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Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

Zeeshan Ahmad
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Venkatasubramanian Viswanathan*

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
and Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

(Received 6 July 2017; published 24 October 2017)

We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic
mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied
within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and
faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability
of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials.
Results show a high degree of variability in the stability parameter depending on the crystallographic orientation
of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.
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I. INTRODUCTION

Solid-solid interfaces are ubiquitous in several important
engineering applications such as epitaxial thin films [1], solid-
state batteries [2,3], solid-oxide fuel cells [4], and solid-state
electrolysis [5,6], and are observed in nature in sedimentary
rocks and porous materials with the formation of irregular
interfaces called stylolites [7]. In particular, electrodeposition
at solid-solid interfaces is of great interest due to the possibility
of obtaining safer and higher-energy density batteries based
on Li and other metal anodes. These anodes rely on plating
rather than intercalation and have eluded all attempts at
functioning in liquid-solid interfaces due to unstable surface
layers and electrodeposition resulting in the formation of
dendrites [8–12]. Dendrites have also been observed during
electrodeposition at solid-solid interfaces such as during the
solid-state electrolysis of Cu [6] and Li-garnet solid electrolyte
interfaces [13]. Controlling the growth of dendrites during
electrodeposition at a solid electrolyte-metal interface could
enable the use of metal anodes, especially Li [14], on which
several high-energy density batteries such as Li-O2 and
Li-S rely [15–17]. Solid electrolyte systems also offer the
advantages of improved safety, absence of leakage, better
chemical and mechanical stability, and the possibility of
miniaturization through thin-film processing techniques for
integration in devices such as laptops and cellphones [18,19].

The stresses generated at the interface between the solids are
expected to play a major role in the reactions occurring at solid-
solid interfaces. The key role of interfacial stresses in affecting
the rates of electrodeposition was analyzed in a seminal work
by Monroe and Newman [20]. They further analyzed the
interfacial stability of Li-solid polymer electrolyte systems
within linear elasticity theory and showed by using a kinetic
model that solid polymer electrolytes with a sufficient modulus
are capable of suppressing dendrite growth [21]. In a recent
work, we extended the analysis to include the case of inorganic
solid electrolytes [22]. The key difference between a solid
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polymer electrolyte and a solid inorganic electrolyte is that
they possess vastly different partial molar volumes of Li,
which strongly affects the role of hydrostatic stresses at the
interface [22]. We showed the existence of a new stable regime
that is a density-driven stabilizing mechanism in addition
to the pressure-driven stability mechanism identified earlier.
However, both of these earlier analyses invoke the assumption
of an isotropic elastic response for the two solid materials.
This assumption may generally not hold for the metal phase,
Li, since it has an anisotropy factor of 8.52 [23], and the solid
electrolyte phase [24]. The shear and elastic modulus vary
by a factor of ∼4 between the stiffest and most compliant
directions. The anisotropy arises when the interface properties
are dominated by one particular crystal orientation rather than
an average over all crystal orientations. This may occur, for
example, when the surface of the solid in contact is single crys-
talline. Even for bulk isotropic materials, the local mechanical
response may be anisotropic as dictated by the crystallographic
orientation of the surfaces in contact [1]. In such a case, the
anisotropic stress-strain relations corresponding to the crystal
orientation should be used [25,26]. In this paper, we relax
the assumption of isotropy and analyze electrodeposition at
solid-solid interfaces for anisotropic elastic materials.

In Ref. [22], we have constructed a generalized two-
parameter stability diagram of electrodeposition for isotropic
solid-solid interfaces. In this paper, along similar lines, we
develop a continuum mechanics-based theory to analyze the
stability of electrodeposition at interfaces with an anisotropic
mechanical response. The interface stability is studied using a
linear stability analysis similar to the Mullins-Sekerka [27,28]
and Asaro-Tiller-Grinfeld approach [29,30] while incorporat-
ing the full anisotropy of the elastic tensor of the materials
at the interface. The Stroh formalism used faithfully captures
the boundary conditions of perturbation imposed in the linear
stability analysis as well as the vanishing of deformations and
stresses far from the interface. The differences between the
three cases of isotropic-isotropic, isotropic-anisotropic, and
fully anisotropic interfaces are highlighted through the defor-
mation fields obtained and the stability diagrams. As expected,
the partial molar volume/density of the metal in the solid
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electrolyte greatly changes the condition for stable
electrodeposition [22,31]. This paper is organized as
follows. In Sec. II, we develop the treatment of anisotropy
in the elastic tensor used throughout the paper. Some
differences encountered in the electrodeposition at solid-solid
interfaces are also highlighted. In Sec. III, we apply the Stroh
formalism to solve deformation equations obtained on a
linear perturbation. In Sec. IV, we generate stability diagrams
and calculate the stability parameter, which is a measure of
stability. In Sec. V, we comment on and discuss some general
principles of the stability diagrams obtained. We end with
concluding remarks in Sec. VI.

