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The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and
aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly
improved through engineered precipitation. To enable atomistic-level simulations of both the processing and
performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been
created. Training of the NN uses an extensive database of properties computed using first-principles density
functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces
most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute,
and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that
are required for modeling the early stage of precipitation and mechanical strengthening. This success not only
enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful
potentials in complex alloy systems.
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I. INTRODUCTION

Lightweight alloys that show significant solid solution
strengthening and precipitation strengthening have been de-
veloped for decades and are widely used in automotive and
aviation industries. The 6000 series Al-Mg-Si alloys are an
important class of lightweight alloys that can be formed both
by casting and wrought processes. The processes of clustering
of solute atoms and forming of Guinier-Preston (GP) zones
or precipitates significantly affect the strength of the alloy
as a function of aging time and temperature. The strength is
determined by the interaction of dislocations with the evolving
microstructure (random solutes, solute clusters, GP zones, and
precipitates). As a result, considerable experimental effort has
been made to control the formation of precipitates by means
of heat treatment and/or control of the alloy composition.
However, direct observation of small clusters and precipitates
is challenging, making it difficult to understand the growth
mechanisms, and associated strengthening mechanisms, from
early stages of precipitation up to the peak aging at which the
maximum strength is reached.

Atomistic simulations such as ab initio calculation, molec-
ular dynamics (MD), and kinetic Monte Carlo (KMC) are
powerful tools for studying the early stage of clustering
of solutes and interaction between dislocations and solutes,
clusters, and precipitates. Ab initio methods provide chemical
accuracy for arbitrary atomic arrangements but are compu-
tationally prohibitive, with respect to both sizes and times,
for addressing problems related to clustering, precipitation,
and strength. Thus MD and KMC methods must be used, but
these methods require the existence of interatomic potentials
for all the interactions among alloying elements, and require
accurate potentials for realistic predictions. The development
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of accurate multicomponent interatomic potentials has proven
to be a serious challenge, and thus a significant impediment to
the application of MD and KMC methods to alloys.

In spite of the challenges, many efforts to create interatomic
potentials have been made. For single-element metals and solid
solution alloys, the embedded atom method (EAM) potentials
[1] have been widely used because of their reasonable accuracy
and simple form. The modified EAM (MEAM) [2] approach
enables additional directional bonding and so has been pursued
for binary alloys that form intermetallic compounds [3,4].
However, it is difficult for both EAM and MEAM methods
to reproduce a wide variety of compound phases for alloys
with more than two components. For instance, Jelinek et al.
developed an MEAM potential with pair and triplet interaction
parameters for the five elements Al, Mg, Si, Cu, and Fe
that reproduces several properties of binary compounds.
However, generally, these potentials do not provide “chemical
accuracy” at the level needed (∼kBT ) for realistic simulations
at characteristic temperatures (T ∼ 300–600 K). For the
particular Al-Mg-Si ternary system, the lattice constants and
heats of formation of important precipitate phases are not
well-predicted. Thus there continues to be a great need for
accurate multicomponent interatomic potentials.

In this paper, we develop a neural-network (NN) inter-
atomic potential for the ternary Al-Mg-Si system that is useful
for the study of precipitation processes and strengthening of
the Al 6xxx alloys. The NN potential approach, developed
by Behler and Parrinello [5], is one of several classes of
machine-learning potentials, such as the Gaussian approxima-
tion potential (GAP) [6,7] and the linear regression potential
[8]. These potentials introduce a large number of functions
and parameters with no direct physical interpretation, rather
than a few functions based on physical concepts, but the high
flexibility then allows for the fitting of complex potential
energy landscapes that govern the observed structures and
the evolution of a material system. Previous studies show
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that the NN potential can reproduce the complex potential
energy landscape of binary systems such as TiO2 [10] and
phase-change materials [11], and ternary systems such as Cu
clusters on ZnO surface [9].

Recently, Hajinazar et al. [12] developed an approach to
construct an NN potential for the ternary alloy Cu-Pd-Ag,
in which the NN potential was optimized hierarchically
from unary to ternary systems. Although this approach has
some practical advantages, some important properties for
precipitation processes such as the heats of solution (e.g., Pd
in fcc Cu) are not in good agreement with reference values, up
to ∼0.2 eV. Here, we demonstrate the application of the NN
approach for the development of potentials for the Al-Mg-Si
ternary system, as optimized to match an extensive set of
reference data obtained by ab initio calculations. We thus show
that the NN approach has promise as an approach for obtaining
interatomic potentials for complex alloys and we provide a
specific potential for the study of the technologically valuable
Al 6xxx alloy system.

The remainder of this paper is organized as follows. The
simulation methods and geometries of calculated structures
are described in Sec. II. The details of the NN potential and
the procedures for parametrization are reviewed in Sec. III.
The properties of pure Al as predicted by the NN potential are
presented in Sec. IV and the properties of the ternary system
are presented in Sec. V. We summarize our work in Sec. VI.

II. SIMULATION METHODS AND GEOMETRIES

The energies and forces of all the structures used for training
the network are calculated by density functional theory (DFT)
using QUANTUM ESPRESSO [13]. In the DFT calculations,
the generalized gradient approximation (GGA) parameterized
by Perdew et al. [14] (PBE) is used for the exchange-
correlation functional, and ultrasoft pseudopotentials [15,16]
are employed with ten, three, and four valence electrons for
Mg, Al, and Si, respectively. The wave functions are expanded
using plane waves with the cutoff energy 35 Ry (476 eV) and
integration over the irreducible Brillouin zone is done using
the Monkhorst-Pack method with a k-point pitch less than

0.1 Å
−1

and an electron occupation over bands is smeared by
a Gaussian function with width 0.05 Ry. These values were
validated via a study of convergence of the lattice constant
and bulk modulus. To estimate the uncertainty within the DFT
scheme, some computations were repeated using the so-called
PBEsol exchange-correlation functional [17].

