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Quasiparticle energies and dielectric functions of diamond polytypes
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We perform ab initio many-body Green’s function calculations to investigate the quasiparticle energies and
optical properties of diamond polytypes that have been predicted to be producible via a pressure-induced
structural phase transition from carbon nanotube solids. We find, through quasiparticle band-structure calculations
within the GW approximation, that the band gaps of two hexagonal (2H - and 4H -type) polytypes of diamond
differ significantly from that of cubic diamond as well as from that of the crystalline sp3 carbon phase with a
body-centered-tetragonal structure, called bct C4. We also examine the dielectric functions of three polytypes
of diamond (cubic, 2H , and 4H ) by employing the GW plus Bethe-Salpeter equation approach. The calculated
optical absorption spectra are found to be distinct from each other. The lattice mismatches of carbon layers of
these diamond polytypes are very small and the total-energy differences are also small. Our work opens up the
possibility of fabricating diamond superlattices with various electronic and optoelectronic properties by utilizing
and controlling the different stacking sequences of carbon layers.
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I. INTRODUCTION

Face-centered-cubic (fcc) and hexagonal-close-packed
(hcp) structures both have a close-packed arrangement of
atoms. The difference between the fcc and hcp structures is
the stacking sequence of close-packed atomic layers along
the stacking axis. The period of other stacking sequences
is known to be longer in certain materials. The best known
example is silicon carbide (SiC) [1]. The crystal structure of
an SiC polytype can be specified by its stacking pattern. For
example, a hexagonal SiC polytype, called nH -SiC, repeats
its stacking sequence with a periodicity of n, forming a
hexagonal unit cell. Similarly, an SiC polytype with a zinc-
blende structure is referred to as 3C-SiC, since it possesses
a cubic crystalline lattice and has an ABC stacking along its
[111] direction. Owing to the difference in the crystal lattice
structure, SiC polytypes exhibit a wide variety of electronic
and optical properties, which are not only useful to characterize
the polytypes but also potentially advantageous for device
applications [1]. Because both silicon and carbon atoms have
four valence electrons and carbon shows a greater flexibility in
its covalent bonding than silicon, a tetrahedrally bonded carbon
solid is expected to show polytypism similar to SiC. Indeed, an
sp3-bonded carbon phase with an ABC stacking is nothing but
cubic diamond, which exists in nature. The simplest hexagonal
counterpart is hexagonal diamond, also named lonsdaleite,
which has been suggested to exist in meteorites [2,3] and has
also been synthesized by the room-temperature compression of
graphite [4]. There is a close equivalence of atomic structures
between SiC and diamond polytypes. Thus cubic (hexagonal)
diamond can be referred to as 3C (2H ) diamond.

*masahiro@ices.utexas.edu

The graphite-to-hexagonal-diamond transition under pres-
sure [4] suggests that other sp3-bonded carbon phases can
be produced by applying high pressure to other sp2-bonded
carbon allotropes, such as fullerene and carbon nanotubes.
Shock compression experiments combined with rapid cooling
techniques [5,6] have revealed a transformation from a
C60 fullerene solid into “amorphous diamond,” an sp3-rich
phase with no long-range order. Carbon nanotube solids
under moderate pressure have recently been predicted to
transform into a variety of diamond phases from constant-
pressure molecular dynamics (MD) simulations [7–9]. The
resultant phases include two hexagonal (2H and 4H ) poly-
types of diamond and a fourfold coordinated carbon phase
having a body-centered-tetragonal (bct) lattice [10], called
bct C4. These diamond polytypes are found to be stable
not only under pressure but also at zero pressure [9]. As
SiC polytypes [11,12], hexagonal polytypes of diamond are
expected to have distinct electronic and optical properties in
comparison to cubic (3C) diamond. Such novel properties
should be of importance in the future device applications of
diamond.