II. THEORY

In this section, we develop the procedure used to compute
the deformation and stress profiles for anisotropic materials
including the crystallographic orientation-dependent elastic
tensor, and the theory of electrodeposition at solid-solid
interfaces.

A. Stroh formalism

The Stroh formalism [32,33], based on the Eshelby-Read-
Shockley formalism [34], is a mathematically powerful tool for
solving two-dimensional problems in anisotropic linear elas-
ticity. A two-dimensional analysis should suffice for our prob-
lem of determining stability, since the major features required
for determining stability can be generated—perturbation of a
given wave number, surface tension, interfacial stresses, etc.
In what follows, we shall develop the Stroh formalism for a
two-dimensional elasticity problem [25] and explicitly write
down the expressions for the deformation and stress fields in
terms of the elastic tensor of the material.

We denote the deformation and stress fields by u and σ . For
force balance, the necessary condition for the stress field is

div(σ ) = 0. (1)

The stress can be related to the deformation field using the
linear elasticity relationship for anisotropic materials,

σij = Cijkluk,l . (2)

Here, uk,l indicates the differentiation of uk with respect to
xl , i.e., uk,l = ∂uk/∂xl . Subsequently, we use the comma in
subscript to indicate differentiation with respect to indices
placed after it. The repeated indices are summed over as in the
Einstein summation convention. Substituting the stress from
Eq. (2) into the force balance and using the symmetries of σ ,
we obtain

Cijkluk,lj = 0. (3)

For the two-dimensional problem, Eq. (3) is a second-
order homogeneous differential equation in the independent
variables x1 and x2. The deformation u will generically depend
on a linear combination of x1 and x2, i.e., u = af (x1 + px2).
Differentiating uk with respect to xl and xj , and plugging in
Eq. (3), we get

Cijkl(δj1 + pδj2)(δl1 + pδl2)ak = 0 (4)

⇒ [Ci1k1 + p(Ci1k2 + Ci2k1) + p2Ci2k2]ak = 0. (5)

In terms of the tensors Rik = Ci1k1, Sik = Ci1k2, and Tik =
Ci2k2, Eq. (5) becomes

⇒ [R + p(S + ST ) + p2T ]a = 0. (6)

This is an eigenvalue equation with eigenvalue zero and
eigenvector a. For solutions to exist, we must have

det[R + p(S + ST ) + p2T ] = 0. (7)

This gives a sixth degree equation which can be solved for
p. The stress tensor associated with this deformation can be
calculated using

σi1 = (Rik + pSik)akf
′(x1 + px2), (8a)

σi2 = (Ski + pTik)akf
′(x1 + px2). (8b)

The stress can be written in terms of the stress function ϕ,

ϕi = bif (x1 + pix2),

b = (ST + pT )a = − 1

p
(R + pS)a,

σi1 = −ϕi,2, σi2 = ϕi,1. (9)

The solutions to p will be complex with a nonzero
imaginary part. Since the solutions will occur as complex
conjugates, in the absence of degeneracies, we can write the
deformation and stress as linear combinations of the individual
solutions with Im(pα) > 0,

u = 2 Re

{
3∑

α=1

qαaαfα(x1 + pαx2)

}
, (10a)

ϕ = 2 Re

{
3∑

α=1

qαbαfα(x1 + pαx2)

}
. (10b)

The above result may be written in compact form us-
ing the matrices A = [a1 a2 a3], B = [b1 b2 b3], F =
diag[f (x1 + p1x2) f (x1 + p2x2) f (x1 + p3x2)], and con-
stants q = [q1 q2 q3]T ,

u = 2 Re{AFq}, (11a)

ϕ = 2 Re{B Fq}. (11b)

The procedure for the degenerate case of the isotropic
material is mentioned in Appendix A.