Calculations using the NN potential and optimization of
parameters in the NN potential are performed using our
own MD program, NAP [18]. Calculations using the MEAM
potentials of both Jelinek’s and Kim’s [20] are performed using
the large-scale atomic/molecular massively parallel simulator
(LAMMPS) [21].

In calculations of pure bulk structures and ordered com-
pounds, the minimum conventional cells are used with periodic
boundary conditions (PBCs) in all the directions. In finite
temperature calculations of pure Al to compute the thermal
expansion coefficient, we use 3 × 3 × 3 cubic FCC cells and
equilibrate the system to the target temperature using the
Langevin thermostat [22] and the target pressure (0 GPa) using
the Berendsen barostat [23] over a total time of 10 ps. The

atomic volume at a given temperature is obtained as the average
volume during 10 ps after the initial 10-ps equilibration time.

In calculations of single solutes/vacancies and solute-
solute or solute-vacancy interactions, we use 4 × 4 × 4 cubic
FCC cells with one or two Al atoms replaced by solutes
as appropriate. In calculations of “random” distribution of
solutes, 2 × 2 × 2 cubic FCC cells are used and a half of
the atoms (16) are chosen randomly and replaced with two
vacancies and 14 solute atoms, Mg and Si. In both cases,
PBCs are applied to all the directions and atom positions are
relaxed with the lattice constants being fixed to that of pure
Al. These are reference calculations of specified structures for
input into the NN algorithm, and so there is no need to relax
these structures fully.

In calculations of stacking faults, the simulation cell is
oriented with axes along [11̄0], [112̄], and [111] as x, y, and
z directions, respectively. PBCs are used along x and y and
the surfaces along z are free with a vacuum region wider than
11 Å. There are 12 atomic layers along z and the stacking
fault is introduced by the rigid shift of upper half atoms in z

followed by relaxation of all atoms only along the z direction.
In calculations of the properties for the (111), (001), and

(110) surfaces, the energy versus separation is calculated by
rigidly separating the upper and lower halves of atoms. The
slab was made thicker than 8 Å to reduce spurious interactions
between surfaces. The cell size in the plane of the surface is
fixed to the bulk equilibrium value.

In calculations of precipitates, the geometry of the system
follows that employed by Ninive et al. [24] (also shown in
Fig. 7). A needle-shape precipitate is embedded into an Al
matrix so that the longitudinal axis of the needle matches the
[001] direction of the Al matrix. The system size normal to
the longitudinal axis is proportional to the number of formula
units of the precipitate embedded in the system. For example,
cell sizes of 5 × 5, 7 × 7, and 12 × 12 are used for precipitates
containing 1, 4, and 16 formula units, respectively. The lattice
constant of the system is fixed to that of pure Al at equilibrium.

In calculations of dislocation-solute interactions, the system
is prepared by the following steps. Firstly, we create an
orthogonal FCC lattice with x, y, and z axes along [11̄0],
[112̄], and [111], with lengths 285.7, 14.8, and 219.6 Å,
respectively. A vacuum region along the z axis wider than the
cutoff distance of the NN potential is introduced by removing
atoms. Secondly, a perfect dislocation is introduced along y

at the center of x and z coordinate system by removing one
atomic layer normal to x from the bottom half of the system.
Relaxing the atoms while holding the z motions of atoms on
(111) surfaces fixed, we obtain two partial dislocations and
a stacking fault between them. The Nye tensor distribution
around the dislocation cores is calculated using the method
proposed by Hartley and Mishin [25]. To obtain the interaction
energy between a solute and a dislocation core, one Al atom
around the dislocation core is replaced with the desired solute.
If the system is relaxed with no constraints, it is frequently the
case that the dislocation will glide so that the solute position,
relative to the dislocation, is in a low-energy position (typically,
either near a partial core or far away from the dislocation).
When this occurs, the measurement of “solute/dislocation
interaction energy” for the original solute position is not
obtainable. To overcome this problem, we fix one plane of
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atoms in a plane perpendicular to the dislocation line, thereby
pinning the dislocation core structure in this plane. The solute
is then inserted at the desired y-z position in a plane furthest
from the constrained plane of atoms, the system is relaxed, and
the energy is measured. Due to the constraint, the dislocation
does not bow-out toward or away from the solute.

III. NEURAL-NETWORK POTENTIAL

A. Structure of the NN potential

The NN potential developed in this paper is basically the
same as the one originally developed by Behler and Parrinello
[5]. However, since there are some differences in detail, we
describe the structure of the NN potential here.

The energy of an atom i in a structure s is defined as

Es
i =

∑
m

w2
1my1

i,m, (1)

y1
i,m = fa

(∑
n

w1
mnGi,n

)
. (2)

Here, wl
mn is the weight of a line from a node n in the (l − 1)th

layer to a node m in lth layer of the NN, and yl
i,m is the value

of node m in lth layer, Also, Gi,n, the so-called symmetry
function, is the nth input, which depends on the interatomic
bond distances Rij from an atom i to a surrounding atom
j . The activation function fa(x) is defined using the sigmoid
function as

fa(x) = 1

1 + e−x
− 1

2
, (3)

where 1/2 is subtracted from the sigmoid function so that y1
i,m

becomes zero when all the inputs are zero, resulting in the
energy being zero.

