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Nucleation and growth kinetics for intercalated islands during deposition on layered materials
with isolated pointlike surface defects
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Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in
the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for
this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated
pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to
nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect,
continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary
tailored lattice-gas modeling produces a more comprehensive and quantitative characterization. We analyze the
large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider
the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our
natural adoption of a hexagonal close-packed island structure. Motivation and support for the model is provided
by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered
pyrolytic graphite at higher temperatures.
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I. INTRODUCTION

There have been extensive studies of the homogeneous
nucleation and growth of metal islands, also described as
nanoclusters, during surface deposition on wide defect-free
terraces [1–3]. Here, deposition provides a uniform flux of
atoms onto the surface leading to an initial uniform buildup
in the density of diffusing adatoms. This in turn leads
to nucleation of islands initially at random locations and
subsequent competition between nucleation of new islands
and growth of existing islands. Such subsequent nucleation is
persistent and tends to occur away from existing islands where
the quasi-steady-state adatom density has local maxima [3].

For nucleation and growth of intercalated metal islands in
the gallery between the top two layers of periodically-layered
materials such as highly oriented pyrolytic graphite (HOPG),
one anticipates a quite different picture. We focus on one
scenario where some fraction of atoms deposited on the surface
can access the gallery just under the top layer of the substrate
through well-separated pointlike defects in the top layer. This
fraction will be controlled by the density of traps for diffusing
adatoms on the top surface (i.e., by any surface adsorbate
islands and by step edges), by the presence of any additional
barrier to access the subsurface gallery, and generally also by
thermodynamic factors. The intercalated adatom density will
build up inhomogeneously around each defect “point source.”
Eventually, an island will nucleate, generally at some distance
from the defect, and subsequent island growth will occur.
Such growth could be preferentially biased back toward the
point-source defect (see Fig. 1). Once that island grows back to
the defect, it may block injection of further atoms at that defect,

and in fact may seed growth of a surface adsorbate island on top
of the defect (see Sec. V for examples). In general, nucleation
of additional islands will also occur preferentially at locations
away from existing islands. Motivation for the above scenario
comes from recent experimental studies of the deposition at
around 800 K of various metals, including Cs [4], Dy, Ru, and
Cu [5], on a defective HOPG surface. In these studies, HOPG
was sputtered by Ar+ ions to produce damage in the form of
local or pointlike surface defects.

A few additional observations are also appropriate as back-
ground for our analysis. First, amongst the above-mentioned
experimental studies, we note that for near-surface Cs in-
tercalation on HOPG [6], vacancy cluster defects in the top
HOPG layer were explicitly identified as the entry points for
Cs intercalation. However, it was also shown that the defects
must consist of more than four missing C atoms in order for
intercalation to be energetically viable. Second, in addition to
the above experimental studies, and also the current theoretical
analysis focused on the formation of near-surface intercalated
islands, we emphasize that there exists a substantial literature
on the overall intercalation process leading to formation of bulk
graphite intercalation compounds (GICs). In particular, these
studies consider kinetics for the multiple aspects and stages
of the formation of GICs [6–8]. Third, beyond intercalation
studies, there are also numerous previous investigations of the
formation of surface islands, and the decoration of step edges,
by deposition of various metals including Dy [9] on HOPG
[10].

The outline of subsequent sections of this paper is as
follows. Section II presents an analytic treatment of various
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FIG. 1. Schematic of model for nucleation and growth of inter-
calated islands. G denotes an individual layer in substrate, e.g., a
graphene layer in HOPG. Intercalated adatom density nint(r,t) is a
function of time t and the distance r from the defect at r = 0.

aspects of the above point-source-mediated nucleation pro-
cess. Most emphasis is on a continuum deposition-diffusion
equation treatment for nucleation of the first island. Then, in
Sec. III, we develop a suitably crafted stochastic atomistic-
level lattice-gas model for single-layer intercalated islands
which can elucidate both the nucleation process as well as sub-
sequent island growth shapes. Results for this model obtained
from kinetic Monte Carlo (KMC) simulations are presented
in Sec. IV. Finally, Sec. V provides further discussion of the
modeling including application to analysis of metal-HOPG
systems.

