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Mesoscale plastic texture in body-centered cubic metals under uniaxial load
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We develop a minimal continuum dislocation dynamics model for slip in bcc metals that accounts explicitly
for non-Schmid behavior of screw dislocations in these materials. The dislocation substructure is represented by
a continuum distribution of 1/2[111] screw dislocations moving on three possible {110} planes according to the
flow rule that describes the response of isolated screw dislocations to external loads. The cross-slip of dislocations
is assessed using the master equation which takes into account different energy barriers for dislocations moving
on the three slip planes. To demonstrate the performance of the model, we study the buildup of plastic strain at
77 K in both tension and compression for a number of loading directions covering the entire area of the standard
stereographic triangle. The non-Schmid behavior of screw dislocations is shown to persist to the continuum level,
whereby interactions between dislocations merely affect the rate of plastic flow.
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I. INTRODUCTION

Plastic deformation of crystalline solids is a complex
process that takes place on a wide range of length scales
and involves a variety of dislocation mechanisms. At the
length scale comparable with interatomic distances and the
time scale short compared with the mean inverse frequency of
dislocation reactions, the plastic deformation may be viewed
as the motion of individual dislocations driven by the external
load. This is often considered to be uniform in the region inside
which the dislocation glide is investigated. Such studies have
been made using pair potentials [1], empirical central-force
many body potentials [2,3], and potentials that explicitly take
into account the quantum mechanical aspects of bonding
and thus include the directionality of atomic bonds [4–6].
The latter are indispensable in understanding the fundamental
mechanisms responsible for different behavior of dislocations
in non-close-packed structures in contrast with close-packed
metals [7].

Understanding the evolution of dislocation substructure at
the microscale and the macroscopic behavior of materials
requires a physically based coarse-graining methodology that
is both based on correct physics and is computationally effi-
cient. This may be accomplished by treating each characteristic
scale with a different model and requiring that the predictions
of these different models match at the boundaries of their
validity. This approach allows one to treat each length scale
with the right physics by employing methods based on first
principles [8], atomistic models [3], discrete dislocation dy-
namics [9], and crystal plasticity finite element methods [10].
The main challenge of this methodology is to combine these
conceptually different methods into one unified framework,
where the results of the lower-level simulation represent input
into the higher-level model [11,12]. A conceptually different
but theoretically not less demanding approach is to develop
a field-theoretical model rooted at the mesoscale that is
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purported to describe some range of length and time scales of
interest [13]. This requires that the formulation of the model
captures as closely as possible the essential physics responsible
for the microstructure evolution on these scales.

Due to the inherent difficulty in treating many scales by
a single model, most approximate descriptions of plasticity
developed so far assume isotropic elasticity to describe long-
range interactions between dislocations [14,15]. Moreover,
they take the plastic flow of close-packed metals as a paradigm
and tacitly assume the validity of the Schmid law that is
inherent in von Mises and Tresca yield criteria. This approach
is fully justified in the metals with close-packed structures (fcc
and hcp) since in this case the only stress component involved
in the planar dislocation glide is the shear stress in the slip
direction (Burgers vector) in the slip plane and the Schmid
law applies. However, this is not the case in a large class of
crystalline materials with more open crystal structures [16],
in particular body-centered cubic (bcc) metals in which the
Schmid law is well known to break down [7]. The reason
is that in these metals the plastic deformation is controlled
by the motion of screw dislocations, which is opposed by
a large lattice friction arising from their nonplanar cores
[7,16–19]. This nonplanarity of dislocation cores leads to an
intrinsic asymmetry of the Peierls barrier and this asymmetry
is even further enhanced during core transformations induced
by applied stresses. The motion of screw dislocations is
thus a thermally activated process [20,21] during which the
dislocation core is transformed so as to overcome local Peierls
barriers, which generally depend on the full applied stress
tensor. Hence the activation enthalpy for this process is a
nontrivial function of the applied stress tensor.