There are many choices of the symmetry functions. Here,
we employ the Gaussian function

Gi,n =
∑
j �=i

e−ηn(Rij −Rn)2
fc(Rij ), (4)

where ηn and Rn are the parameters that are determined
heuristically before training the network. The cutoff function
fc(R) is defined as

fc(R) =
⎧⎨
⎩

1, for R � R∗,
1
2

[
cos π(R−R∗)

(Rc−R∗) + 1
]
, for R∗ < R � Rc,

0, for R > Rc.

(5)

where Rc is the cutoff radius and R∗ = 0.9Rc.

B. Training of the network

The objective function to be minimized in training of the
NN potential is

L({w}) = 1

2M

M∑
s

⎡
⎣(

�Es

εs
e

)2

+
Ns

a∑
i

xyz∑
α

1

3Ns
a

(
�Fs

i,α

εs
f

)2
⎤
⎦,

(6)

where �Es = (Es,NN − Es,ref)/Ns
a and �Fs

i,α = F
s,NN
i,α −

F
s,ref
i,α are the differences in energies and force components,

respectively, as obtained by the NN potential and the DFT
calculations. The superscript s indicates the index of a sample,
Ns

a is the number of atoms in the sample s, and M is the number
of samples. The quantities εs

e and εs
f are the convergence

criteria for the energy per atom and the force component for a
sample s, respectively; the objective function L becomes less
than one when �Es and �Fs

i,α are smaller, on average, than
these convergence values.

A parameter-rich model like the NN can often show
overfitting, in which the model is well optimized to the training
set data but reproduces very poorly data not included in
the training set. This is also known as low transferability
of the interatomic potential. There are various ways to avoid
the overfitting, such as the early stopping approach [10,26],
which stops the optimization before the overfitting begins, and
the weight decay approach [26], which adds a penalty term toL
to suppress the parameters having large values, which usually
causes the overfitting. Because it is not easy to determine when
to stop the optimization in the early stopping, we adopted the
weight decay approach by adding a penalty term, the so-called
ridge penalty, to Eq. (6) as

L∗({w}) = L({w}) + λ
∑

i

w2
i , (7)

where λ is the penalty parameter to improve the generalization
or transferability of the NN potential. The hyperparameter
λ is determined heuristically to be as large as possible so
that the penalty term is small enough not to exceed the L
value. The minimization of the function L∗({w}) is carried
out using a quasi-Newton method, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [27].

C. Reference data

The sample configurations used to train the network should
contain structures that well represent the environments that are
relevant for the phenomena of interest. To create the potential
used for the study of precipitation strengthening of Al-Mg-Si
alloys, we used the following base structures: (i) FCC, BCC,
and HCP structures of Al and Mg, diamond structure of
Si; (ii) the generalized stacking fault (GSF) structure along
the {111} plane of Al; (iii) several surfaces of FCC Al; (iv)
FCC Al structures containing one, two, and more vacancies
or solute atoms; and (v) binary compound phases among
Al, Mg, and Si. From each of those base structures, we
created deformed structures by changing the cell vectors of
the system and displaced structures by random displacements
of atoms or from MD snapshots. These displaced structures
are necessary additions to the equilibrium structures because
otherwise the NN could give unphysical lower energies for
deformed structures relative to the true low-energy structures.
In total, we generated 10 237 structures and divided them
randomly into a training set used for the training and a test set
used for monitoring the convergence.

D. Hyperparameters

Parameters that are not trained from data, the so-called
hyperparameters must be specified before optimization. In this
NN model, the hyperparameters are the number of hidden
layers, the number of nodes in a hidden layer, the number of
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FIG. 1. Energies per atom of sample structures obtained by the
NN potential and the DFT calculation. The y = x line indicates ideal
matching between NN and DFT values.

symmetry functions, ηn and Rn, in the Gaussian function, and
the cutoff radius Rc. We determined these hyperparameters
by trial and error, validating the obtained NN potential using
several physical values as shown in the following sections. The
resulting hyperparameters of the NN potential proposed were
eventually chosen as follows: the number of hidden layers is 1
and the number of nodes in a hidden layer is 30. The number
of symmetry functions for each pair is 20, so the total number
of symmetry function is 120 because there are six pairs among

three elements. For all the symmetry functions, ηn = 10.0 Å
−1

.
There are 20 Rn for each pair at regular intervals from 1.5 to
5.7 Å. We set the cutoff radius Rc = 5.8 Å to cover third-
neighbor interactions, which is important to distinguish FCC
and HCP structures and to reproduce the generalized stacking
fault (GSF) energy curve.

E. Optimized NN potential

Figure 1 compares the energies of sample structures
predicted by the optimized NN potential against the reference
values DFT. The root mean square error (RMSE) for the
training data is 0.5 meV/atom. More importantly, the RMSE
for the test data is 2.0 meV/atom. This indicates that the
present NN potential is able to accurately reproduce all the
structures in the entire sample data set, which is designed to
include many structures and configurations that are relevant
for modeling of evolution and mechanical performance in
the Al-Mg-Si system. Because the present NN potential has
120 symmetry functions, 3600 first-layer weights and 30
second-layer weights per atom, the speed of calculating forces
of the NN potential implemented in our own code, NAP. is
about 8× slower than that of the Al-Mg-Si MEAM potential
implemented in LAMMPS.