In order to clarify the details of the electronic and optical
properties of diamond polytypes, we study the quasiparticle
energies and optical properties of two hexagonal polytypes
of diamond (2H and 4H ) that have been predicted to be
producible through the constant-pressure MD simulations of
carbon nanotubes under pressure, and compare them to those
of other diamond polytypes. We adopt the GW approximation
(GWA) [13–15] to investigate the quasiparticle band structures
of 2H and 4H diamond polytypes. We discuss diamond
superlattices as a possible application of diamond polytypes.
We also examine the dielectric functions of 2H and 4H

diamond polytypes by solving the Bethe-Salpeter equation
(BSE) using the ab initio GW band structure [16] to take into
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account the electron-hole interaction, which is crucial to obtain
an accurate spectrum.

II. COMPUTATIONAL METHODS

The ground-state total energies, as well as the Kohn-Sham
single-particle orbitals and corresponding eigenenergies, are
calculated in the framework of the density-functional the-
ory [17] in the local density approximation (LDA) [18]
as implemented in the QUANTUM ESPRESSO package [19].
We employ the parametrized Ceperley-Alder-type exchange-
correlation functional [20,21], the Troullier-Martins norm-
conserving pseudopotentials [22,23], and a plane-wave basis
set with a cutoff energy of 60 Ry for all LDA calculations.

Quasiparticle energies are evaluated within a “one-shot”
GW approximation [13–15] where the frequency-dependent
(Fourier-transformed) electron self-energy � is given by a
convolution of the one-particle Green’s function G and the
dynamically screened Coulomb interaction W . The Kohn-
Sham orbitals and the corresponding energies are used as
the input for constructing the Green’s function. The static
irreducible polarizability is then calculated within the random
phase approximation not with the Hartree G but with the LDA
G constructed in the aforementioned way. To compute the
screened Coulomb interaction, the inverse of the static dielec-
tric matrix derived from the static irreducible polarizability is
extended to finite frequencies using the generalized plasmon-
pole model [14,15] as implemented in the BERKELEYGW

code [24]. The GW approximation gives highly accurate
quasiparticle energies and therefore the band-gap energies in
comparison to the LDA results. The GW method has been
applied to a wide range of semiconductors and insulators [25].

To investigate the optical properties, we adopt the GW

plus BSE approach [16,26] which is also implemented in
the BERKELEYGW code [24]. The imaginary part of the
macroscopic dielectric function is given by

ε2(ω) = 16π2e2

ω2

∑

S

|�λ · 〈0|�v|S〉|2δ(ω − �S). (1)

Here, �λ is the polarization vector of the light, �v denotes the
velocity operator, and 〈0|�v|S〉 represents the optical transition
matrix element from the ground state |0〉 to the excited
state |S〉 which is given in terms of the quasiparticle free
electron-hole pair basis functions by |S〉 = ∑

vc AS
vc|vc〉. The

transition energy �S and the corresponding amplitude AS
vc are

the solutions of the following eigenvalue equation,

(Ec − Ev)AS
vc +

∑

v′c′
〈vc|Keh|v′c′〉AS

v′c′ = �SA
S
vc, (2)

where Keh is the electron-hole interaction kernel and the
summation runs over the valence bands (v) and the conduction
bands (c). The Ev and Ec are the GW quasiparticle energies
of valence and conduction bands, respectively. For notational
simplicity, we have suppressed the explicit k dependence of all
the quantities in Eq. (2). For crystals, it is essential to evaluate
the Keh on a very fine k-point grid, which is a computationally
demanding task. Here, we use the interpolation scheme
proposed by Rohlfing and Louie [16] that aims to capture not
only the energy dependence but also the k-point dependence of

the self-energy correction. In this scheme, we first calculate the
quasiparticle energies and the matrix elements of the kernel on
a coarse k-point grid, and then interpolate them onto a dense
k-point grid using the tetrahedron method and a wave-function-
based interpolation. This interpolation scheme greatly reduces
the computational cost without losing accuracy [16]. Once the
imaginary part ε2(ω) is obtained, the corresponding real part
ε1(ω) is calculated by using a Kramers-Kronig transformation.