B. Electrodeposition at solid-solid interfaces

During electrodeposition, the metal ions present in the solid
electrolyte are reduced at the metal anode according to the
reaction

Mz+ + ze− � M. (12)

The metal surface x2 = f (x1,t) grows in response to the
current density i normal to the metal surface (Fig. 1). The cur-
rent density without any deformation can be related to the
surface overpotential η through the Butler-Volmer
equation [35]

i

i0
=

[
exp

(
αazFη

RT

)
− exp

(
−αczFη

RT

)]
. (13)
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FIG. 1. Schematic of the electrodeposition problem with a metal
electrode-solid electrolyte interface. The metal surface x2 = f (x1,t)
grows on deposition of metal ions, the rate of which is proportional
to the current. The local geometry alters the kinetics of deposition at
the interface.

Here, αa and αc are the charge transfer coefficients associated
with anodic and cathodic reactions, and i0 is the exchange
current density. The current density at a deformed interface
can be written in terms of the undeformed current density as

ideformed

iundeformed
= exp

[
(1 − αa)�μe−

RT

]
, (14)

where �μe− is the change in the electrochemical potential of
the electron due to deformation at the interface given by [20]

�μe− = −VM

2z
(1 + v)(−γ κ − en · [(τe − τs)en])

+VM

2z
(1 − v)(�pe + �ps). (15)

Here, VM is the molar volume of metal species in metallic
form, v = VMz+/VM is the ratio of molar volume of the metal
ion in the solid electrolyte to that in the metal, γ is the surface
tension, κ is the mean curvature at the interface, τe and τs are
the deviatoric stresses at the electrode and electrolyte sides
of the interface, and �pe and �ps are the gauge pressures at
the electrode and electrolyte sides of the interface at x2 = 0.
Hereafter, we use the subscripts s and e for properties of the
solid electrolyte and electrode, respectively. Equation (15) is
obtained by calculating the electrochemical potential change
dμ = (∂μ/∂p)dp and using the equilibrium of Eq. (12) [20].
While performing a linear stability analysis, we retain terms
only up to first order in the perturbation, which removes
the second-order strain energy density terms commonly
encountered in the Asaro-Tiller-Grinfield formalism [29,30].
The first term is due to surface tension, while the second and
third terms are due to deviatoric and hydrostatic stresses at the
interface. The negative sign in the deviatoric term is different
from the positive sign obtained by Monroe and Newman [20]
since we use the convention of decomposition of stress as
−p I + τ , rather than p I + τ used by them.

FIG. 2. Transformation of the elastic tensor for anisotropic
analysis. The rotation brings the required crystallographic directions
v2 and u2 along e2 and e1. Note that the rotation operation is performed
on the crystallographic axes of the material and not on the actual axes
considered in the problem e1 and e2.

The surface tension provides a stabilizing mechanism
against roughening of the interface. It increases the elec-
trochemical potential at peaks in the propagating interface
and decreases it in the valleys. However, at length scales of
roughening encountered in electrodeposition problems, the
stabilization by surface tension is much smaller compared
to that by interfacial stresses [36]. For this reason, we have
ignored the contribution of the surface tension term in the
electrochemical potential throughout this paper. The electro-
chemical potential is determined by an interplay between the
deviatoric and hydrostatic terms.

Electrodeposition at solid-solid interfaces has several ad-
vantages compared to that at liquid-solid interfaces, especially
for applications in batteries. Besides the stabilization of the
propagating interface by interfacial stresses, solid electrolytes
have a cation transference number close to 1. The mechanism
of dendritic growth due to the depletion of ions, common in
liquid electrolytes, is thus not an issue when solid electrolytes
are used. The Sand’s time, which is a measure of the time it
takes for ion depletion at the negative electrode, approaches
infinity, since it is proportional to the transference number
of the anion [37]. The depletion of ions is a major cause
of dendrite growth. The growth rate of dendrites, which is
proportional to the mobility of the anion, becomes zero [38].

C. Transformation of the elastic tensor

For an anisotropic analysis, the crystallographic directions
of the electrode and electrolyte along e1 and e2 will determine
the mechanical response through the elastic tensor. When the
surfaces of the electrode and electrolyte in contact are such
that the crystallographic axes of the material coincide with the
actual axes (in Fig. 1), the elastic tensor can be plugged into
the equations directly. This is the case when the [0 1 0] and
[1 0 0] crystallographic directions of the material are aligned
along e2 and e1, respectively. If some other crystallographic
directions are along e1 and e2, the elastic tensor has to be
transformed according to the rotation matrix Q that aligns the
required crystallographic directions along e1 and e2, as shown
in Fig. 2. Once the rotation matrix Q is obtained, the elastic
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tensor can be transformed according to

C̃ijkl = QipQjqQkrQlsCpqrs . (16)

An analog of Eq. (16), given in Appendix B, can be used to
transform the elastic tensor in Voigt form as well.