To enable others to reproduce and use the present NN
potential, the optimized parameters and a pseudo code to read
those parameters are provided in Ref. [28]. The NN potential
is implemented also in LAMMPS (it is available on request).

TABLE I. Pure Al bulk properties from experiments or ab initio
calculations and as computed using the present NN potential and two
MEAM potentials (Jelinek and Kim). The structures relevant to these
properties are in the training data.

Al Exp/ab initio NN Jelinek Kim

a (Å) 4.05 [31], 4.045 4.045 4.048 4.047
Ec (eV) 3.39 [32], 3.057 3.057 3.353 3.360
B (GPa) 72.2 [32], 79.1 76.9 78.4 79.0
C11 (GPa) 114.3 [32], 106.1 [19] 109.9 111.1 113.8
C12 (GPa) 61.9 [32], 31.9 [19] 31.6 28.6 31.4
γsf (mJ/m2) 135-166 [32,33], 116.4 141.9 147.1

122-164 [29,34–38], 125.8
γus (mJ/m2) 224 [37,38], 166.2 156.7 280.9 236.2
γ(111) (mJ/m2) 710 [38], 720.2, 742.9 716.1 516.3
γ(001) (mJ/m2) 873.8 878.0 1071.6 743.9
γ(110) (mJ/m2) 927.7 945.1 1104.8 820.9
α (10−6/K) 23.6–25.4 [39] 23.3 14.4

IV. PROPERTIES OF ALUMINUM

There are a number of interatomic potentials for bulk
Aluminum that reproduce most important properties with good
accuracy. It is important that the NN potential give similar, or
better, properties for the matrix Al material of the Al-Mg-Si
alloy. Here, we thus present validation of the NN for pure Al.

Table I shows the bulk properties of FCC Al as obtained by
DFT (the reference data), the Jelinek et al. MEAM potential
(as an example), and the present NN potential. Although the
present DFT value of cohesive energy is lower than that of
experimental data, the lattice constant, bulk modulus, and other
elastic moduli are in good agreement with experimental and
previous ab initio values. The NN potential reproduces the
DFT values of elastic properties with good accuracy.

The generalized stacking fault (GSF) energy is an important
property relevant to the dissociation of a perfect dislocation
into partial dislocations and to dislocation emission at a
crack tip. The GSF energy of a shift vector (x,y) on {111} is
defined as

γ SF(x,y) = E[N ](x,y) − NεAl

A
, (8)

where N is the number of atoms, A the area of xy plane of
the calculation cell, and εX the chemical potential of species
X, which is the cohesive energy of the most stable structure
of the species. Table I shows the stable and unstable stacking
fault energies and Fig. 2 shows the GSF curve along the 〈112〉
direction. The NN potential slightly underestimates the ab
initio results but reproduces the GSF curve well, especially in
the range from 0.5 to 1.0 that includes the stable and unstable
stacking fault energies.

The dislocation core structure is also important because it is
directly related to dislocation motion, dislocation interactions
with solutes and precipitates, and is thus at the heart of
plasticity mechanisms in metals. Figure 3 shows the Nye
tensor distribution around the equilibrated edge dislocation
core. The Nye tensor distribution and the partial dislocation
separation distance of 3b − 4b, with b = 2.86 Å the Burgers
vector, are in very good agreement with full DFT calculations
[29,30]. This agreement is generally expected because the
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FIG. 2. Generalized stacking fault curve for bulk Al along the
[112] direction, as computed using DFT, two MEAM potentials, and
the present NN potential. These structures are included in the training
data.

NN potential accurately reproduces the controlling stable and
unstable stacking fault energies.

The surface energy is defined as

γ surf(d) = E[N ](d) − NεAl

2A
, (9)

where d is the separation of two surfaces.
Figure 4 shows the energy versus rigid separation of

two blocks of Al as computed by DFT, by two MEAM
potentials (Jelinek and Kim), and by the NN potential. The
fully-relaxed surface energies γ(111), γ(001), and γ(110) obtained
from the largest d are shown in Table I. Although the two
MEAM potentials reproduce the order of stability of these
surfaces, γ(111) < γ(001) < γ110, the Jelinek potential has large
unphysical barriers for separation in all the directions and,
although they are much smaller, the Kim potential also has
unphysical barriers. The NN potential reproduces the DFT
curves along all directions and all distances. The NN potential
thus accurately reproduces the surface energies but also forces
during separation which are the cohesive tractions relevant in
fracture processes.

]
[

FIG. 3. Nye tensor distribution of the screw component of the
Burgers vector for the dissociated edge dislocation core in pure Al;
the result agrees well with direct DFT [29,30], x and y axes are in
units of the Burgers vector b = 2.86 Å. This structure is not in the
training data.

 0

 500

 1000 (111)

 2  3  4  5  6  7  8

DFT
MEAM (Jelinek)

MEAM (Kim)
present

 0

 500

 1000

 1500

 2  2.5  3  3.5  4  4.5  5  5.5  6

(001)

 0

 500

 1000

 1500

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

(110)

S
ur

fa
ce

 e
ne

rg
y 

(m
J/

m
2 )

Surface separation (Ang.)

FIG. 4. Energy vs separation for rigid block separation across the
(111), (110), and (100) surfaces of bulk Al, as computed via DFT, two
MEAM potentials, and the present NN potential. These structures are
included in the training data.