III. RESULTS AND DISCUSSION

A. Quasiparticle band structure

We commence with a quasiparticle energy calculation
for cubic diamond. The lattice constant is set to be the
experimental one, 3.57 Å. The static dielectric matrix is
computed with a cutoff energy of 10 Ry. The self-energy is
computed with a summation over 20 k points in the irreducible
Brillouin zone. The Coulomb-hole contribution to the self-
energy converges slowly with respect to the number of empty
states included in the calculation [27]. To ensure convergence,
we use 300 bands consisting of four valence and the lowest 296
conduction bands. Within the GW approximation, we obtain
a fundamental gap of 5.37 eV and a direct gap of 7.13 eV at
the 	 point. These results agree well with the experimental
values, 5.48 and 7.3 eV, respectively, and are also consistent
with the previous GW calculations [14,15].

The lattice constants of 2H and 4H diamond polytypes
are determined by the LDA calculations: a = 2.475 Å, c =
4.127 Å for 2H diamond, and a = 2.482 Å, c = 8.189 Å
for 4H diamond. The values obtained for 2H diamond agree
with the experimental data [2,3] (a = 2.52 Å and c = 4.12 Å)
as well as the theoretical results [28–30]. Our LDA results
for 4H diamond are also consistent with the previous LDA
calculations [30,31]. The calculated LDA total energies of 2H

and 4H diamond polytypes are only 0.024 and 0.010 eV/atom
higher than that of cubic diamond, respectively. Unlike cubic
diamond, all the carbon-carbon (C-C) bonds are no longer
equivalent in 2H diamond, where the C-C bond length along
the c axis (1.548 Å) is longer than the other ones (1.519 Å). The
latter is shorter than the C-C bond in cubic diamond (1.526 Å
within the LDA and 1.54 Å in experiment). Similarly, 4H

diamond has longer C-C bonds (1.535 Å) along the c axis and
shorter ones (1.522 Å). With the LDA-optimized geometries,
the GW calculations are then performed using a dielectric
energy cutoff of 10 Ry, 39 k points, and 400 (800) bands for
2H (4H ) diamond.

Figure 1(a) shows the electronic band structure of 2H

diamond obtained with the LDA and the GWA. The 2H

diamond is predicted to be an indirect-gap semiconductor with
a band gap of 4.58 eV, which is much smaller than that of
cubic diamond (5.37 eV within the GWA) but is significantly
larger than that of bct C4 (3.78 eV within the GWA [10]).
The reduction of the band gap is due to the presence of a
dispersive conduction band with a minimum at the K point.
This state shows a parabolic dispersion around the K point
and has a “floating” character [32]. Here, “floating” means
that the wave function localizes in interstitial regions rather
than atomic or bond sites. Similarly, the interlayer (or surface)
state in graphite [33,34] and the nearly-free-electron (NFE)
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FIG. 1. Electronic band structures of (a) hexagonal (2H ) diamond
and (b) 4H diamond, calculated with the LDA (black) and the GWA
(red). Energy is measured from the top of the valence band.

state in carbon nanotubes [35,36] have wave functions that
are also distributed away from atomic sites. The many-body
correction within the GWA depresses the NFE state relative
to the Fermi level in carbon nanotubes and graphene [37],
while the conduction bands around the Fermi level in 2H

diamond, including the state with a “floating” character, are
raised up in energy due to the self-energy correction, as can
be seen in Fig. 1(a). This observation is evident in Fig. 2,
where the difference between the quasiparticle energy EQP