Determination of Q. We have seen that the problem of the
determination of the elastic tensor reduces to the determination
of the rotation matrix Q. Let V ([h k l]) denote the direction
vector corresponding to the crystallographic direction [h k l].
For example, V ([1 0 0]) = (a,0,0) for a cubic crystal and
V ([111]) = (a,b,c) for an orthorhombic crystal, where a, b,
and c are the respective lattice constants. For our calculations,
we treated the crystallographic direction of the material along
e2, referred to as v2, as the independent direction. Then, Q is
obtained as the rotation that aligns v2 along v1 = V ([0 1 0])
(Fig. 2). The transformation Q is unique since it is a
right-handed rotation about axis v2 × v1 that transforms v2
to v1. The new crystallographic direction along e1, referred
to as u2, is the dependent direction and can be obtained
using u2 = Q−1u1, where u1 = V ([1 0 0]). An example for
a cubic crystal is shown in Appendix B. Finally, we note that
the elastic tensor depends not only on the crystallographic
direction perpendicular to the interface (i.e., v2) but also on
the crystallographic direction along e1 (i.e., u2).

III. LINEAR STABILITY ANALYSIS

A linear stability analysis can be used to determine the
growth of various Fourier components of an arbitrary perturba-
tion of the interface. It provides the boundary conditions for the
two-dimensional deformation problem. Initially, the electrode
is located at x2 < 0 and the electrolyte at x2 > 0. The solids are
assumed to be in contact at all times, i.e., ue(x1,0) = us(x1,0).
Additionally, all deformations are assumed to vanish far
from the interface, i.e., limx2→±∞ u(x1,x2) = 0. The interface
x2 = 0 between the solids is perturbed in a sinusoidal fashion,

(x1,0) �→ (x1,A cos(kx1)), (17)

where k, the wave number of perturbation, was chosen as
108/m [21,22]. In three dimensions, the interface will have two
wave numbers along different directions. To obtain a sinusoidal
perturbation of the interface, we try the following ansatz for
the functions fα in Eq. (10),

fα(x1 + pαx2) =
{
eik(x1+pαx2), x2 > 0,

e−ik(x1+pαx2), x2 < 0.
(18)

Here, pα are solutions of the sixth degree equation obtained
from Eq. (7). Since pα are imaginary, the term e±|pα |x2

represents the decay of the perturbation as we move away from
the interface. A straightforward calculation of u shows that
the deformation obtained using this ansatz gives the required
perturbation, while also vanishing far from the interface. A
tangential force balance at the interface is also imposed,

et · τ een = et · τ sen. (19)

To assess the stability of electrodeposition, we solved for the
deformations and stresses using the Stroh formalism and the
elastic tensor of the material. Once these quantities are known,
one can compute �μe− using Eq. (15). From a linear stability
analysis, �μe− (x1) has a form similar to the perturbation,

i.e., �μe− (x1) = Aχ cos(kx1). From Eq. (14), we see that
the current will promote roughening when χ > 0 and reduce
roughening when χ < 0. This analysis is quite similar to that of
Asaro and Tiller for instability during stress corrosion cracking
with different kinetics of growth [29]. A similar result exists
for the stability of a stressed interface [1]. The interface is
stable if the chemical potential of the material increases in
the direction of growth. The condition χ < 0 ensures that the
chemical potential of the electron at the peaks is lower, so that
the mass transfer of Li is lower at the peaks.

Figure 3 shows the deformation profiles obtained for
three different classes of electrode-electrolyte interfaces: both
isotropic, electrolyte isotropic and electrode anisotropic, and
both anisotropic on the application of a sinusoidal perturbation
at the interface. We observe qualitative differences in the
deformation profiles for the three cases. The rate of decay
of deformation, which depends on the solutions pα through
Eq. (18), are different due to the different mechanical re-
sponses. This can be seen from the difference in deformations
at the boundaries (i.e., as we move away from interface x2 = 0)
of the three cases in Fig. 3. For example, the deformation u2

along x2 at x2 = −20 nm is positive for Fig. 3(b) but negative
for Figs. 3(c) and 3(d).

