonal close-packed
(hcp) Ti computed from several EAM and MEAM potentials
are shown in Fig. 1, along with that computed on the basis
of density functional theory (DFT). The overall phonon
dispersions of EAM and MEAM potentials are scattered and
markedly deviate from that obtained by DFT calculation.

On the other hand, the machine learning IP (MLIP) based on
a large data set obtained by DFT calculation has great potential
for improving its accuracy and transferability effectively. Once
the MLIP is established, it does not increase the order of
computational cost as compared with conventional IPs. The
MLIP has also been increasingly applied to a wide range
of materials regardless of their type of chemical bonding.
Its frameworks and applications have recently been reported
[21–31].

Although the MLIP can provide an accurate energy descrip-
tion, its physical interpretation or relationship with the existing
IPs is still lacking. In this study, we introduce an interpretation
of the MLIP on the basis of the framework of EAM and
MEAM potentials. The interpretation provides a conceptual
basis for the high accuracy of the MLIP. Second, we develop
the most accurate MLIP of the elemental Ti ever reported
using a linearized MLIP framework. As shown later, the high
accuracy of the linearized MLIP implies that the high accuracy
and transferability of MLIPs are based mainly on the use of
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a large number of relevant descriptors, although it has been
considered that the use of flexible black-box functions, such
as neural network and Gaussian process models, is essential
for modeling atomic energy.

II. INTERPRETATION OF MLIPs

A. Embedding atomic energy in EAM and MEAM potentials

The framework of EAM potentials is based on the concept
of the embedding energy of an atom into a host described
by electron density [32]. The embedding energy of atom i

is defined as a functional of the host electron density ρ(r)
expressed as

E(i) = F (i)[ρ(r)], (1)

where F (i) denotes the embedding energy functional for atom
i. Although the application of this concept is not exclusive to
metallic systems, the framework of EAM potentials is com-
patible only with metallic systems owing to the introduction of
some approximations. A main approximation is the uniform
density approximation (UDA), in which the embedding energy
is assumed to be a function of the scalar local electron density,
written as

E(i) = F (ρ(r i)), (2)

where r i denotes the position of atom i. Another one is a
pairwise approximation in which the local electron density
is assumed to be equal to the sum of contributions from
neighboring atoms expressed by a single pairwise function.
Adding a short-range pairwise interaction, the EAM atomic
energy is expressed as

E(i) = F

⎛
⎝∑

j

p(rij )

⎞
⎠ + 1

2

∑
j

φ(rij ), (3)

where p(rij ) and φ(rij ) denote the pairwise contribution
of the neighbor atom j to the local electron density and
short-range pairwise interaction including repulsive energy,
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FIG. 1. Phonon dispersion curves of elemental hcp Ti calculated
using conventional EAM [10–13] and MEAM [14–17] potentials.
Some of these curves are obtained from the interatomic potential
repository project [18] and KIM project [19]. Black broken lines
indicate the phonon dispersion curves obtained by DFT calculation.
Force constants are calculated using the LAMMPS [20] code.

respectively [2]. In an extended manner, the MEAM atomic
energy is given by

E(i) = F (ρ(r i)) + 1

2

∑
j

φ(rij ), (4)

ρ(r i) =
∑

j

p(rij ) +
∑
j,k

f (rij )f (rik)g(cos γjik), (5)

where the local electron density is described by a three-body
function g in addition to the pairwise contribution. Since the
function forms of p, f , and g have not been established, a
wide range of approximated forms have been proposed in the
literature. In addition, polynomials and spline models have
been simply used as a function F .