II. CONTINUUM TREATMENT FOR NUCLEATION
OF INTERCALATED ISLANDS

As a preliminary analysis, we estimate the rate, Jint, at
which atoms intercalate at each isolated pointlike defect for
typical deposition experiments on defective graphite. Based
on the above-mentioned study of intercalation of Cs [4], and
our own analysis for Dy, we anticipate the existence of a
substantial additional barrier � (above the terrace diffusion
barrier) which must be surmounted to inject adatoms through
the defect into the gallery. Then, one can regard the density
of deposited adatoms on the top surface, nad, as being in a
steady state corresponding to a rough balance between gain
due to deposition at rate F and loss due to aggregation
with traps on the surface. If the latter are assumed to be
primarily surface islands with density Nisl, then one has that
F ≈ σislDsurfNislnad [1,3]. Here, σisl ∼ 1 is the capture number
for these surface islands, and Dsurf is the surface diffusion
coefficient. Then, the injection rate is simply estimated from
Jint ≈ Dsurfnad exp(−β�) ≈ (F/Nisl) exp(−β�). Here, β ≡
1/(kBT ), where kB denotes Boltzmann’s constant and T the
surface temperature. For experiments of metal intercalation on
graphite, reasonable parameter values are F ≈ 0.05 monolay-
ers per second, Nisl ≈ 10−4 per adsorption site, and � ≈ 0.4

to 0.6 eV. Then, at 800 K, one obtains Jint ≈ 0.1 to 1.5 atoms
per second.

In the remainder of this section, we focus on analysis of
the evolution of the density, nint = nint(r,t), per unit area at
position r and time t , of intercalated atoms fed by a single
isolated point-source defect located at the origin r = 0. We
let Dint denote the diffusion rate for isolated intercalated
atoms, and Jint denotes the total rate of injection of adatoms
at the defect as above. Then, in the idealized case of a
negligible defect radius, one must analyze the two-dimensional
deposition-diffusion equation

∂nint(r,t)
∂t

= Dint∇2
r nint(r,t) + Jintδ(r). (1)

We now describe a more realistic alternative to incorporation
of the singular delta-function source term, which accounts for
a small but finite effective defect radius rd. One can instead
analyze the above equation without the source term for rd �
r = |r| < ∞ after imposing the appropriate flux boundary
condition, −2πrDint

∂nint
∂r

= Jint, at r = rd (corresponding to a
total injection flux of Jint). This latter approach is naturally
adopted in numerical analysis. The natural rescaling of
position, time, and density for either approach has the form

nint(r,t) = Jint

Dint
Cint(r̃,t̃), for r̃ ≡ r/(Dint/Jint)

1/2 and

t̃ ≡ Jintt. (2)

Here, Cint(r̃,t̃) corresponds to a rescaled intercalated atom
density. Then, it follows that this rescaled density satisfies

∂Cint(r̃,t̃)
∂t̃

= ∇2
r̃ Cint(r̃,t̃) + δ(r̃), (3)

if one includes the two-dimensional (2D) delta-function source
and uses the relation δ(r/(Dint/Jint)1/2) = (Dint/Jint)δ(r).
Alternatively, for the formulation with the flux boundary
condition, one drops this source and imposes the condition
−2πr̃ ∂Cint

∂r̃
= 1, at r̃ = |r̃| = r̃d ≡ rd/(Dint/Jint)1/2. From

either formulation, it is clear that Cint(r̃,t̃) ≈ − 1
2π

ln(r̃) for
small r̃ , with a weak dependence on t . In Sec. II A, we
present an analytic treatment for the prenucleation regime
where Eq. (3) is solved for an infinite spatial domain with
initial condition Cint(r̃,t = 0) = 0, and where additional
scaling behavior emerges. The results can be used to assess
nucleation kinetics. In Sec. II B, we briefly discuss numerical
analysis of this equation in the post-nucleation regime where
intercalated islands have formed. In this regime, a nontrivial
boundary value problem must be considered as the edges of
these islands constitute sinks for intercalated atoms.

A. Pre-nucleation deposition-diffusion equation analysis

Prior to nucleation, rotational symmetry implies that
Cint(r̃,t̃) = Cint(r̃ ,t̃) depends only on the distance, r̃ = |r̃|,
from the defect at r̃ = 0. Note that the Dirac delta function
satisfies δ(r̃) = δ(r̃)/(πr̃), and the Laplacian satisfies ∇2

r̃ =
1
r̃

∂
∂r̃

(r̃ ∂
∂r̃

) in this 2D rotationally isotropic system. Then,
Cint(r̃,t̃) follows from analysis of the equation

∂Cint(r̃ ,t̃)

∂t̃
= 1

r̃

∂

∂r̃

(
r̃
∂Cint(r̃ ,t̃)

∂r̃

)
+ δ(r̃)

πr̃
for 0 � r < ∞,

(4)
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or from dropping the source term and adding the flux boundary
condition described above at r̃ = r̃d. Mass conservation
implies that 2π ∫∞

0 Cint(r̃ ,t̃)r̃dr̃ = t̃ .
For the treatment retaining the delta function source

(corresponding to the idealization of setting the defect radius
to be exactly zero), the solution satisfies the additional scaling
property Cint(r̃ ,t̃) = f (u), where u ≡ r̃/