In principle, it could be determined using molecular dy-
namics. An alternative is to employ an approximate physically
justified model of thermally activated dislocation glide. Such
model has been proposed, for example, by Dorn and Rajnak
[22] and recently advanced to take into account the full applied
stress tensor [23]. It was proposed recently that the Peierls
barrier and its stress dependence can be determined using the
nudged elastic band (NEB) method [24]. The ensuing model
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FIG. 1. Computational cell and its periodic tiling: (a) discretization of the simulation cell by equilateral triangular elements; (b) periodic
tiling of the simulation grid in (a) using two primitive translation vectors t1 and t2. All 1/2[111] screw dislocations and their Burgers vectors
are perpendicular to the plane of the figure.

of the dislocation motion then determines the stress at which
the glide of a single screw dislocation is initiated [23,24].

In recent years, there has been an increased interest in
formulating continuum models of plastic deformation for
bcc metals using the yield criteria that capture the break-
down of the Schmid law in these materials [25,26] and a
similar development has been taking place in the discrete
dislocation dynamics [27,28]. In this paper we employ the
above-mentioned model of the thermally activated dislocation
motion [23] in developing a mesoscopic description of the
plastic flow that incorporates all non-Schmid effects found
in previous molecular statics simulations of isolated screw
dislocations at 0 K [29]. Specifically, these include the well-
known twinning-antitwinning asymmetry of the flow stress
that is controlled by the shear stresses in the directions of the
Burgers vectors applied in the planes of dislocation glide, as
well as shear stresses perpendicular to the Burgers vectors
[19,29]. Besides respecting elastic anisotropy of bcc metals
when evaluating the long-range elastic fields of dislocations,
this model contains also the effects of temperature and plastic
strain rate.

II. THEORETICAL BACKGROUND

Molecular statics simulations [19,29] provide ample evi-
dence that isolated 1/2〈111〉 screw dislocations move under
stress at 0 K by elementary steps on three {110} planes in
the zone of the 〈111〉 axis. We have asserted before [29] that
the macroscopically observed slip on other planes such as
{211} or {321} can be explained by composite slip of the
dislocation on two adjacent {110} planes. In the following,
we thus consider the simplest nontrivial computational cell
shown in Fig. 1(a), whereby 1/2[111] screw dislocations may
move between the nearest lattice sites on three different {110}
planes, in particular (1̄01), (01̄1), and (1̄10). Both positive
and negative orientations of these dislocations are taken into
account, which results in six relevant slip systems in our
model. These are (1̄01)[111], (01̄1)[111], (1̄10)[111] and their

conjugates (1̄01)[1̄1̄1̄], (01̄1)[1̄1̄1̄], (1̄10)[1̄1̄1̄]. Hereafter, the
first three slip systems will be referred to by the superscript
s+ and the latter three by the superscript s−.

The simulation cell in Fig. 1(a) will be discretized with
equilateral triangles. This is necessary to avoid numerical
artifacts when differentiating the dislocation density along
nonorthogonal slip planes, as argued already in Ref. [30].
The dislocation density will be represented by the scalar
field ρ(x) = Nd (x)/S⊥, where Nd is the number density of
dislocations at the position x piercing the area S⊥, which will
be taken as the area of each triangular cell in Fig. 1(a). In
the calculations, the dislocation density will be resolved at
the corners of the grid as ρn, where n = 1, . . . ,nnode, where
nnode is the number of nodes of the grid. For the purpose of
visualization, ρn will be interpolated into the interior of each
triangular cell using the three-node bilinear shape functions.
The simulation cell is assumed to be periodic along the
trace of each {110} plane, as shown in Fig. 1(b). This is
accomplished using two translation vectors t1 = L(1,0) and
t2 = L(0.5,

√
3/2), where L is the width of the block along

any of the three {110} planes.
The stress field due to an arbitrary dislocation density is

calculated using Stroh’s sextic theory [31], explained in the
book of Hirth and Lothe [32]. If the stress field corresponding
to Nn

d dislocations at the node n, whose position is xn
d , in an

infinite simulation cell is σ∞(x; xn
d ), the total stress field due to

a triangular array of these dislocations with nearest neighbor
separation equal to L is

σ (x; xn
d ) =

∞∑
i2=−∞

∞∑
i1=−∞

σ∞(
x; xn

d + i1 t1 + i2 t2
)
. (1)

The total stress field due to dislocations assigned to all nnode

nodes is then obtained as

σ (x) =
nnode∑
n=1

σ
(
x; xn

d

)
. (2)
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FIG. 2. Stress field around the 1/2[111] screw dislocation at the
origin due to a superposition of the like dislocations generated by
periodic boundary conditions. The color map ranges from dark blue
(largest negative value) via gray (zero) to dark red (largest positive
value). It is symmetric in all figures but differs for each component
in order to visualize its spatial variation. These fields were calculated
using the elastic constants for bcc Mo.