B. Atomic energy in MLIPs

On the other hand, all MLIPs with pairwise descriptors are
formulated as

E(i) = F
(
b

(i)
10,b

(i)
20, . . . ,b

(i)
nmax0

)
, (6)

where b
(i)
n0 denotes a pairwise descriptor expressed as

b
(i)
n0 =

∑
j

fn(rij ). (7)

A large number of pairwise descriptors are generally used
for formulating MLIPs, and neural network models, Gaussian
process models, and polynomials have been used as functions
F . This formulation is obviously a generalization of the EAM
atomic energy. Similarly, most MLIPs with angular-dependent
descriptors are formulated as

E(i) = F
(
b

(i)
10,b

(i)
20, . . . ,b

(i)
11,b

(i)
21, . . . ,b

(i)
nmaxlmax

)
, (8)

where b
(i)
nl denotes an angular-dependent descriptor. Most

angular-dependent descriptors specified by number l belong
to the class of angular Fourier series, which corresponds to a
set of rotationally invariant descriptors derived from spherical
harmonics [27]. The angular Fourier series is given by

b
(i)
nl =

∑
j,k

fn(rij )fn(rik) cos(lγjik) (l � 1), (9)

where γjik denotes the bond angle between atoms j-i-k. From
the comparison between Eqs. (4) and (8), the formulation
of the MLIP with angular-dependent descriptors is clearly a
generalization of the MEAM potential.

C. Derivation of MLIP atomic energy from embedding energy

We have demonstrated that the MLIP formulations can
be regarded as the generalizations of the EAM and MEAM
potentials by comparing their equations for atomic energy. We
will show that the MLIP formulations can also be derived
from the concept of embedding energy using a higher-order
approximation beyond the UDA. This derivation interprets
MLIPs. Using a higher-order approximation for the embedding
energy functional [Eq. (1)], atomic energy may be described
by a function of local electron density and its derivatives as

E(i) = F (i)[ρ(r)]

= F

(
ρ(r i),

∂ρ

∂x
(r i),

∂ρ

∂y
(r i),

∂ρ

∂z
(r i), . . .

)
. (10)

Then, the local electron density is assumed to be described
by direction-dependent contributions from neighbor atoms,
ρ(r i) = ∑

j p(r ij ). Equation (10) is rewritten as

E(i) = F

⎛
⎝∑

j

p(r ij ),
∑

j

∂

∂x
p(r ij ),

∑
j

∂

∂y
p(r ij ),

∑
j

∂

∂z
p(r ij ), . . .

⎞
⎠. (11)

Expanding the electron density contribution p using a basis
set {fn(r ij )}n=1,2,...,nmax as

p(r ij ) =
nmax∑
n=1

cnfn(r ij ), (12)

the embedding atomic energy is written as

E(i) = F̃

⎛
⎝∑

j

f1(r ij ), . . . ,
∑

j

fnmax (r ij )

⎞
⎠, (13)
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where another symbol F̃ for the embedding energy function
is derived from both function F and expansion coefficients
{cn}n=1,2,...,nmax . Replacing the vector r ij with the pair dis-
tance rij , Eq. (13) becomes the pairwise MLIP formulation.
Generally, the basis set is not necessarily pairwise. When
functions based on spherical harmonics are used as a basis
set and function F̃ satisfying the rotational invariance, the
angular-dependent MLIP [Eq. (8)] is derived. Thus, MLIP
formulations are derived from the concept of embedding
energy using an approximation beyond the UDA. This implies
that the lack of accuracy and transferability of the EAM and
MEAM potentials can be ascribed to their poor representation
for embedding energy due to the limitation of the UDA [33].

III. METHODOLOGY FOR BUILDING MLIP

A. Linearized models for atomic energy

On the basis of the relationship between MLIPs and EAM
potentials, we construct two MLIPs for the elemental Ti in this
study. The first one is constructed by a third-order polynomial
approximation of Eq. (6) expressed as

E(i) = w0 +
∑

n

wn0b
(i)
n0 +

∑
n,n′

wn0,n′0b
(i)
n0b

(i)
n′0

+
∑

n,n′,n′′
wn0,n′0,n′′0b

(i)
n0b

(i)
n′0b

(i)
n′′0, (14)

where w0,wn0,wn0,n′0, and wn0,n′0,n′′0 denote regression co-
efficients. The second one is constructed by a second-order
polynomial approximation of Eq. (8) with angular Fourier
series descriptors expressed as

E(i) = w0 +
∑
n,l

wnlb
(i)
nl +

∑
n,l,n′,l′

wnl,n′l′b
(i)
nl b

(i)
n′l′ . (15)

Here, we fixed lmax to ten. Both of the models for the atomic
energy are rewritten in the same form as

E(i) = w�b(i), (16)

using the vector b(i) = [1,b
(i)
1 , . . . ,b

(i)
M ]� composed of

the descriptors and their products, and the vector w =
[w0,w1, . . . ,wM ]� composed of the regression coefficients,
where M denotes the number of terms.