√
t̃ . Substitution into

Eq. (4) yields the equation − u
2

df

du
= 1

u
d
du

(udf

du
) + δ(u)

πu
. Solution

of this equation yields f (u) = π
4 �(0, u2

4 ), where �(s,z) is the
incomplete Gamma function, and �(0,z) = E1(z) corresponds
to the exponential integral function. This solution of Eq. (4),
and even more general problems with time-varying input, is
known, although it is traditionally derived based on convolu-
tion with the fundamental solution to the diffusion equation
[11]. Thus, for the (unscaled) intercalated atom density, one
obtains

nint(r,t) = Jint

4πDint
�

(
0,

r2

4Dintt

)

for rd = 0 (zero defect radius). (5)

From (5), one has that nint(r,t) ≈ Jint
2πDint

ln( 1
r
) for r → 0, as

indicated above, and nint(r,t) ≈ Jintt

πr2 exp( −r2

4Dintt
) for r → ∞.

It should be noted that for the more realistic case of
small finite defect radius, r̃d 
 1, solution of Eq. (4) with
the source term replaced by the flux boundary condition at
r̃ = r̃d does not exactly satisfy the additional scaling property
of the above paragraph, and no exact closed form solution
is available. However, one expects that Cint(r̃ ,t̃) ≈ f (r̃/

√
t̃)

is closely satisfied for small r̃d 
 1. In this case, accurate
analysis of behavior is still readily assessed by numerical
integration of diffusion equation with the appropriate boundary
condition. Results obtained using the PDE-solver, PDSOLVE,
in MAPLE [12] for Cint(r̃ ,t̃) with r̃d = 0.05 are shown in
the inset of Fig. 2(a) for a sequence of increasing scaled
times.

The central motivation for the above analysis of nint

is to provide an assessment of the nucleation kinetics for
intercalated islands. Here, it is common to introduce a critical
size i, where i + 1 atoms are required to form a stable nucleus.
Then i = 1 is referred to as irreversible island formation (since
any pair of diffusing atoms which meet irreversibly form
a stable dimer), and i > 1 corresponds to reversible island
formation. In general, for a lateral unit cell area 	 for the
intercalated layer, the local nucleation rate per unit area, knuc,
has the form [1,3]

knuc(r,t) = knuc(r,t) = σi(	nint)
i+1 Dint

	2
exp(−βEb,i). (6)

Here, dimensionless σi ∼ 1 is the capture number, and Eb,i <

0 is the binding energy for attractive atom-atom interactions
of critical clusters of i atoms. From the scaling form of
nint, it is clear that knuc(r,t) decreases monotonically with
increasing r . See Fig. 2(a) for i = 1. However, the probability
of nucleation between a distance r and r + dr from the defect
scales like rknuc(r,t)dr , which has a peak value for r > 0
[see Fig. 2(b) for i = 1]. The total nucleation rate is given

FIG. 2. Inset in (a): result of numerical analysis with r̃d = 0.05
for Cint(r̃ ,t̃). (a) The associated scaled nucleation rate per unit area.
(b) The associated scaled nucleation rate per increment in radial
distance from the defect.

by

Knuc(t) =
∫∫

R2
knuc(r,t)dr = 2π

∫ ∞

0
rknuc(r,t)dr

= 2πσi

(
	Jint

Dint

)i−1

Jint exp(−βEb,i)

×
∫ ∞

0
r̃[Cint(r̃ ,t̃)]

i+1dr̃ . (7)

Using Cint(r̃ ,t̃) ≈ f (r̃/
√

t̃) reveals that Knuc(t) increases
linearly with time for all i. From Knuc(t), it is possible to
assess the typical time, tnuc, for nucleation of the first island
from the condition ∫tnuc

0 Knuc(t) dt ≈ 1. We conclude that

Jinttnuc ≈ 1√
πσi ∫∞

0 u[f (u)]i+1du

exp

(
βEb,i

2

)(
Dint

	Jint

) i−1
2

.

(8)
In the case of irreversible island formation, i = 1 where Eb,i =
0, Eq. (8) shows that tnuc is independent of Dint and one has
that Jinttnuc ∼ 1 is of order unity.

Next, we assess the consequence of the above results for
tnuc on the nucleation position. Using Cint(r̃ ,t̃) ≈ f (r̃/

√
t̃), the

mean position for nucleation occurring specifically at time t is
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given by

rnuc(t) = cnuc

√
Dintt, where cnuc = ∫∞

0 u2 [f (u)]i+1 du

∫∞
0 u [f (u)]i+1 du

.

(9)
Then, we determine the typical nucleation distance from the
defect as

〈rnuc〉 = rnuc(tnuc) = cnuc

√
Dinttnuc ≈

√
	

(
Dint

	Jint

) i+1
4

, (10)

so that 〈rnuc〉 ≈ √
Dint/Jint for i = 1.