and the LDA one ELDA are plotted. The GW self-energy
corrections to the LDA eigenvalues are positive (negative) for
all the low-lying conduction (valence) bands. The difference in
the GW correction arises from differences in the spatial extent
of and the strength of electronic screening to each electronic
state. In graphene and carbon nanotubes, the NFE states are
much more delocalized than the bonding and antibonding
states, and they are located in the vacuum region, a few
angstroms away from the carbon plane. Due to these two
factors, the self-energy correction to an NFE state is smaller.
In diamond, the state having a floating character is in the
interstitial region and hence has a larger self-energy correction.
Although the GW self-energy corrections for both occupied
states and unoccupied states show a weak linear dependence
on the LDA eigenvalue, not only their energy but also k-point
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FIG. 2. The GW self-energy correction, that is the difference
between the quasiparticle energy E

QP
n,k and the LDA energy ELDA

n,k ,
in hexagonal (2H ) diamond. The data are plotted as a function
of the LDA eigenvalue for the five highest occupied and the six
lowest unoccupied states (n = 4–14) at 39 k points including several
high-symmetry points. Energy reference for ELDA

n,k is the top of the
valence band. The solid lines, fitted to the data, indicate weak linear
dependence.

dependences are of crucial importance in computing the
absorption spectrum, which requires the quasiparticle energies
at a given k point on a fine grid.

Figure 1(b) shows the electronic band structure of 4H dia-
mond calculated by the LDA and the GWA. The quasiparticle
band gap of 4H diamond is predicted to be 6.00 eV, which
is, in contrast to 2H diamond, significantly larger than that
of cubic diamond as well as that of bct C4. The hexagonal
unit cell of 4H diamond is approximately twice longer than
that of 2H diamond in the direction of the c axis. As a
result, a minimum of the low-lying conduction band with
parabolic dispersion occurs at the H point. The conduction
bands around the K point are moved away from the Fermi
level. The absolute bottom of the conduction band is located
between the 	 and M points. The direct band gap at the 	 point
of 4H diamond (7.19 eV within the GWA) is comparable to
that of cubic diamond (7.13 eV within the GWA and 7.3 eV in
the measurement [38]) and is larger than that of 2H diamond
(6.80 eV within the GWA). As is the case for 2H diamond, the
GW self-energy corrections obtained for 4H diamond show a
weak linear dependence on the LDA eigenvalue, pushing the
valence (conduction) bands to lower (higher) energies.

Diamond polytypes with different band gaps and similar
lattice constants are promising as a building block for a
diamond superlattice. In their first synthesis of diamond
superlattice using a different concept [39], Watanabe and
co-workers controlled the isotope composition of carbon layers
and achieved a band-gap difference of 17 meV to confine the
electrons. The band-gap difference in the diamond polytypes,
revealed in the present GW study, is much larger than the
value measured for isotope-controlled diamond superlattices,
making it easier to control carrier confinement. Similar lattice
constants of diamond polytypes are also favorable to superlat-
tice structures: (i) Cubic diamond involves an ABC stacking of
carbon layers along the [111] direction. This direction is suited
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for c-axis-oriented growth of either hexagonal (2H ) diamond
or 4H diamond polytypes. In both cases, the lattice-constant
mismatch is less than a few percent. (ii) A combination of
2H and 4H diamond polytypes is highly promising for a
superlattice structure. The difference between the LDA lattice
constants of carbon layers of these two polytypes is less than
1%. It is expected that one can create multilayer structures
consisting of 2H and 4H diamond polytypes by controlling
the stacking sequence along the c axis. (iii) In addition to these
diamond polytypes, bct C4 is another potential candidate. The
material consists of AB-stacked carbon layers along the a (or
b) axis in the bct unit cell. Its in-plane lattice constant (2.483 Å
within the LDA [10]) is approximate to those of 2H and 4H

diamond (2.475 and 2.482 Å, respectively, within the LDA),
offering a possibility to combine bct C4 with either 2H or
4H diamond polytypes. We note that bct C4 is predicted to be
accompanied by hexagonal diamond in constant-pressure MD
simulations of transforming (10,10) carbon nanotube solids
under pressure [7].