We have also performed MD simulation at finite temper-
atures up to 500 K, which is higher than the normal paint
bake temperature of ∼450 K used during aging of Al 6xxx
alloys, to confirm that the present potential is suitable over the
necessary temperature range and also to measure the thermal
expansion coefficient. The thermal expansion coefficient is
extracted from the slope of the volume-temperature relation as

α = 1

a0

(
da

dT

)
, (10)

where a0 is the equilibrium lattice constant at 0 K. The α

value obtained using the NN potential, shown in Table I, is
in good agreement with experimental values. This indicates
that the NN potential captures the anharmonicity around the
equilibrium lattice constant as well as the harmonic region
(related to the bulk modulus).

V. PROPERTIES OF THE TERNARY Al-Mg-Si SYSTEM

We now turn to comparison of the predictions of the NN
potential versus DFT for many properties of the Al-Mg-Si
ternary system. Note that, although a lot of important structures
are included in the training data set, it is impossible to include
all the structures of interest because they require large number
of atoms or configurations that are not easily calculated by
DFT. We will mention in each section, figure and table if the
structures are not in the training data.

A. Ordered binary and ternary compounds

The alloy phase with the lowest heat of formation �H is
the one most likely to form at zero temperature. For accurate
modeling of the evolution of the system toward precipitation
of the thermodynamically favorable phases, the potential
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TABLE II. Lattice constant a (Å) and heat of solutions �H comp (meV/atom) for binary and ternary compounds calculated using DFT-PBE,
the Jelinek et al. MEAM potential, and the present NN potential. Ab initio values computed using DFT-PBEsol are indicated in parentheses.
These structures are in the training data.

ab initio NN Jelinek

Composition Structure a �H comp a �H comp a �H comp

AlMg B1 5.745 424 5.760 425 5.714 236
AlMg B2 3.388 66 3.396 66 3.440 −31
Al3Mg L12 4.138 4 4.145 0 4.238 −39
AlMg3 L12 4.375 5 4.146 4 4.448 −46
Al12Mg17 10.506 −18 10.539 −18 10.315 389
AlSi B1 5.217 261 5.229 261 5.241 280
AlSi B2 3.160 239 3.164 239 3.188 142
Al3Si L12 3.994 96 4.000 96 4.059 113
AlSi3 L12 3.899 333 3.907 333 4.194 532
MgSi B1 5.505 384 5.532 383 5.507 192
MgSi B2 3.308 144 3.313 144 3.384 64
Mg3Si L12 4.263 −7 (−4) 4.267 −8 4.367 24
MgSi3 L12 3.988 269 3.988 269 4.176 322
Mg2Si C1 6.365 −136 (−105) 6.362 −136 6.530 44

must reproduce the heats of formation of many possible alloy
phases. The heat of formation of a compound is defined as

�H comp = E[{NX}] − ∑
X NXεX∑

X NX
, (11)

where NX is the number of atoms of species X. Table II
shows the lattice constants and heats of formation of binary
compound phases, Table III shows the equilibrium cell
parameters, heats of formation, bulk moduli, and elastic
moduli of precipitate phases, as computed by DFT and as

TABLE III. Equilibrium cell parameters, heat of solutions �H comp (meV/atom), bulk modulus B (GPa), and elastic constants Cij (GPa) of
precipitate structures obtained using the DFT-PBE, the present NN potential and Jelinek et al. MEAM potential. The geometry of the preciptate
systems follow that employed by Ninive et al. [24] (also shown in Fig. 7). Heat of solutions computed using DFT-PBEsol is indicated in
parenthese. Elastic constants Cij ’s by the ab initio caluclation are taken from D. Giofré et al. [19]. The structures relevant to these properties
are included in the training data.

Mg5Si6 Al2Mg5Si4 Al3Mg4Si4

ab initio NN Jelinek ab initio NN ab initio NN

a (Å) 15.138 15.173 17.012 15.299 15.343 15.095 15.109
b (Å) 4.040 4.074 4.322 4.044 4.052 4.113 4.131
c (Å) 6.982 6.940 7.142 6.818 6.846 6.633 6.651
α 90.0 90.0 89.2 90.0 90.0 90.0 90.0
β 110.4 109.9 89.6 105.9 106.0 106.5 106.6
γ 90.0 90.0 89.9 90.0 90.0 90.0 90.0