IV. RESULTS

We perform calculations of the stability parameter for an
electrolyte in contact with a Li electrode with shear modulus
Ge = 3.4 GPa, νe = 0.42, VM = 1.3 × 10−5 m3/mol. For an
anisotropic Li electrode, the elastic tensor was obtained from
the CRC Handbook [39]. The extension of results to other
electrode materials is straightforward.

A. Isotropic-isotropic interface

In this case, the stability parameter can be expressed
analytically in terms of the two elastic constants, shear
modulus G and Poisson’s ratio ν of the isotropic electrode and
electrolyte, and parameters (VM,v,z) related to the properties
of the electrodeposition reaction (12). The stability diagram
has four regions out of which two are stable [22]. These are
a high-density low shear modulus region, whose stability is
density driven, and a low-density high shear modulus region,
whose stability is pressure driven. The details can be found in
Ref. [22]. The stability of the low-density high shear modulus
region was first predicted by Monroe and Newman [21] and
later validated experimentally by Balsara and co-workers
[40,41] in a qualitative sense. In our study, we solved the
deformation equations using the Stroh formalism for the
degenerate case of isotropic material, as shown is Appendix A.
The results obtained for the stability parameter were the same
as in Refs. [21,22], thus validating our use of the machinery
of Stroh formalism.

B. Isotropic-anisotropic interface

This interface has an anisotropic electrode on one side
and an isotropic solid electrolyte on the other. This is worth
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FIG. 3. Deformation profiles obtained for different mechanical properties at the interface. (a) Initial position and deformed positions
for one wavelength λ = 2π/k = 62.8 nm of an interface on application of a sinusoidal perturbation: (b) isotropic-isotropic interface,
(c) isotropic-anisotropic interface, and (d) anisotropic-anisotropic interface. The interface x2 = 0 is located in the middle (red line) with
an electroyte above (x2 > 0) and an electrode below (x2 < 0). The materials at the interface are the Li electrode and LiI electrolyte. In (c), the
(010) Li surface is in contact with isotropic LiI, and in (d), the (010) Li surface is in contact with the (010) LiI surface with v2 = V ([0 1 0]),
u2 = V ([1 0 0]) as in Fig. 2. The deformations are nonzero at the ends (x2 = ±20 nm) and vanish only at x2 = ±∞.

studying since the candidate material for the anode, namely,
Li metal, is highly anisotropic compared to other materials
[23]. Figure 4 shows the value of the stability parameter χ for
the three cases of [1 0 0], [1 1 0], and [1 1 1] crystallographic
directions of Li perpendicular to the surface of a solid
electrolyte as a function of its shear modulus. Investigations of
the stability parameter for other facets gave the same general
trend. As observed in the isotropic-isotropic case, for v < 1, χ
increases with Gs , resulting in stability below the critical shear
modulus value corresponding to χ = 0. For v > 1, χ decreases
with Gs , resulting in stability beyond a critical shear modulus.
Each surface of Li has a different elastic response which
results in different stresses at the interface. The stress results
in different values of the stability parameter χ for the different
surfaces. The stability diagram is then dependent on the
surface orientation of Li in contact with the solid electrolyte.
Figure 5 shows the stability diagram for different surfaces of a
Li metal anode in contact with a solid electrolyte. The nature
of the stability diagram remains the same with two stable and
two unstable regions. The stable regions are located below
the critical curves for v < 1 and above the critical curves for
v > 1. However, the critical shear modulus curves shift
depending on the specific surface of Li in contact with the
solid electrolyte. In the v > 1 region, for example, the surface
(1 1 1) imposes stronger requirements on the shear modulus for
stability than the (1 0 0) surface. This presents opportunities
for dendrite suppression if solid electrolytes could be made to
preferentially comply along certain directions, for example,
[1 1 1].