Diamond is well known to exhibit significant band-
gap renormalization due to strong electron-phonon interac-
tions [40,41]. The diamond polytypes that we study here
have similar carbon-carbon bond lengths and are expected to
have a similar degree of electron-phonon coupling, resulting
in a similar band-gap renormalization. The difference in the
electron-phonon band-gap renormalization is expected to be
smaller than the band-gap difference that we predicted for
different diamond polytypes. As shown in the literature, the in-
corporation of the electron-phonon interaction is necessary to
obtain accurately the temperature dependence of the band gap.

B. Dielectric functions and optical properties

We focus on cubic diamond to confirm the reliability of the
present GW plus BSE calculation. The quasiparticle energies
and the matrix elements of the electron-hole interaction kernel
are computed on a coarse 73 k-point grid, and we then
interpolate them onto a fine 193 grid. To achieve a k-point
sampling dense enough to evaluate accurately the electron-
hole interaction kernel, the fine 193 grid is shifted so that the
grid contains 6859 crystallographically different k points. In
solving the BSE, we include the three highest valence and the
four lowest conduction bands.

In Fig. 3, we plot the dielectric functions calculated for
cubic diamond. As seen in previous work [16,26], inclusion
of the electron-hole interaction changes the amplitude of the
entire spectrum, causing a shift of the dominant features of the
spectrum to lower energy. The calculated spectra that include
the electron-hole interaction are in very good agreement
with the experimental data in a wide range of energy. We
note that our spectrum does not exhibit a jagged “ghost”
structure that has been found in previous calculations [42,43],
indicating that a fine enough k-point sampling is realized in
our calculation. As shown in Fig. 3(a), the BSE spectrum
describes the characteristic features of ε1(ω) quantitatively: a
steep, negative slope around 12 eV and a pronounced minimum
at about 12.5 eV. The low-energy limit of ε1(ω) gives the
high-frequency dielectric constant. The BSE method yields
ε∞ = 5.59, which agrees with the experimental value (ε∞ =
5.7) [44]. As seen in Fig. 3(b), the position of the absorption
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FIG. 3. (a) Real part ε1(ω) and (b) imaginary part ε2(ω) of the
macroscopic dielectric function of cubic diamond, calculated with
(solid curve) and without (dashed curve) the electron-hole interaction.
The calculated spectra (which include a Gaussian broadening of
0.25 eV) are compared to the experimental data (dots) taken from
Ref. [45].

maximum agrees well with the experiment, although the
BSE spectrum has a larger amplitude around 12 eV than the
experiment. Such an overestimation of the spectral weight has
also been reported in previous calculations [42,43].

In a similar way to cubic diamond, we apply the BSE
method to the 2H and 4H polytypes of diamond. A coarse
k-point grid of 6 × 6 × 4 is used for calculating the quasi-
particle energies and the electron-hole kernel before they
are interpolated onto a fine k-point grid. In solving the
BSE for 2H (4H ) diamond, we use a shifted fine grid
of 15 × 15 × 10 (15 × 15 × 6) and include the five (eight)
highest valence and the six (ten) lowest conduction bands.
Since the dielectric response of an uniaxial semiconductor
shows strong differences for the electric vector parallel to
the different principal axis, we consider two directions for
the polarization of the light (�λ): the one perpendicular to the
c axis of the hexagonal unit cell, which gives the ordinary
spectrum, and the other parallel to the c axis, which yields the
extraordinary spectrum [45].

The imaginary part of the macroscopic dielectric function
(which is related to the optical absorption spectrum) for
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FIG. 4. Imaginary part of the dielectric function ε2(ω) for
(a) hexagonal (2H ) diamond and (b) 4H diamond that takes into
account the electron-hole interaction. The red (green) curve denotes
the ordinary (extraordinary) spectra calculated for the polarization
of light perpendicular (parallel) to the c axis. The calculated spectra
include a Gaussian broadening of 0.25 eV and are compared to that
of cubic (3C) diamond (blue curve).