volume (Å
3
) 400.4 403.2 525.0 405.7 408.9 395.0 397.7

�H comp (meV/atom) 18 (24) 17 311 −60 −67 −32 −39
B (GPa) 62.1 58.5 125.0 61.2 62.5 63.8 64.4
C11 (GPa) 98.4 109.4 107.1 118.3 106.7 110.1
C22 (GPa) 84.6 94.0 94.7 98.6 96.5 102.6
C33 (GPa) 88.0 103.6 99.1 112.4 97.1 108.5
C44 (GPa) 21.9 29.8 26.9 27.4 25.9 30.3
C55 (GPa) 29.1 38.6 36.3 45.3 35.6 48.0
C66 (GPa) 51.2 68.1 49.4 60.8 46.3 52.7
C12 (GPa) 50.0 26.1 40.3 33.0 46.5 36.6
C13 (GPa) 47.7 46.2 45.6 60.0 48.0 55.6
C23 (GPa) 45.7 46.7 43.0 44.0 48.8 42.3
C15 (GPa) 8.2 −0.2 −13.1 3.6 9.3 5.9
C25 (GPa) 5.8 −2.5 4.3 9.5 5.7 7.0
C35 (GPa) 5.4 −1.6 11.9 −3.8 9.3 −6.2
C46 (GPa) −10.1 0.8 5.4 2.6 6.3 4.8
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predicted by the Jelinek et al. MEAM potential and the present
NN potential. Even for the complex MEAM potential that is
calibrated to various binary phases, the prediction of other bi-
nary and ternary phases is challenging. In particular, the lattice
constants and heats of formation of important Mg-Si phases
such as Mg2Si and Mg5Si6 are significantly different from the
DFT values. The NN potential, on the other hand, reproduces
well the DFT values of the equilibrium cell parameters, bulk
moduli, and heats of formation for the important precipitate
phases such as Mg5Si6, Al2Mg5Si4, and Al3Mg4Si4 as shown
in Table III. Tables II and III include some ab initio values of
heat of formation obtained using the PBEsol functional, from
which we see that the difference between DFT with PBE and
NN potential is smaller than the difference between DFT with
PBE and PBEsol, i.e., the NN potential is within the accuracy
of the DFT itself. The difference in lattice constants for Mg5Si6
and FCC Al for the NN potential is less than 1%, indicating
that the precipitates of Mg5Si6 in Al matrix will be stable and
remain coherent when using the NN potential. Some of the
shear elastic constants of NN potential differ from those of
DFT and could contribute the difference in formation energies
of precipitates in Al matrix, which are evaluated in Sec. V D.

B. Single solute and vacancy properties

Heats of solution of isolated solutes in FCC Al are important
because they are relevant to the solid solution phase and
thus to the stability of ordered phases relative to the solid
solution state. The heat of formation of a vacancy is related
to equilibrium and nonequilibrium vacancy concentrations
and thus to vacancy-mediated diffusion of solutes and matrix
atoms. The heat of solute or formation energy is computed as

�H sol = E[Al(N−1)X1] − (N − 1)εAl − εX, (12)

where X denotes the solute or vacancy, and we hereafter treat
a vacancy as a “solute” with εVac = 0.

Table IV shows the calculated heats of solution via DFT,
the two MEAM potentials, and the present NN potential. The
Kim MEAM potential gives quite good values for the heats of
formation for Mg and vacancy, whereas the Jelinek MEAM
potential is not good for these solutes. This shows the difficulty
in constructing MEAM potentials for more than two elements.
The NN potential predictions for the heats of solution for Mg
and Si agree well with those computed by DFT.

Table IV also shows the misfit volumes of Mg and Si
calculated by DFT and the NN potential. The DFT misfit
volumes are taken from Leyson et al. [30] and the NN potential

TABLE IV. Heats of formation �H sol (eV) and misfit volumes

(Å
3
) (in parentheses) of a substitutional solute and vacancy in FCC

Al. These values are obtained from 4 × 4 × 4 cubic FCC cells that
are not in the training data, but the relevant structures with 2 × 2 × 2
cubic FCC cells are included in the training data.

Substitute ab initio NN Jelinek Kim

Mg 0.090 (5.71) 0.100 (5.15) −0.200 0.098
Si 0.375 (−2.65) 0.376 (−2.63) 0.500
Vacancy 0.654 0.647 (−3.39) 0.670 0.708

2 5 10 2 5 10 0202

FIG. 5. (a) Solute-solute binding energies as a function of
distance between solutes, and (b) solute-vacancy binding energies,
obtained by the NN potential (filled markers and solid lines) and
DFT (open markers and broken lines). These values are obtained
using 4 × 4 × 4 cubic FCC cells which are not in the training data,
but the relevant structures with 2 × 2 × 2 cells are in the training data.

misfit volumes are calculated using the same method. The
NN potential underestimates the misfit volume of Mg by
about 10%. This is acceptable for reasonable estimates of
the interaction energy of Mg with the Al dislocation or with
precipitate-induced pressure fields. The misfit volume of Si is
in very good agreement with the DFT result.

C. Solute-solute binding and energies of solute clusters

The interactions among solutes and vacancies is crucial
to the early stage formation of solute clusters during aging.
Trapping of vacancies by clusters (so-called “vacancy prisons”
[40]) has been suggested as important in Al-6xxx aging in
particular. A useful potential must therefore reproduce these
binding energies within approximately an energy of kBT to
provide accurate metastable energetics during the evolution of
the system.

The binding energy between two solutes X and Y is
defined as

− EX−Y
bind = E[Al(N−2)X1Y1] + NεAl

−E[Al(N−1)X1] − E[Al(N−1)Y1]. (13)

With this definition, a positive value indicates that X and Y
tend to bind to each other. Figure 5(a) shows the binding
energies of pairs among Mg and Si versus pair separation
distance, and Fig. 5(b) the binding energies that involve a
vacancy, as computed by the DFT and as predicted by the NN
potential. These values are obtained using 4 × 4 × 4 cubic
FCC cells and these structures are not in the training data,
but the relevant structures with 2 × 2 × 2 cells are in the
training data. The figures show that the differences between
the NN prediction and the DFT computation are less than 20
meV in all cases, which is slightly below kBT = 25.4 meV at
T = 293 K. The sign of the nearest-neighbor binding of Si-Si
is the opposite of the DFT results, but the absolute value is
small so that this difference is not of great consequence at the
temperatures of interest. Of more importance are the trends of
strong binding between Si-Vac and Mg-Si, and the repulsive
interaction between vacancies, all of which are predicted well
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FIG. 6. Formation energies per atom of the system described in
Sec. II obtained by the NN potential (red squares) and the DFT-
PBEsol (blue circles), as differences from the DFT-PBE results. Since
these structures are not in the training data set, this can be treated
as the prediction error of solution/precipitation energies by the NN
potential.

with the NN potential. These results indicates that the NN
potential can be useful for meaningful simulations of clustering
of solutes.