For practical purposes, it is sufficient to consider only the terms
in (1) that correspond to a few smallest absolute values of i1

and i2. Here, we have considered i1 and i2 to range from −1 to
1 and verified that the results of the simulation did not change
significantly when more images were taken into account.

For illustration, the stress field around a 1/2[111] screw
dislocation in a periodic triangular array of the like dislocations
is shown in Fig. 2. All components of the stress field are
nonzero which is unlike the well-known elastic solution for
isotropic materials, where only the σ13 and σ23 components are
nonzero [32]. This complexity arises due to a combination of
the elastic anisotropy of the material and the special orientation
of the simulation block, where the three axes are not parallel
to 〈100〉 directions.

We implicitly assume the existence of dislocation sources
and annihilations between dislocations in that the two pro-
cesses result in a steady-state evolution of the dislocation
density ρ. Hence the evolution law for the dislocation density
takes the form of the continuity equation

ρ̇s± + (
ρs±vs±

l

)
,l

= 0, (3)

where comma means differentiation with respect to individual
coordinate axes. Because the motion of 1/2〈111〉 screw dis-
locations in bcc metals is thermally activated, their velocities
are [21,33]

vs± = ±v0 exp

(
−Hs

act

kT

)
, (4)

where v0 is related to the frequency of dislocation oscillations
in the ground state and Hs

act is the activation enthalpy to
move the dislocation on the slip system s. The velocity
vs± is assigned the direction that moves the dislocations in

positive/negative direction on the slip plane corresponding to
the system s.

We have shown in previous studies that the Peierls stress
of a single dislocation is a nontrivial function of the shear
stresses parallel and perpendicular to the slip direction, which
are referred to in the following as nonglide stresses. These
data gave rise to the stress dependence of the activation
enthalpy that was investigated in [24,34] for a large number of
combinations of the shear stresses parallel and perpendicular
to the slip directions and orientations of the plane in which
the shear stress parallel to the slip direction is the largest, the
so-called maximum resolved shear stress plane (MRSSP). It
has been shown in [34] that the activation enthalpy can be
closely approximated as

Hs
act = A

{
B − tanh

[
C

(
log

τ ∗s

τ ∗
cr

+ D

)]}
, (5)

where τ ∗s is an effective stress that involves a particular
combination of stresses exerted on the slip system s and
includes all effects of nonglide stresses. The critical value
of the effective stress is the yield stress τ ∗

cr for which the
dislocation will move at 0 K. The coefficients A, B, C, D are
obtained by the following reasoning. If the applied stress on
some slip system s is zero, i.e., also τ ∗s = 0, Hact reaches its
maximum which is the energy of two isolated kinks, 2Ek . This
is typically obtained from experiments at the temperature for
which the dislocation glide ceases to be thermally activated,
i.e., the temperature dependence of the flow stress reaches a
plateau. The other extreme is when τ ∗s reaches τ ∗

cr for which
the dislocation is moved purely mechanically without the need
for any thermal activation and thus Hs

act = 0. Due to these
constraints, only two coefficients in (5) are independent and
were determined in [34] by fitting the dependence of Hs

act
on τ ∗s/τ ∗

cr for the most highly stressed slip system s, i.e.,
(1̄01)[111], using the models developed in Refs. [22,23].