B. Post-nucleation continuum deposition-diffusion
equation analysis

Nucleation of the first island creates a sink for intercalated
atoms within the gallery which will consequently greatly
reduce the density of nearby intercalated atoms. To what
extent does this inhibit the subsequent nucleation of additional
intercalated islands? We argue that post-nucleation buildup
of the overall intercalated adatom density, nint(r,t), continues
sufficiently strongly that nucleation of subsequent islands is
persistent.

A comprehensive assessment of this behavior requires anal-
ysis of a boundary value problem for the deposition-diffusion
equation Eq. (1) for nint(r,t) with a point-source at r = 0
in a more complicated geometry including an intercalated
island (or islands) the periphery of which constitutes perfect
sinks for intercalated atoms. Thus there is no longer rotational
symmetry, and numerical analysis of the problem is required.
Rather than a complete analysis of this problem, we just note
that in the absence of island nucleation beyond the first island
(and considering growth of this single island to be slow), the
far-field value of nint(r,t) would grow to a nonzero constant
value. This value reflects a balance between gain of intercalated
atoms due to input at r = 0 and a loss due to aggregation with
the single island. Given the tendency of nint(r,t) to evolve
towards this nonzero far-field value, it is clear that a second
island must at some point be nucleated (most likely on the
other side of the defect from the first island).

After the second island has nucleated, the far-field nint(r,t)
would tend to approach a substantially lower value than
with just one island due to the stronger trapping effect for
intercalated atoms of two islands over one island. Nonetheless,
this value would still be nonzero, ensuring nucleation of
a third island. The process continues where the increasing
number of islands produces a tendency towards progressively
lower but still nonzero far field values of nint(r,t), and thus
persistent but progressively slower subsequent nucleation. We
have performed a precise numerical analysis using adaptive
mesh refinement of the steady-state regime based on the scaled
equation (3) for various island geometries where islands are
a distance of order

√
Dint/Jint from r = 0 corresponding to

i = 1. We thereby quantify the above mentioned progressive
reduction in far-field densities (see the Appendix).

Finally, we remark that the typical pattern of nucleated
island positions should involve the second island nucleating
on the opposite side of the defect than the first as noted
above, and then the third and fourth islands nucleating in
the orthogonal direction. However, in a stochastic LG model

FIG. 3. Schematic of our stochastic LG model for intercalated
island formation.

for this process as described in Sec. III, large fluctuations
in nucleation positions (and times) often disrupt this pattern.
Furthermore, it is common that the island closest to the defect
at later times is not the first island to be nucleated. These
features are confirmed by our KMC simulations in Sec. IV.

III. STOCHASTIC LATTICE-GAS MODEL
OF NUCLEATION AND GROWTH

For intercalation of fcc or hcp metals in HOPG, one expects
that single-layer or few-layer intercalated islands will have a
hexagonal close-packed structure within each layer [4,5]. This
structure, which is primarily driven by metal-metal intercalated
atom interactions, naturally corresponds to the lowest-energy
configuration in cases where the metal-graphene interaction
is not dominant. Thus, to provide a more detailed char-
acterization of intercalated island nucleation and growth
incorporating this feature, we develop a suitable stochastic
lattice-gas (LG) model incorporating a triangular lattice of
sites (with coordination number six) on which intercalated
atoms reside within the gallery. Since experimentally observed
intercalated metal islands tend to have bulk structure, the
lattice constant, a, will generally differ only slightly from the
bulk metal lattice constant. The basic features of the model
are as follows: atoms are injected at a single “point-source
defect site” on the triangular lattice at rate Jint. They initially
undergo diffusion within the gallery as isolated atoms hopping
between adjacent sites at rate h0 = ν exp(−βEd) per direction,
where Ed is the associated diffusion barrier, and ν is the
attempt frequency. This prescription implies that Dint ∝ a2h0.
Thereafter, the intercalated atoms can potentially aggregate
with other diffusing intercalated atoms or with existing
intercalated islands (see Fig. 3). Thus one must prescribe the
hopping rate, h, for a general local environment to account for
attachment and detachment, edge diffusion, etc., as described
below.
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In our model, the hop rate (per direction) for any lo-
cal environment is selected as h = ν exp(−βEact), where
the activation barrier has the form Eact = Ed + �TS − �init

[13,14]. Here �init is the sum of all “conventional” lat-
eral interactions, ω, for the hopping atom in the initial
lattice site with other nearby atoms at lattice sites. �TS

is the sum of “unconventional” interactions, φ, for the
hopping atom at the transition state (TS) (roughly midway
between adjacent lattice sites) with other atoms at nearby
lattice sites. All these interactions correspond primarily to
direct interactions for the systems of interest here. For
terrace diffusion, one has that �TS = �init = 0, thereby
recovering Eact = Ed.