We used pairwise Gaussian-type functions as radial func-
tions fn(r) expressed as

fn(r) = fc(r) exp[−p(r − qn)2], (17)

where fc(r) denotes a cosine-type cutoff function. p and qn are
given parameters, and we used a single p value and a set of qn

values given by an arithmetic sequence. Also in the EAM and
MEAM potentials, Gaussian functions have sometimes been
used for expressing the pairwise electron density contribution.
In addition, a polynomial approximation for the embedding
energy function F has been used for EAM and MEAM
potentials. Therefore, the only difference between the MLIP
and EAM (MEAM) potentials is in the number of descriptors
being used in the formulation of atomic energy. Equations (14)
and (15) are also a generalization of our previous linearized
model where only the power of bn is considered [23,34].

B. Total energy and forces acting on atoms

The total energy of a structure is expressed by the sum of
the atomic energy. Therefore, the total energy Etotal is given as

Etotal =
∑

i

E(i) = w�x, (18)

where x = ∑
i b(i). The forces acting on atoms are given by

linear equations with respect to the regression coefficients as
well as the total energy. The βth component of the force acting
on atom a is expressed as

Fa,β = −∂Etotal

∂ra,β

= w�xforce,a,β , (19)

where ra,β denotes the βth component of the position of atom
a provided in Cartesian coordinates (see the Appendix for
details).

C. DFT data set

Training and test data sets were generated by DFT cal-
culation for 2700 and 300 atomic configurations, respec-
tively. We first optimized the atomic positions and lattice
constants of face-centered cubic (fcc), body-centered cubic
(bcc), hcp, simple cubic (sc), ω, and β-Sn structures, and
supercells were then developed by the 2 × 2 × 2, 3 × 3 × 3,
3 × 3 × 3, 4 × 4 × 4, 3 × 3 × 3, and 2 × 2 × 2 expansions
of their conventional unit cells, respectively. Atomic con-
figurations were generated by isotropic expansion, random
expansions, random distortions, and random displacements.
DFT calculations were performed using the plane-wave basis
projector augmented wave (PAW) method [35,36] within
the Perdew-Burke-Ernzerhof exchange-correlation functional
[37] as implemented in the VASP code [38,39]. The cutoff
energy was set to 400 eV. The total energies converged to less
than 10−3 meV/supercell. The lattice constants of the ideal
structures were optimized until the residual forces became
less than 10−3 eV/Å.

D. Estimation of models

The regression coefficients w are estimated by linear
regression using a training data set. In this study, the energy
and the forces acting on atoms computed by DFT calculations
are used as observations for the training data. Therefore, the
predictor matrix X and observation vector y are written as

X =
[

Xenergy

X force

]
, y =

[
yenergy

yforce

]
, (20)

where Xenergy and X force are composed of x and xforce,a,β for
all structures in the training data, respectively. Observation
vectors of energy and forces, yenergy and yforce, can be obtained
by the energy and forces acting on atoms computed by DFT
calculations, respectively. As a result, the total number of
training data is 430 650.

To estimate MLIPs, we adopt linear ridge regression,
which shrinks the regression coefficients to avoid overfitting
by imposing the L2 penalty. This method determines ridge
coefficients to minimize the sum of the residual error of squares
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FIG. 2. (a) Dependence of RMSE of MLIPs on number of terms
for elemental Ti. (b) Distribution of absolute energy difference
between DFT values and MLIPs.

and L2 penalty, that is,

L(w) = ||Xw − y||22 + λ||w||22, (21)

where λ controls the magnitude of the penalty. The solution
is easily obtained only in terms of matrix operations as w =
(X� X + λI)−1 X� y, where I denotes the unit matrix.