A particularly simple form of the effective stress τ ∗s in
(5), proposed by Qin and Bassani [35], involves a linear
combination of four stresses, two of which are parallel and
two perpendicular to the slip direction,

τ ∗s = τ s
0 + a1τ

s
1 + a2τ

s
2 + a3τ

s
3 , (6)

where τ s
0 = m̂s�n̂s is the shear stress parallel to the slip

direction (unit vector m̂s) and acts in the slip plane with
unit normal n̂s . The total stress � is obtained as a sum of
the externally applied load σ ext and the internal stress σ int

due to the superposition of the stress fields of all dislocations
and their images. The second term of (6) is τ s

1 = m̂s�n̂s
1 and,

together with the first term, captures the twinning-antitwinning
asymmetry observed in all bcc metals. The last two terms, τ s

2 =
(n̂s × m̂s)�n̂s and τ s

3 = (n̂s
1 × m̂s)�n̂s

1, capture the influence
of shear stresses perpendicular to the slip direction on the
activation of individual slip systems. So far, the coefficients
a1, a2, a3 and the yield stress τ ∗

cr have been estimated only for
bcc Mo and W [36]; the parametrizations for Ta, Nb, V, Cr,
and α-Fe are underway.

The conserved continuum dislocation dynamics (3) must
be complemented by a model of thermally activated cross-
slip of dislocations. The probability with which the dislo-
cation density ρs appears in the total dislocation density is
P s = ρs/

∑
s ′ ρs ′

, where
∑

s P s = 1. The associated master
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FIG. 3. Orientations of the applied load considered for meso-
scopic simulations carried out in this paper. The standard stereo-
graphic triangle is divided into three regions marked I, II, III each
of which corresponds to a different slip activity and thus the plastic
texture. Here, χ is the angle between the (1̄01) plane and the MRSSP
corresponding to a particular loading axis.

equation [37] is then

dP s

dt
=

∑
s ′(	=s)

(νs ′→sP s ′ − νs→s ′
P s), (7)

where the first term corresponds to dislocations cross-slipping
to s from other systems s ′ and the second term to dislocations
cross-slipping from s to other systems s ′. The rate of cross-slip
of the dislocation from the slip system s to another system s ′
is defined as νs→s ′ = ν0 exp(−Hs ′

act/kT ).
The new dislocation density in the slip system s after

the thermally activated cross-slip event is then ρs(t + �t) =
P s(t + �t)

∑
s ′ ρs ′

(t), which reassigns dislocations to indi-
vidual slip systems while preserving the total number of
dislocations. Without the assumption of steady state with
respect to the generation and recombination of dislocations,
this equation should be complemented also by the rates of
dislocation generation and annihilation [38].

III. MESOSCOPIC TEXTURE UNDER UNIAXIAL LOAD

In the following simulations, we demonstrate the
performance of the model by investigating the evolution of
mesoscopic texture for loading in tension and compression
along the axes shown in Fig. 3 and comparing it to existing ex-
perimental observations of slip traces. We consider bcc Mo for
which the following parameters were used: atomic-level lattice
parameter, a0 = 3.1472 Å [6]; mesoscopic lattice parameter,
a = 100a0 ≈ 31.4 nm; temperature, T = 77 K; elastic
constants, C11 = 464.7 GPa, C12 = 161.5 GPa, and
C44 = 108.9 GPa [6]; parameters of the yield criterion,
a1 = 0.24, a2 = 0, a3 = 0.35, and τ ∗

cr = 1014 MPa [36];
parameters of the activation enthalpy, A = 0.90, B = 0.41,
C = 0.60, and D = 0.73 [34]; velocity of free dislocations,
v0 = 1 cm/s [39,40]; maximum cross-slip frequency is
chosen as ν0 = 102 s−1. The hexagonal simulation cell was
discretized by 7080 triangular elements with 30 elements
along the trace of each {110} plane. This yields the width

of the simulation cell, and thus periodicity along the three
planes, of approximately 1 μm.

The elementary shear strain generated by a moving group
of dislocations in the slip system s during the time step �t

can be obtained as a scalar field �γ s± = ρs±bvs±�t , which
is a time-discretized version of the Orowan equation [32]. The
plastic strain due to all positive and negative dislocations in
the six slip systems is then �γ = ∑

s (�γ s+ + �γ s−). The
cummulative plastic strain at each point of the grid generated
by dislocations in all slip systems between the time t = 0 and
any further time T is then γ = ∑T

t=0 �γ (t).
The evolution of the density of positive and negative dislo-

cations in the three slip systems (ρs±) has been calculated by
the method developed in the preceding section and terminated
when the total dislocation density assigned to the three slip
systems no longer changes. The steady-state scalar fields γ (x)
obtained for three characteristic orientations in the regions I,
II, III in Fig. 3 are shown in Fig. 4.