A simple but reasonable prescription includes only
(i) short-range conventional pair attractions, ωp = −ε with
ε > 0 for nearest-neighbor atoms separated by a lattice con-
stant, a, and (ii) short-range unconventional pair attractions,
φp, of comparable magnitude for an atom at a TS separated
by roughly

√
3a/2 from a nearby atom at a lattice site (cf.

[13,14]). Model behavior will be similar for any comparable
choice of ωp and φp, but here we set φp = −ε for simplicity
and to reduce the number of model parameters. Then, for edge
diffusion, �TS = −ε always applies, but there are different
possible values for �init. These include �init = −ε for a singly
coordinated edge atom at the corner of an island, �init = −2ε,
for a doubly coordinated isolated edge atom at a straight step
edge, �init = −3ε for a triply-coordinated kink atom, and
�init = −4ε for an atom embedded in a straight step edge
(see Fig. 3). Thus one has Eact = Ee = Ed + ε for diffusion
along a straight edge. This same barrier applies for hopping
from the edge to a corner site, so there is no additional kink
Ehrlich-Schwoebel (ES) barrier, and also for incorporation
at a kink site. There is a higher barrier Eact = Ed + 2ε to
hop from a kink to an edge site. For a singly-bonded corner
atom, the barrier to hop back to a doubly-coordinated edge
site of Eact = Ed is lower than the barrier to detach from the
island of Eact = Ed + ε, i.e., detachment is inhibited relative
to corner-to-edge hopping. One can show that the effective
barrier for detachment of an isolated edge atom from an island
via a corner site is Edet = Ed + 2ε, which equals the barrier for
direct detachment from the step edge. Barriers for detachment
of higher-coordinated atoms either directly or via corner sites
are naturally higher.

The above prescription of kinetics actually provides a
reasonable description of fcc (111) metal homoepitaxial
systems, in marked contrast to standard “initial value ap-
proximation” or bond-breaking prescriptions [3]. In these
systems, Ee significantly exceeds Ed, kink ES barriers are
small compared to Ee, and corner-to-edge hopping is preferred
over detachment [15,16]. As an aside, the above model can
be refined in various ways. For example, by incorporating
conventional repulsive triangular trio interactions, ωt = δ,
where we expect that ε � δ > 0 [17], one can reduce the edge
diffusion barrier to Ee = Ed + ε − δ. Finally, we emphasize,
however, that the above model is idealized, and that actual
diffusion processes and intercalated island structures within
the gallery are more complex and system specific. For
example, atom diffusion may be characterized by hopping
between multiple stable local adsorption sites, but such fine
details do not affect the key features of nucleation and

growth. Also island structure can be multilayer versus single
layer. However, our goal here is just to reasonably describe
shape relaxation during growth for hexagonal close-packed
intralayer structures in the presence of a localized source of
atoms.

Next, we comment further on basic aspects of model
behavior. Reversibility in island nucleation and growth impacts
basic behavior (cf. Sec. II A and Ref. [3]). The degree of
reversibility increases with the ratio of the rate for dissociation
of a dimer, hdiss,2 = h0exp(−βε) to the rate of aggregation,
hagg = ϕJint of intercalated atoms with a just-formed dimer
(or with the subsequent island), where ϕ denotes the fraction
of intercalated atoms aggregating with the dimer or island.
Irreversibility requires that

hdiss,2

hagg
= h0

ϕJint
exp(−βε) 
 1 for i = 1. (11)

Thus increasing T or decreasing ε induces a transition
to a regime with i > 1. As the rate of dissociation of
atoms from triangular trimers, hdiss,3 = h0exp[−β(2ε + δ)],
is substantially lower than hdiss,2 for δ 
 ε, there should be
a well-defined regime with i = 2 when hdiss,2/hagg > 1 but
hdiss,3/hagg 
 1. In fact, such a regime is generally expected
in fcc (111) metal homoepitaxy corresponding to stable
triangular trimers [18,19]. Further increasing T or decreasing
ε naturally leads to a transition out of i = 2 to a regime with
i > 2.

Regarding growth shape evolution for the intercalated
islands, very facile edge diffusion should produce quasiequili-
brated hexagonal shapes centered on the nucleation site. Less
facile edge diffusion will produce nonequilibrium possibly
fractal shapes with growth biased back towards the defect
reflecting a greater flux of diffusing atoms on that side.
Let L denote the linear island size. Then, shape equili-
bration or even compactification requires the characteristic
time, τedge ∼ L2/he, for edge atoms to traverse the island
perimeter (to access higher-coordinated incorporation sites)
be significantly shorter than the time τagg = 1/hagg, between
aggregation events [20,21]. Note that for the basic model
with only pair interactions, dimer dissociation and edge
diffusion rates are equal, i.e., hdiss,2 = he. Thus the condi-
tion for the transition from irreversible to reversible island
growth roughly corresponds to that for the transition from
compact to irregular island shapes with L = O(1), i.e., irre-
versible island formation would be associated with irregular
islands.