IV. RESULTS AND DISCUSSION

We will show the accuracy of MLIPs for elemental Ti.
We regard the root mean square error (RMSE) for the
energy of the test data set as a measure of prediction error.
Figure 2(a) shows the dependence of prediction error on the
number of regression coefficients. The number of regression
coefficients was controlled using only the number of radial
functions fn for both pairwise and angular-dependent MLIPs.
By examining the convergence of RMSE with respect to the
number of regression coefficients, we obtained an optimized
pairwise MLIP with a prediction error of 3.8 meV/atom (2925
coefficients). Similarly, we obtained an optimized angular-
dependent MLIP with a prediction error of 0.5 meV/atom
(35 245 coefficients), which means that it is very important
to consider angular-dependent descriptors for expressing the
interatomic interactions of the elemental Ti. Figure 2(b)
also shows the distribution of the absolute energy difference
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FIG. 3. Distribution of energy difference between DFT and IPs.

between DFT and MLIPs for the test data set. The distribution
for the angular-dependent MLIP is much narrower than that
for the pairwise MLIP, which is consistent with the degree of
prediction error. For the angular-dependent MLIP, more than a
hundred structures show the absolute energy difference within
only 0.1 meV/atom. In addition, some outliers can be found in
the distribution for the pairwise MLIP. A structure shows the
maximum absolute energy difference of 23.0 meV/atom of the
pairwise MLIP, whereas the absolute energy difference of
the angular-dependent MLIP does not exceed 2.8 meV/atom.

We then compare the distribution of the energy difference
between DFT and IPs for the test data, elastic constants, and
phonon dispersion relationships obtained from EAM [10] and
MEAM [17] potentials, the pairwise MLIP, and the angular-
dependent MLIP along with a reference of the DFT calculation.
Figure 3 shows the comparison of the distribution of energy
difference between DFT and IPs for the test data set. EAM
and MEAM potentials show very large energy differences for
almost the entire test data set, while both the MLIPs show very
small energy differences.

Figure 4 shows the elastic constants and bulk moduli of
(a) hcp Ti and (b) bcc Ti obtained from EAM and MEAM
potentials and the MLIPs. The elastic constants of EAM and
MEAM potentials are close to those of DFT calculation, except
for the C33 of hcp and the C44 of bcc obtained from the
EAM potential. On the other hand, the pairwise MLIP is worst
for predicting most of the elastic constants and bulk moduli
of both hcp and bcc structures, despite its small prediction
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error. Including angular-dependent terms, the prediction of
elastic constants and bulk moduli is much improved. This is
consistent with the fact that the angular-dependent descriptors
are essential for predicting the mechanical behavior of the
elemental Ti.

The phonon dispersion curves were also calculated using
the supercell approach [40] for hcp and bcc structures with
the DFT equilibrium lattice constant. To evaluate a dynamical
matrix, each symmetrically independent atomic position was
displaced by 0.01 Å. The forces acting on atoms were
then computed. Supercells were fabricated by the 4 × 4 × 4
expansion of conventional unit cells for both hcp and bcc
structures. Phonon calculations were performed using the
PHONOPY code [41]. Figure 5 shows the phonon dispersion

curves of (a) hcp and (b) bcc structures computed from
EAM and MEAM potentials, and the MLIPs. As shown
in Fig. 5, the phonon dispersion curves from EAM and
MEAM potentials differ largely from that obtained by DFT
calculation. Imaginary phonon modes are observed in the
DFT phonon dispersion for the bcc structure, but not in the
EAM and MEAM phonon dispersions. Although the pairwise
MLIP reproduces the DFT phonon dispersion better than
the EAM and MEAM potentials, phonon frequencies tend to
be overestimated. The angular-dependent MLIP significantly
improves the inconsistency of phonon frequency.