The calculated plastic texture γ (x) for loading directions in
the region II of the stereographic triangle is shown in Fig. 4(b)
for tension and in Fig. 4(e) for compression. In both cases, the
plastic deformation occurs predominantly due to dislocations
moving on (1̄01) planes, which is the most highly stressed
{110} plane of the [111] zone. For loading directions in the
region III of the stereographic triangle, shown in Fig. 4(c)
for tension and in Fig. 4(f) for compression, most of the
slip activity arises due to screw dislocations moving on (1̄10)
planes, which is manifested by strong texture along the trace of
this plane. For loading in compression, the plastic deformation
occurs also on the (1̄01) plane, but this represents only a minor
contribution to the overall plastic strain. Figures 4(a) and 4(d)
show the plastic texture for loading in tension and compression
in the region I of the stereographic triangle. In both cases, most
of the slip activity takes place on the (1̄01) plane. The loading
in compression also activates secondary slip on the (01̄1) plane,
which is often associated with anomalous slip [41]. Depending
on the precise orientation of the loading axis, this amounts to
at most 30% of the total plastic strain.

For comparison, we plot in Fig. 5 the histogram that
shows for each loading axis the amount of slip contributed
by dislocations moving on the three {110} planes under
tension and compression. The (1̄01) slip controls the plastic
flow for loading in the center-triangle orientations up to
roughly halfway towards χ = ±30◦. For loading axes in the
region of large positive χ , the plastic flow is predominantly
due to dislocations moving on (1̄10) planes, with minor
contribution of the (1̄01) slip. This non-Schmid behavior is
more significant in tension than in compression. On the other
hand, loading in compression corresponding to χ → −30◦
generates anomalous slip on the (01̄1) plane. The prominence
of this anomalous slip reaches about 30% for the loading axis
corresponding to the most negative value of χ considered here.
It should be emphasized that the observation of slip on (01̄1)
and (1̄10) planes is due primarily to the third and fourth terms
in (6) and their effects on the parameters A, B, C, and D in (5).

The results for tension compare well with the experiments
on high-purity Mo single crystals by Kitajima et al. [42]
made at 4.2 K and those carried by Aono et al. [43] at 77
K, both of which reveal slip traces on the (1̄01) plane for
most orientations in the stereographic triangle. For loading
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Steady-state plastic texture represented by the cummulative plastic strain γ (x) obtained for uniaxial loading at 77 K along the axes
shown in Fig. 3: (a) tension [0 1 14], (b) tension [2̄38], (c) tension [5̄89], (d) compression [0 1 14], (e) compression [2̄38], and (f) compression
[5̄89]. The primary slip plane that carries most of the plastic strain is marked by solid line and the secondary slip plane by dashed line. The
scale bar is the same in all figures. The color scale corresponds to the values of γ between −1.5 × 10−3 (black) and 1.5 × 10−3 (white).

directions close to its [011] − [1̄11] edge, these experiments
show slip predominantly on the (1̄10) plane. For very low
temperatures (cf. 4.2 K experiments [42]), the change of the
slip plane occurs abruptly as the loading direction reaches the
[011] − [1̄11] edge of the triangle. This transition becomes
more gradual at 77 K [43], where the transition from the (1̄01)
slip to the (1̄10) slip takes place for χ = 5–15◦ for tension
and χ = 15 − 20◦ for compression. Our results obtained for

FIG. 5. Histogram showing the fractions of the total plastic strain
contributed by slip on the three {110} planes for loading in tension
(upper part) and compression (lower part) along the axes in Fig. 3.
The blue and purple bars correspond to the mesoscopic plastic texture
that cannot be reconciled with the Schmid law.

compression agree well with the experiments of Jeffcoat et al.
on pure Mo [44] and on dilute Mo-Nb and Mo-Re alloys
[45], where compression along the direction in the central
part of the stereographic triangle resulted in dominant slip
on the (1̄01) plane. The partial change of the slip plane for
χ > 10◦ from (1̄01) to (1̄10) predicted in the previous section
agrees with the slip trace analyses in Refs. [44,45], where
compression in the directions closer to the [011] − [1̄11] edge
of the stereographic triangle resulted in “irrational slip” on
two different high-index planes, one close to (1̄01) and the
other close to (1̄10). Our observations made for compression
at χ  0◦ are in qualitative agreement with the slip trace
analyses in Refs. [44,45]. The predicted minor role of the
(01̄1) anomalous slip in Mo under compression close to the
[001] corner of the stereographic triangle agrees with the
experiments of Marichal et al. on W [46,47], where it amounts
only to 9% of the total plastic strain.