C. Anisotropic-anisotropic interface

The fully anisotropic interface equations were solved using
the Stroh formalism with the stresses and deformations ob-
tained using Eq. (11). The orientation-dependent elastic tensor
of the two materials enters the problem through eigenvectors
a,b and solutions p of the sextet Eq. (7). Due to the high
dimensionality of the anisotropic problem (21 components
of the elastic tensor in general, different surfaces in contact)
and the absence of an analytical solution for the stability
parameter, we assessed the stability of electrodeposition at
anisotropic-anisotropic interfaces on a case by case basis
instead of a high-dimensional stability diagram. We considered
several high Li-ion conducting solids, including some obtained
by Sendek et al. through the large-scale screening of Li-
containing compounds [42] which have experimental [39] or
first-principles computed elastic tensors available [24,43,44].
Overall, the solid electrolytes considered here include the
major classes of thiophosphates (Li10GeP2S12) [45], halides
(LiI) [46], garnets (Li5La3Ta2O12) [47], phosphates (Li3PO4)
used in LiPON [48,49], sulfides (Li2S) used in Li2S-P2S5 solid
electrolytes [50], and alloys (LiCu3). Low index surfaces of Li
and solid electrolytes were considered at the interface.

Table I lists the values of the stability parameter χ for
different interfaces between a Li metal anode and a solid
electrolyte. The crystallographic directions along e1 and e2 are
u2 and v2 for the two materials in contact. The molar volume
ratio v was calculated using the coordination-dependent values
of ionic radii tabulated by Shannon [51] and Marcus et al. [52]
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TABLE I. Stability parameters of fully anisotropic Li-solid
electrolyte interfaces. The crystallographic orientations of the solids
can be identified from crystallographic directions u2 and v2 which lie
along e1 and e2, respectively.

Electrolyte Electrode Electrolyte χ

material v2 u2 v2 u2 (kJ/mol nm)

[0 1 0] [1 0 0] [0 1 0] [1 0 0] 7524.5
[1 1 0] [1 1 0] [0 1 0] [1 0 0] 10990.3
[0 1 1] [1 0 0] [0 1 0] [1 0 0] 7781.1

Li10GeP2S12 [1 1 1] [79 58 21] [0 1 0] [1 0 0] 9161.7
v = 0.151 [0 1 0] [1 0 0] [1 1 0] [1 1 0] 7609.6

[0 1 0] [1 0 0] [1 1 1] [95 56 19] 8348.0
[1 1 0] [1 1 0] [1 1 0] [1 1 0] 11075.4
[0 1 0] [1 0 0] [0 0 1] [1 0 0] 10234.9
[1 1 0] [1 1 0] [0 0 1] [1 0 0] 14898.8

[0 1 0] [1 0 0] [0 1 0] [1 0 0] 6525.4
[1 1 0] [1 1 0] [0 1 0] [1 0 0] 10776.0
[1 1 1] [79 58 21] [0 1 0] [1 0 0] 8526.9

LiI [0 1 0] [1 0 0] [1 1 0] [1 1 0] 6619.8
v = 0.099 [0 1 0] [1 0 0] [1 1 1] [79 58 21] 7530.8

[0 1 0] [1 0 0] [0 1 1] [1 0 0] 7903.4
[1 1 0] [1 1 0] [1 1 0] [1 1 0] 10870.5
[1 1 0] [1 1 0] [1 1 1] [79 58 21] 11950.4

[0 1 0] [1 0 0] [0 1 0] [1 0 0] 44897.9
[1 1 0] [1 1 0] [0 1 0] [1 0 0] 50014.9
[1 1 1] [79 58 21] [0 1 0] [1 0 0] 47980.7

Li5La3Ta2O12 [0 1 0] [1 0 0] [1 1 0] [1 1 0] 44924.5
v = 0.085 [0 1 0] [1 0 0] [1 1 1] [79 58 21] 46113.1

[0 1 0] [1 0 0] [0 1 1] [1 0 0] 46583.4
[1 1 0] [1 1 0] [1 1 0] [1 1 0] 50041.5
[1 1 0] [1 1 0] [1 1 1] [79 58 21] 51257.6

[0 1 0] [1 0 0] [0 1 0] [1 0 0] 35942.7
[1 1 0] [1 1 0] [0 1 0] [1 0 0] 41575.6
[0 1 1] [1 0 0] [0 1 0] [1 0 0] 36586.7

Li3PO4 [1 1 1] [79 58 21] [0 1 0] [1 0 0] 39221.0
v = 0.098 [0 1 0] [1 0 0] [1 1 0] [78 51 0] 35466.1

[0 1 0] [1 0 0] [1 1 1] [90 31 10] 35136.1
[0 1 0] [1 0 0] [0 1 1] [1 0 0] 35671.5
[0 1 0] [1 0 0] [1 0 0] [0 1 0] 34696.9