V. SUMMARY

In summary, this study provides both conceptual and
practical bases for the high accuracy of MLIPs. We have
shown that MLIPs can be regarded as a description of
embedding energy beyond the UDA, which is a fundamental
approximation of both EAM and MEAM potentials. In other
words, the high accuracy of MLIPs is based on the use of
a higher-order approximation of embedding energy. We have
then applied a linearized MLIP approach to the elemental Ti,
which is also a generalization of the MEAM potential. An
angular-dependent linearized MLIP predicts the energetics and
phonon frequencies much more accurately than the existing
MEAM potentials. The only difference between the MEAM
potentials and linearized MLIP is in the number of descriptors
being used. This indicates that the use of a systematic set of
numerous descriptors is the most important practical feature
for building MLIPs with high accuracy.
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APPENDIX: FORCES ACTING ON ATOMS

The force acting on atoms is obtained from the derivative
of the total energy with respect to the atomic position given in
Cartesian coordinates, expressed as

Fa,β = −∂Etotal

∂ra,β

= −
M∑

m=0

wm

∂xm

∂ra,β

. (A1)

In the first model, xm corresponds to each of the following
terms,

∑
i b

(i)
n0,

∑
i b

(i)
n0b

(i)
n′0, and

∑
i b

(i)
n0b

(i)
n′0b

(i)
n′′0. The derivative

of b
(i)
n0 with respect to ra,β is simply given as

∂b
(i)
n0

∂ra,β

=
∑

j

f ′
n(rij )

∂rij

∂ra,β

. (A2)

The derivatives of b
(i)
n0b

(i)
n′0 and b

(i)
n0b

(i)
n′0b

(i)
n′′0 are calculated using

the derivative of b
(i)
n0, expressed as

∂b
(i)
n0b

(i)
n′0

∂ra,β

= ∂b
(i)
n0

∂ra,β

b
(i)
n′0 + b

(i)
n0

∂b
(i)
n′0

∂ra,β

(A3)

and

∂b
(i)
n0b

(i)
n′0b

(i)
n′′0

∂ra,β

= ∂b
(i)
n0

∂ra,β

b
(i)
n′0b

(i)
n′′0 + b

(i)
n0

∂b
(i)
n′0

∂ra,β

b
(i)
n′′0

+b
(i)
n0b

(i)
n′0

∂b
(i)
n′′0

∂ra,β

. (A4)

In the second model, xm corresponds to each of the
following terms,

∑
i b

(i)
nl and

∑
i b

(i)
nl b

(i)
n′l′ . Although b

(i)
nl is a

three-body descriptor, we compute b
(i)
nl using only two-body

operations. Using the Chebyshev polynomial

Tl(cos γ ) = cos(lγ ) =
∑
m

Tlm cosm γ, (A5)

bnl is rewritten as

b
(i)
nl =

∑
j,k

fn(rij )fn(rik) cos(lγjik)

=
∑
m

Tlm

∑
j,k

fn(rij )fn(rik) cosm γjik. (A6)

Then,∑
j,k

fn(rij )fn(rik) cosm γjik

=
∑
j,k

fn(rij )fn(rik)

(
xij xik + yij yik + zij zik

rij rik

)m

=
∑

p+q+r=m

m!

p!q!r!

∑
j,k

fn(rij )fn(rik)
x

p

ij y
q

ij z
r
ij x

p

iky
q

ikz
r
ik

rm
ij rm

ik

=
∑

p+q+r=m

m!

p!q!r!

⎛
⎝∑

j

fn(rij )
x

p

ij y
q

ij z
r
ij

rm
ij

⎞
⎠

2

, (A7)

where xij ,yij , and zij denote components of the vector between
atoms i and j . Therefore, b(i)

nl is computed using the following
equation,

b
(i)
nl =

∑
m

Tlm

∑
p+q+r=m

m!

p!q!r!

⎛
⎝∑

j

fn(rij )
x

p

ij y
q

ij z
r
ij

rm
ij

⎞
⎠

2

.

(A8)

The derivative of b
(i)
nl is also computed from Eq. (A8) as

∂b
(i)
nl

∂ra,β

=
∑
m

Tlm

∑
p+q+r=m

m!

p!q!r!

∂
(∑

j fn(rij )
x

p

ij y
q

ij z
r
ij

rm
ij

)2

∂ra,β

=
∑
m

Tlm

∑
p+q+r=m

m!

p!q!r!
2

⎛
⎝∑

j

fn(rij )
x

p

ij y
q

ij z
r
ij
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The derivative of b
(i)
nl b

(i)
n′l′ is calculated using the derivative of

b
(i)
nl in a similar way to Eq. (A3).
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