The most important aspect of the computer simulations
made in this paper is that the non-Schmid behavior of isolated
dislocations persists to higher temperatures. This enters the
model through the parametrization of the activation enthalpy
(5) and the effective yield criterion (6), both of which in general
differ from material to material as shown by comparing Mo
and W in Refs. [23,29,36]. The glide of dislocations in VIB
group metals (Cr, Mo, W) on (01̄1) planes represents only a
minor contribution to the overall plastic strain [45–47]. On the
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contrary, in VB metals (V, Nb, Ta), the anomalous (01̄1) slip is
a dominant mode of plastic deformation at low temperatures
[48–50]. The parametrization of the effective yield criteria and
activation enthalpies for these materials is currently underway
and will be used in the future to demonstrate the universality
of the model developed here.

IV. CONCLUSIONS

We have developed a minimal version of a continuum
dislocation dynamics for glide of 1/2[111] screw dislocations
on three different planes of the [111] zone. The dislocation
content is described as densities of positive and negative
dislocations in each system that evolve in response to the
stress fields exerted on each dislocation by the applied stress,
other dislocations, and their periodic images. The velocities
of dislocations are determined from the activation enthalpy
that has been determined with the help of molecular statics
simulations of 1/2[111] screw dislocations under the uniform
applied stress. The probability of the cross-slip of screw
dislocations into other slip planes has been evaluated using
the master equation, where the rate of cross-slip depends on
the activation enthalpy to move the dislocation on the cross-slip
plane.

This model has been used to study the evolution of plastic
strain generated by the collective motion of a large number
of positive and negative 1/2[111] screw dislocations on their
three {110} slip planes. These simulations have been made for
tension and compression at 77 K for a number of loading axes
covering the entire area of the standard stereographic triangle.
Although the glide of dislocations is driven by the shear stress
parallel to the slip direction acting in the slip plane (the Schmid
stress), it is also significantly affected by the shear stresses
parallel to the slip direction acting in different {110} planes
and the shear stresses perpendicular to the slip direction. In
all cases, interactions between dislocations only renormalize
the critical stress at which dislocations move (and thus the
time scale on which the dislocation density evolves) but do not
modify the non-Schmid behavior of individual dislocations.

For loading the Mo single crystal along the directions in
the central part of the stereographic triangle, the 1/2[111]

dislocations move on the (1̄01) plane, which is the plane
with the highest resolved shear stress parallel to the slip
direction. This agrees well with the prediction of the Schmid
law. However, the slip mechanism differs significantly for
directions close to the [001] corner and [011] − [1̄11] edge
of the triangle. For directions close to the [011] − [1̄11] edge,
most of the plastic strain is due to dislocations moving on
the (1̄10) plane with only a minor contribution of the (1̄01)
slip in the case of compression. On the other hand, for the
directions close to the [001] corner of the triangle, most of
the plastic strain is carried by dislocations moving on the
(1̄01) plane with a minor contribution from the (01̄1) slip in
compression. These predictions agree well with available low-
temperature experiments on high-purity Mo single crystals
made under tension and compression [42–45]. The estimate
of the amount of anomalous slip compares well with recent
microcompression experiments [46,47].

The conceptual simplicity of the mesoscopic model devel-
oped in this paper allows for systematic incorporation of dis-
location sources and recombinations of opposite dislocations.
The main ingredients that distinguish this model from existing
phenomenological models is that it explicitly takes into ac-
count the non-Schmid contributions to the activation enthalpy
and thus to the flow stress of individual isolated 1/2[111] screw
dislocations. The mesoscopic model formulated here will be
extended in the future to shed light onto the mechanisms that
cause vastly different prominence of anomalous slip on the
(01̄1) plane in the metals of VB and VIB group as well as to
investigation of the dislocation substructure in α-Fe.
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