[0 1 0] [1 0 0] [0 1 0] [0 1 0] 26619.8
[1 1 0] [1 1 0] [1 1 0] [1 1 0] 32705.2
[0 1 1] [1 0 0] [0 1 1] [0 1 1] 27536.2

Li2S [1 0 1] [50 71 50] [1 0 1] [1 0 1] 31769.4
v = 0.066 [1 1 1] [79 58 21] [1 1 1] [1 1 1] 30338.8

[0 1 0] [1 0 0] [0 1 0] [0 1 0] 26637.4
[0 1 0] [1 0 0] [0 1 0] [0 1 0] 27666.1
[0 1 0] [1 0 0] [0 1 0] [0 1 0] 27216.4

[0 1 0] [1 0 0] [0 1 0] [1 0 0] 8005.3
[1 1 0] [1 1 0] [0 1 0] [1 0 0] 11995.8
[0 1 1] [1 0 0] [0 1 0] [1 0 0] 10457.7

LiCu3 [1 1 1] [79 58 21] [0 1 0] [1 0 0] 11628.6
v = 0.738 [0 1 0] [1 0 0] [1 1 0] [1 1 0] 9910.0

[0 1 0] [1 0 0] [1 1 1] [95 56 19] 14296.6
[1 1 0] [1 1 0] [1 1 0] [1 1 0] 13900.5
[0 1 0] [1 0 0] [0 0 1] [1 0 0] 11148.1
[1 1 0] [1 1 0] [0 0 1] [1 0 0] 15682.2
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FIG. 4. Stability parameter of a solid electrolyte-Li electrode
system as a function of the shear modulus of solid electrolyte
for v2 = V ([0 1 0]), V ([1 1 0]), and V ([1 1 1]) and v = 0.1, 3.85,
respectively.

(see also Ref. [22]). The role of anisotropy is evident
from the drastic changes in the stability parameter upon
changing the interface crystallographic directions. Inorganic
solid electrolytes with a lower shear modulus generally have
lower stability parameters, as should be expected from the
isotropic case for v < 1. Unfortunately, none of the solid
electrolytes we investigated has a negative stability parameter,
i.e., an interface stable against the growth of dendrites.

The volume ratio v here deserves some discussion. Inor-
ganic solid electrolytes generally have 0 < v < 1. Li alloys
have v close to 1 while compounds with a low Li coordination
number have lower v. If we observe the overall range of
χ for different materials while varying surface orientations,
Li10GeP2S12 and LiI with a low shear modulus have a stability
parameter closer to zero than the other high shear modulus
compounds, while alloy LiCu3 with a high volume ratio v

has χ closer to zero despite a high shear modulus (36 GPa).
On comparing χ for different surface orientations for a given
material, we observe that the orientation with v2 = V ([0 1 0])
and u2 = V ([1 0 0]) for both the electrode and electrolyte (first
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FIG. 5. Stability diagram of isotropic solid electrolyte-
anisotropic Li electrode system for v2 = V ([1 0 0]), V ([1 1 0]), and
V ([1 1 1]) showing the range of shear modulus of an electrolyte over
which electrodeposition is stable and its dependence on the volume
ratio v of the cation and metal atom.

entry in the table for each material) has the lowest stability
parameter. This is, thus, the most compliant arrangement.
These trends could be used to search for solid electrolytes
for stable electrodeposition.

V. DISCUSSION

We discuss some general principles which can be used
to make sense of the stability diagrams. For the isotropic
case, the deviatoric term is zero at Gs = 0, which means
the sign of the hydrostatic term determines the stability in
the zero shear modulus limit. At nonzero shear modulus, this
term is always found to be destabilizing [53]. The existence
of stability regions for the isotropic solid electrolyte case
follows from the dependence of the stability parameter χ

on the hydrostatic term alone. χ gives the electrochemical
potential change of the electron at a peak in the interface
[�μe− = χ when cos(kx1) = 1]. For v < 1, the hydrostatic
term in Eq. (15) is stabilizing when �pe + �ps is negative.
At the peak (e.g., x1 = 0), tensile stress is generated at
the electrode side of the interface and compressive at the
electrolyte side, resulting in �pe < 0 and �ps > 0. When Gs

is low, |�ps | � |�pe|, which will make this term stabilizing.
For v > 1, we require �pe + �ps > 0 for stability, and this
will occur at high Gs with |�ps | 	 |�pe|. This argument
explains the stable regimes at the bottom left and top right in
Fig. 5. The two unstable regions in the isotropic-isotropic and
isotropic-anisotropic cases are separated by the black line and
are different phases since one cannot go from one phase to
another without passing through χ = 0.