IV. KMC SIMULATION RESULTS FOR THE STOCHASTIC
LATTICE-GAS MODEL

Routine KMC simulation analysis of the basic stochastic
lattice-gas model (with ωp = φp = −ε and δ = 0) can be uti-
lized to precisely characterize the overall island nucleation and
growth process, including the morphologies and arrangement
of growing islands. Here, we also exploit the versatility of
KMC by performing tailored simulations to quantify specific
detailed aspects of the nucleation process which are of interest.
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FIG. 4. (a) Normalized distribution of nucleation times for i = 1.
Data are binned with a bin width of Jint�tnuc = 0.4. (b) Normalized
distribution of the number of intercalated atoms upon nucleation of the
first island for i = 1. Results are shown for various h0/Jint indicated.

A. Nucleation of the first island for i = 1

We first utilize KMC simulation to provide an efficient
and precise characterization of various basic aspects of the
nucleation of the first island for i = 1. To this end, we run the
simulation until the first nucleation event, i.e., until a pair of
intercalated atoms reach adjacent sites to form a dimer. The
simulation is then stopped and we record the nucleation time,
tnuc, the nucleation distance from the defect, rnuc, and also the
number of intercalated atoms, Nnuc, at the time of nucleation.
Here the nucleation position is defined as the midpoint of the
dimer. The results are independent of the value of ε. Collecting
statistics from 2 000 000 such simulation trials gives precise
information of the distributions for the above quantities. The
simulations were run for a broad range of values of h0/Jint

to assess the degree of convergence to limiting behavior as
h0/Jint → ∞.

The analysis from Sec. III suggests that the tnuc distribution
should have a mean value of the order 1/Jint. Thus, in Fig. 4(a),
we plot the normalized distribution of values of Jinttnuc, which
depends only on h0/Jint and which slowly approaches a
well-defined limiting monomodal shape for increasing h0/Jint.
As anticipated in Sec. III, this distribution is broad. The
mean value 〈tnuc〉 of tnuc satisfies Jint〈tnuc〉 = 2.49, 3.16, 3.76,
4.26, 4.69, and 5.07 for h0/Jint = 1, 10, . . . , and 100 000,
respectively. Next, we consider the (discrete) distribution of the
number of intercalated atoms, Nnuc, at the time of nucleation
of the first island, which also depends solely on h0/Jint. From
the results shown in Fig. 4(b), the form of this distribution
also approaches a limiting monomodal shape for increasing
h0/Jint, and also mimics that for the distribution for Jinttnuc.
As already indicated in Sec. II, it is quite common that there
are more than 2 intercalated atoms at the time of nucleation of
the first island. Indeed, one finds that 〈Nnuc〉 closely matches
Jint〈tnuc〉. The similarity between the distributions for Nnuc

and Jinttnuc derives from the feature that these quantities are
strongly linearly correlated. This feature is demonstrated from

FIG. 5. Distributions vs scaled distance from the defect with i = 1
for (a) nucleation probability per site; (b) nucleation probability per
increment of radial distance. Data are binned with bin width of
�rnuc = 1. Inset in (a): 〈rnuc〉 vs (h0/Jint)1/2.

a finer-level analysis. For example, if 〈tnuc(Nnuc)〉 denotes
the mean nucleation time for a specific Nnuc, we find that
〈tnuc(Nnuc)〉 increases near-linearly as a function of Nnuc. For
h0
Jint

= 100000, one has that Jint〈tnuc(Nnuc)〉 ≈ 1.93, 2.94, 3.97,
4.99, 6.01, and 7.06 for Nnuc = 2, 3, . . . , and 7, respectively.

Next, we consider the rnuc distribution which depends
exclusively on h0/Jint with mean scaling like

√
h0/Jint. The

inset in Fig. 5(a) shows data for 〈rnuc〉 = 0.59, 2.57, 10.3,
37.4, 129, and 435 lattice constants for h0/Jint = 1, 10, 100,
1000, and 10000, respectively, exhibiting approximate scaling
〈rnuc〉 ≈ 1.3