2H and 4H diamond, obtained with the BSE method, is
shown in Figs. 4(a) and 4(b), respectively, where the BSE
spectrum of cubic diamond is also plotted for comparison.
The extraordinary spectrum of 2H diamond is quite similar to
that of cubic diamond, except for a peak with reduced weight
that occurred at a slightly lower energy (11.6 eV). The ordinary
spectrum of 2H diamond has much less weight at low energies
before a sharp rise, reaching a absorption maximum at 11.2 eV.
The spectrum also exhibits a shoulder around 12.5 eV, which is
not seen in the spectrum of cubic diamond at this energy. The
extraordinary spectrum of 4H diamond exhibits a pronounced
peak at 11.8 eV, which is a common feature among the spectra
of three diamond polytypes. The ordinary spectrum of 4H

diamond shows a gradual increase at low energies before it
yields broad double peaks (at 11.9 and 12.6 eV) that are similar
to the peak and the shoulder in the ordinary spectrum of 2H

diamond. Above 14 eV, the ordinary and extraordinary spectra
of 4H diamond are practically identical.

From the calculated imaginary part of the dielectric function
ε2(ω), we carry out the Kramers-Kronig transformation to
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FIG. 5. Real part of the dielectric function ε1(ω) of cubic
(3C) diamond (blue curve) is compared to those of (a) hexagonal
(2H ) diamond and (b) 4H diamond, respectively. The red (green)
curve denotes the ordinary (extraordinary) spectra calculated for the
polarization of light perpendicular (parallel) to the c axis.

obtain the corresponding real part ε1(ω), which is shown in
Fig. 5. As in the case of SiC polytypes [12], the ordinary spectra
of 2H and 4H diamond polytypes resemble the ε1 spectrum
of the cubic (3C) diamond, except that the ordinary spectra
between 12 and 14 eV are suppressed in comparison to that of
cubic diamond. In hexagonal (2H ) diamond, the extraordinary
spectrum exhibits a pronounced maximum at 9.9 eV. In the
extraordinary spectrum of 4H diamond, the first maximum
is shifted to a higher energy. Above 14 eV, the ordinary and
extraordinary spectra are nearly identical and are also similar
to the ε1 spectrum of cubic diamond. Finally, we obtain the
high-frequency dielectric constants for 2H and 4H diamond
polytypes within the BSE method: ε⊥

∞ = 5.02 and ε
‖
∞ = 5.38

for 2H diamond, and ε⊥
∞ = 4.66 and ε

‖
∞ = 5.11 for 4H

diamond. Here, ε⊥
∞ (ε‖

∞) denotes the dielectric constant for the
electric field perpendicular (parallel) to the c axis. The obtained
values are distinct from each other, helpful for characterization.

IV. SUMMARY

We have studied the quasiparticle energies and the optical
properties of diamond polytypes using the ab initio many-body
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Green’s function approach. By performing quasiparticle calcu-
lations within the GWA, we have shown that the fundamental
gap values of hexagonal (2H ) and 4H diamond polytypes are
significantly different from that of cubic diamond as well as
that of bct C4 phase. We have examined the dielectric functions
of three diamond polytypes [cubic (3C), 2H , and 4H ] based
on the GW plus BSE methodology. The calculated spectra
for cubic diamond are in good agreement with experiment,
and the spectra calculated for 2H and 4H diamond polytypes
are found to be distinct from that of cubic diamond. We have
also suggested that these diamond polytypes are promising
materials to fabricate diamond superlattices. Small lattice-
constant mismatches are favorable to superlattice structure
formation. The sizable band-gap difference, shown in the
present GW results, is more suitable for electron confinement
than the one realized in the isotope-controlled system.
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