An important observation we made is that the interaction
energy between solutes depend strongly on the size of the
supercell, more than would be expected based on misfit volume
and elastic terms. We traced the source of this discrepancy to
long-range charge oscillations induced by the solute atom.
These kinds of long-range effects cannot be captured by a
short-range NN potenial, which partially explains the difficulty
in accurately learning solute interaction energies. We note,
however, that the accuracy we can achieve is sufficient for the
modeling of the early stages of precipitation in Al6xxx alloys:
treatment of long-range effect will be the subject of further
studies.

To move beyond simple pair interactions toward larger
clusters such as those that might emerge during aging, we
have also computed the heats of formation of rather complex
random Al-Mg-Si-vacancy configurations via both DFT and
the NN potential. The many specific configurations studied
here (consisting of 16 Al atoms, 2 vacancies, and a total of 14
Mg and Si atoms) are not important on their own, and hence
we do not show all the structures but rather concentrate on
the spectrum of energies. Figure 6 shows the difference in
formation energies of all configurations as computed by the
NN potential and by DFT. The formation energy is defined as

Ef = E[NAl,NMg,NSi] − NAlεAl − NMgε
SS
Mg − NSiε

SS
Si , (14)

where εSS
X ≡ E[Al255X1] − 255εAl is the solid solution energy

of solute X. Since these configurations are not included in
the training data set, these results provide a measure of
transferability, or conversely error prediction, for the present
NN potential for solute clusters. The mean difference is +6
meV/atom with a standard deviation of +/−8 meV/atom.
Figure 6 also shows the differences between PBE and PBEsol
DFT results, with a mean difference of +8 meV/atom and
standard deviation of +/−4 meV/atom. The NN potential
predictions are thus somewhat larger than the differences
among different DFT methods, but are almost within the
statistical scatter. In contrast, the Jelinek MEAM potential
predicts differences with DFT of mean +256 meV/atom and
standard deviation +/−108 meV/atom, which are not only
10–20 times larger, but far too large to be suitable for studies
of aging.

D. Precipitates

In the early stages of precipitation in Al-Mg-Si alloys, the
Mg/Si ratio in a needle-shape precipitate is smaller than that
of the larger equilibrium Mg2Si precipitate, which has the
C1 structure. The structure of the early-stage precipitate is
thought to be Mg5Si6 [41] or the same crystalline structure
but with some Mg or Si atoms replaced by Al [24] as shown
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FIG. 7. (a) Typical simulation cell of Mg5Si6 precipitate of NFU = 4 in Al matrix, which corresponds to 7 × 7 × 1 FCC Al cell. The system
is periodic in z direction, [001]Al. The green rectangle indicates a monoclinic cell of Mg5Si6. (b) Formation unit of Mg5Si6 indicated in the red
rectangle in (a). In case of Mg5Al2Si4, Si3 sites in Mg5Si6 are replaced by Al, while Mg1 site is also replaced by Al in Mg4Al4Si4. (c) Size
dependency of the precipitation energy of Mg5Si6, Al2Mg5Si4, and Al3Mg4Si4 obtained by the NN potential and the DFT (from D. Giofré et al.
[19]). These structures are not in the training data set.
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in Fig. 7(a). We have thus computed the formation energies
of these precipitates as a function of size when embedded
in the Al matrix using the NN potential and have compared
the predictions with DFT results. The DFT study is similar
in spirit to that of Ninive et al., but not identical in terms of
implementation and boundary conditions [19]. The simulation
cells here for both DFT and NN are identical, making direct
comparison possible. These structures are not in the training
data set and thus the comparison shows prediction errors of
the NN potential for precipitates.

The precipitate energy is defined as

Eprec = Ef/NFU, (15)

where Ef is defined in Eq. (14) and NFU the number of
precipitate formula units in the precipitate, as shown in
Fig. 7(a). Figure 7(c) shows the precipitate energies obtained
by DFT and by the NN potential as a function of NFU. The DFT
and NN results are in good agreement for larger precipitates,
but the NN potential underestimates the precipitate stability for
the smallest precipitates (one formula unit), with a difference
of ∼0.2–0.3 eV/unit. These energy differences are thus rather
larger than those found for individual solute-solute interactions
on a per-atom basis as the one precipitate unit contains 11
atoms. If we assume that not only precipitate atoms but also
surrounding Al atoms, for example, Al atoms interacting with
the precipitate within the cutoff range of the NN potential, are
contributing to the energy difference, it would decrease close
to the uncertainty of the DFT method found for the 32-atom
Al-Mg-Si-vacancy clusters.