√
h0/Jint. This broad range of 〈rnuc〉 may not be

realized in experiment (e.g., 〈rnuc〉 ∼ 40 for Dy deposition at
800 K), but our goal here is fundamental analysis of scaling.
The main frame of Fig. 5(a) shows the distribution of scaled
nucleation distances from the defect, based on the nucleation
probability per site. Also, values for symmetry-equivalent
sites, the same distance from the defect have been averaged to
reduce statistical noise. Scaling of the vertical axis is chosen
to appropriately normalize the distribution revealing collapse
of the curves for various larger h0/Jint. Figure 5(b) shows the
nucleation probability per increment of scaled radial distance
from the defect. This quantity naturally has a different form
from the nucleation probability per site as the number of sites
within an increment of distance from the defect increases
linearly with distance. One might compare Figs. 5(a) and
5(b) with the similar forms in Figs. 2(a) and 2(b), although
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we caution that the quantities are different in detail. Figure 2
refers to nucleation of the first island at specific times, whereas
Fig. 5 accumulates statistics for a range of times as quantified
in Fig. 4(a).

B. Nucleation of the first island for i = 2

As noted in Sec. III B, one expects to have a well-defined
regime of island nucleation with i = 2 for a range of T which is
slightly too high, or interactions ε which are slightly too weak,
to support irreversible island formation. As also indicated
in Sec. III, compact intercalated islands, often observed in
experiment, will most naturally occur for i > 1. Analogous to
i = 1, we present KMC results for i = 2 providing a detailed
characterization of tnuc, rnuc, and Nnuc for nucleation of the
first island. To be more precise, we define this nucleation
event as the first formation of a triangular trimer (at which
point the simulation is terminated), noting that other linear and
bent configurations of trimers are no more stable than dimers.
Correspondingly, we define the nucleation position to be the
center of the triangular trimer. As an aside, we discard trials
where an impinging atom lands upon an isolated intercalated
atom still at the defect site.

We emphasize that KMC simulation is more demanding
for i = 2 than i = 1 (just as for conventional nucleation
with uniform deposition flux where KMC quickly becomes
prohibitive for larger i) [3]. Also behavior does now depend
on the value of ε (chosen in a suitable range to ensure triangular
trimers but not dimers are stable so that i = 2). Our primary
interest is in assessing the basic scaling behavior for i = 2 for
comparison with the predictions of analytic theory in Sec. II A.
Thus, we consider the limiting case setting ε = 0, but regard
triangular trimers and larger islands as stable. Choosing small
ε > 0 would enhance the lifetime of (unstable) dimers, thus
enhancing nucleation, but this should not change the scaling
properties. We collect statistics from 2 000 000 simulation
trials to determine distributions for key quantities of interest.
The simulations were run for a range of values of h0/Jint, which
is more limited than for i = 1 due to the above-mentioned
additional computational cost.

The distribution of values of Jinttnuc again depends only
on h0/Jint, but in contrast to i = 1, the mean value now
depends strongly on this parameter. Specifically, we find that
Jint〈tnuc〉 ≈ 6.19, 13.37, and 35.91 for h0/Jint = 1, 10, and 100,
respectively (values much larger than those for i = 1). This
behavior is consistent with the scaling Jint〈tnuc〉 ∼ (h0/Jint)1/2

proposed for i = 2 in Sec. II A noting that 〈tnuc〉 increases by
a factor of 2.69 as h0/Jint increases from 10 to 100, being
reasonably close to 101/2 ≈ 3.16. Consequently, in Fig. 6(a),
we must plot the rescaled distribution for tnuc/〈tnuc〉 for various
h0/Jint in order to achieve collapse of these distributions. The
(discrete) distribution of the number of intercalated atoms,
Nnuc, upon nucleation which also has the feature that the mean
strongly depends on h0/Jint with 〈Nnuc〉 = 5.63, 13.14, and
35.83 for h0/Jint = 1, 10, and 100, respectively (cf. smaller i =
1 values). Thus, in Fig. 6(b), we plot the rescaled distribution
as a function of Nnuc/〈Nnuc〉 for various h0/Jint to achieve
collapse of these distributions. The similarity between the
distributions for Nnuc and Jinttnuc again derives from the feature
that Jint〈tnuc(Nnuc)〉 increases near-linearly as a function of

FIG. 6. (a) Normalized distribution of nucleation times for i = 2
for h0/Jint = 1, 10, and 100. Data are binned with bin width of
Jint�tnuc = 0.4. (b) Distribution of the number of intercalated atoms
upon nucleation of the first island.

Nnuc. For h0/Jint = 100, one has that Jint〈tnuc(Nnuc)〉 ≈ 2.03,
3.06, 4.10, 5.08, and 6.07, for Nnuc = 3, 4, 5, 6, and 7,
respectively.