VI. CONCLUSIONS

We used the Stroh formalism to analyze the stability of
electrodeposition at different kinds of solid-solid interfaces.

The results obtained for the isotropic case using this formalism
match the results of previous studies. The isotropic solid
electrolyte in contact with the anisotropic Li metal anode
has a qualitatively similar stability diagram with the critical
shear modulus curves depending on the crystallographic
orientation of Li at the interface. Both the isotropic-isotropic
and isotropic-anisotropic interface stability diagrams point
towards the development of low shear modulus inorganic
solid state electrolytes (which generally have 0 < v < 1) for
obtaining stable electrodeposition. For completely anisotropic
interfaces, we find that the stability parameter is highly
dependent on the crystallographic orientation of the solids
in contact. In the context of Li metal anodes in contact
with an electrolyte having v > 1, compliance along the
[1 0 0] direction for a solid electrolyte leads to less stringent
requirements on the modulus of the solid electrolyte while
[1 1 1] leads to more stringent requirements. A similar analysis
might also be useful in problems on the stability of solid-solid
interfaces encountered in other areas, for example, epitaxial
thin films when the materials have a high degree of anisotropy.
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APPENDIX A: STROH FORMALISM FOR DEGENERATE
CASE OF ISOTROPIC MATERIAL

For isotropic materials with shear modulus G and Poisson’s
ratio ν, all three solutions pα of Eq. (7) are equal to i (i2 = −1).
The matrices F, A, and B used to determine the solution are

F =
⎡
⎣f (x1 + p1x2) x2f

′(x1 + p1x2) 0
0 f (x1 + p2x2) 0
0 0 f (x1 + p3x2)

⎤
⎦,

A = ψ

⎡
⎣1 −iγ 0

i −γ 0
0 0 ε

⎤
⎦, B =

⎡
⎣ 2i 1 0

−2 −i 0
0 0 iε

⎤
⎦,

ψ = 1√
8G(1 − ν)

, γ = 1
2 (3 − 4ν), ε = (1 − i)

√
2(1−ν).

Equation (10) can then be used to obtain deformation and
stress fields for isotropic materials.

APPENDIX B: TRANSFORMATION OF ELASTIC TENSOR
IN VOIGT FORM

Let C be the 6 × 6 elastic tensor in Voigt form associated
with a particular coordinate system and C̃ be the transformed
elastic tensor under rotation Q. Then C̃ can be calculated as
[25,26]

C̃ = K C K T , (B1)
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where K is 6 × 6 tensor given by

K =
[

K1 2K2
K3 K4

]
,

[K1]ij = [Q]2
ij ,

[K2]ij = [Q]imod(j+1,3)[Q]imod(j+2,3),

[K3]ij = [Q]mod(i+1,3)j [Q]mod(i+2,3)j ,

[K4]ij = [Q]mod(i+1,3)mod(j+1,3)[Q]mod(i+2,3)mod(j+2,3)

+[Q]mod(i+1,3)mod(j+2,3)[Q]mod(i+2,3)mod(j+1,3),

where

mod(i,3) =
{
i, i � 3,

i − 3, i > 3.

Next, we show how to determine the rotation matrix Q and
u2 given v2.

Example for a cubic crystal. Let v2 coincide with the [110]
direction of the crystal or v2 = V ([110]). Then the rotation

matrix Q obtained by following the procedure mentioned in
Sec. II C is given by

Q =

⎡
⎢⎣

1√
2

− 1√
2

0
1√
2

1√
2

0

0 0 1

⎤
⎥⎦.

The crystallographic direction which aligns along e1 due to
this rotation is given by

u2 = Q−1V

⎛
⎝

⎡
⎣1

0
0

⎤
⎦

⎞
⎠ = a

⎡
⎢⎣

1√
2

− 1√
2

0

⎤
⎥⎦ = V

(
[110]

)
.

Hence, u2 corresponds to the [110] direction of the crystal.
Similarly, the other combinations (v2,u2) along (e2,e1) are
([0 1 1],[1 0 0]), ([2 2 1],[11 10 2]). Note that u2 is always
perpendicular to v2. For noncubic crystals, care must be
taken to differentiate the crystallographic axes (in Miller index
notation) from the actual direction vectors for calculating Q
and u2.
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