Proceeding further, the contributions to the precipitation
energy can be divided into four parts: the bulk formation
energy, the strain energy, and contributions from interfaces
and edges. The Eprec, which is the precipitation energy per
NFU, of bulk and strain parts are independent of NFU, while
the interface and edge energies should scale as N

−1/2
FU and N−1

FU ,
respectively. Therefore, as NFU increases, the bulk and strain
energies should dominate Eprec while the edge contribution
could be significant at small sizes, e.g., NFU = 1. The good
accuracy of the bulk formation energy and elastic constants
as shown in Tables I and III the underestimation of the NN
potential for the small precipitates with NFU = 1 implies that
the NN potential overestimates the formation energies of the
precipitate edges and surfaces. Of course, one precipitate unit
(11 atoms) is nearly entirely “interface” and “edges,” and hence
deviations per atom are comparable to the deviations for other
solute-solute interaction energies. Nonetheless, the cumulative
effect of these per-atom energy differences (reaching 0.2–0.3
eV/unit) can have an effect on overall aging behavior since
the total difference in precipitate energy is not negligible.
Improving the error of these energy differences is still
challenging even for the machine-learning potential like NN
and may not be necessary because the uncertainty of the DFT
method could also result in non-negligible differences.

E. Dislocation-solute interaction

Interactions between solute and dislocation core, and
solute and stacking fault between dissociated dislocations are
important properties for the solution strengthening and for
modeling dislocation motion in alloys. The interaction energy
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FIG. 8. Interactions between a dissociated dislocation core in Al
and a solute in (a) Mg and (b) Si. These structures are not in the
training data set.

is computed as

Edisl−sol
int (xi,yj ) = Edisl−sol(xi,yj ) − [Edisl + Esol], (16)

where Edisl−sol(xi,yj ) is the total energy of the system
including the dislocation and the solute atom at position (xi,yj )
from the center of the stacking fault, and Edisl is the total energy
of the system including the dislocation without solute. Esol is
the solid solution energy defined as

Esol = 1

Nlayer

Nlayer∑
j

[Edisl−sol(xfar,j ,yj ) − Edisl], (17)

where Nlayer is the number of layers considered, which is four
in this study, and xfar,j is the x position farthest from the
center of stacking fault within the j th layer. Since modeling
solute-dislocation interaction requires large system with more
than 10 000 atoms, these structures are not in the training data
and thus these properties also show prediction errors of the
NN potential.

Figure 8 shows the interactions between a dislocation
centered at the origin and a single solute at different (xi,yj )
positions. Since the misfit volume of Mg in Al is positive,
Mg has negative interaction energy at positions lying on that
side of the dislocation glide plane where the local pressure
field is tensile, and a positive interaction energy at positions
on the compressive side. The range of the interaction energy
is about 0.2 eV, which is in good agreement with DFT [30].
Conversely, since the Si misfit volume in Al is negative, the
interaction energy between the dislocation and Si atoms should
be negative (binding) on the compressive side of the glide plane
and positive on the tensile side. However, Fig. 8(b) shows
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that the interaction energy for Si atoms close to the partial
dislocation core tends to become negative even if Si is on the
tensile side; this is not seen in the DFT calculations [30]. In
addition, on the compressive side near the partial cores, the
interaction energy is somewhat larger (2×–3×) than the DFT
values. Since the misfit volume of Si in Al is captured well
by the NN potential (Table IV), the NN potential prediction
of strong binding of Si in the partial dislocation core stems
from an artificial “chemical” interaction in this region of high
lattice distortion core. The NN potential is thus inaccurate for
this situation, which will influence predictions of the solute-
strengthening of dislocations as they move through a field of
Si solutes. This may also impact dislocation interactions with
Si-containing precipitates, for which there are no reference
DFT computations.

VI. CONCLUSION

We have developed an NN potential for studying the
precipitation strengthening in the ternary Al-Mg-Si alloy.
The NN potential is trained to reproduce DFT energies and
forces for numbers of structures including several bulk phases,
surfaces, stacking faults, vacancies, and solid solutions. The
NN potential is accurate in its prediction of (i) the lattice
constant, bulk modulus, elastic moduli, stacking-fault, and
surface energies of pure Al, (ii) the solute/solute and so-
lute/vacancy binding energies to within 20 meV/pair, relative
to the DFT results. Errors for properties included in the
training data set are smaller than the uncertainties in the
DFT method, as assessed by comparisons of DFT using two
exchange-correlation functionals for a subset of properties.
Errors for properties not included in the training data set are
slightly larger but still generally comparable to the uncertainty
of the DFT method.

Only the Si/dislocation interaction energies near the partial
cores of the Al edge dislocation show differences that could
be important for quantitative predictions of strengthening. The
energies of small Al-Mg-Si clusters are also less accurate
than other quantities, although not significantly on a per-atom

basis, but trends with size and composition are followed quite
well. Since the machine-learning-type potentials such as the
NN potential are basically interpolating a potential energy
landscape, these inaccurate properties could be improved by
including training data such as dislocation core structures and
small precipitate structures unless they have intrinsic long-
range interactions that cannot be captured by the short-range
NN potential as we observed for solute-solute interactions.
We also note that certain DFT results (dislocation structure
[29,30], dislocation/solute interactions and solute misfits [30])
were calculated using different codes and possibly different
specific parameters such as the k-point mesh and the cutoff
energy, and the dislocation cases using a multiscale method—
therefore, in all of these cases, some differences are expected
within the error/uncertainty of these other DFT numbers.
These differ from the DFT results used in the training data.

The overall success of the NN potential indicates that it
can be used for the studies of precipitate strengthening of
Al-Mg-Si alloys involving the evolution of solute clusters,
early formation of nanoprecipitates, and their interactions with
dislocations. More broadly, these results show that machine-
learning-type potentials such based on the neural networks
can be quantitatively successful, and thus powerful tools, for
modeling complex alloys that have proven to be extremely
challenging cases for the other physics-based interatomic
potential formulations.
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