Next, we consider the rnuc distribution which depends
exclusively on h0/Jint. However, in contrast to i = 1, the
mean value 〈rnuc〉 = 1.16, 4.85, and 24.68 for h0/Jint = 1, 10,
and 100, respectively, does not scale like 〈rnuc〉 ∼ (h0/Jint)1/2

The behavior is rather consistent with the scaling 〈rnuc〉 ∼
(h0/Jint)3/4 suggested in Sec. II A for i = 2, noting that 〈rnuc〉
increases by a factor of 5.09 as h0/Jint increases from 10
to 100, being reasonably close to 103/4 ≈ 5.62. Figure 7
shows the nucleation probability per increment of scaled radial
distance from the defect. The emergence of a peaked form
to this distribution is clear analogous to Fig. 5(b) for i = 1,
although our limited statistics for i = 2 and the limited range

FIG. 7. Distribution of nucleation probability per increment of
radial distance vs scaled distance from the defect for i = 2. Binned
data are shown with a bin width of �rnuc = 1.
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FIG. 8. Examples from KMC simulation of intercalated island growth shapes and directional bias for h0/Jint = 4000, and ε = 2.00, 0.75,
0.50, 0.40, and 0.30 eV (left to right) at T = 800 K. White dots denote intercalated atoms, and the red dot gives the location of the defect.
Image size: 36a × 36a.

of h0/Jint means that we cannot capture the limiting form of
this distribution.

C. Island growth shapes and nucleation of subsequent islands

Next, we present results from our KMC simulations of
the overall nucleation and growth process. Specifically, we
focus on the shape of the island closest to the defect. Growth
of this island is biased back to the defect, and thus upon
reaching the defect it ultimately blocks further injection of
atoms to the gallery. Figure 8 shows a few examples for fixed
h0/Jint = 4000 and various ε of the shapes of such islands upon
reaching the defect (indicated by a red dot). We have noted
that island formation is irreversible and the shape instability is
prominent for large ε, but island formation becomes reversible
and shapes more compact for smaller ε. Applying the criteria
of Sec. III B, we estimate that the transition at 800 K from i = 1
and i = 2 will occur as ε drops below ε1→2 ≈ 0.75 eV (for
our choice of h0/Jint = 4000 and using ϕ = 0.1). Likewise,
the transition from i = 2 to i > 2 will occur as ε drops below
ε2→3+ ≈ 0.37 eV.

For large ε = 2.00 and 0.75 eV, island formation is strongly
irreversible (no dimers are observed to dissociate in the sim-
ulations), and there is a pronounced shape instability leading
to fractal islands with a strong preference for growth back
towards the defect. For ε = 0.50 and 0.40 eV, island formation
is reversible with many dimers observed to dissociate in the
simulations. However, dissociation of triangular trimers is very
rare even at ε = 0.40 eV, so one has i = 2. Island shapes
are compact although strongly distorted from equilibrium
hexagonal shapes. For ε = 0.30 eV, dissociation of triangular
trimers and also detachment of doubly-coordinated atoms from
larger islands is observed in the simulations, so one has that
i > 2. Island shapes are closer to equilibrated.

Finally, we show an example of simulation results illustrat-
ing the array of multiple islands nucleated for h0/Jint = 4000,
ε = 0.40 eV, and T = 800 K. In the images of Fig. 9, we have
labeled the islands in order of their nucleation. The situation
shown here is common where the closest island to the defect is
not the first nucleated (and often not the second). However, we
argue that the basic scaling behavior for the mean nucleation
time and distance from the defect which applies for the first
island nucleated should also apply for subsequent islands.

V. DISCUSSION AND APPLICATION
TO SPECIFIC SYSTEMS

Nucleation and growth of near-surface intercalated islands
mediated by diffusion of intercalated atoms fed by an
isolated point-source-like defect has received little attention
compared to the extensive analyses for surface islands fed by
a uniform deposition flux [1,3]. The current study provides a
comprehensive characterization for the nucleation process of
intercalated islands combining both analytic theory and KMC
simulation of a stochastic lattice-gas model. In particular, the
analytic treatment indicates nontrivial scaling behavior of key
quantities characterizing nucleation as a function of critical
size. These predictions are confirmed by the KMC studies.

The motivation for the formulation of our model for nucle-
ation and growth of intercalated islands was provided by recent
experimental studies on this topic [4,5]. In particular, scanning
tunneling microscopy (STM) observations for intercalated Dy
islands on damaged HOPG guided model formulation. For
this system, large intercalated islands of about 15 to 40 nm in
linear dimension were formed by deposition of about 0.1 ML
of Dy at 800 K. A particular feature revealed by the STM
images is that these intercalated islands are often decorated by
a surface island protruding above the top layer of HOPG near

FIG. 9. KMC simulation images (size: 110a × 110a) from five independent trials, showing multiple islands (white) nucleated around the
defect (red ×) for h0/Jint = 4000, ε = 0.40 eV, and T = 800 K. Islands are labeled in order of nucleation from 1 to 2 to 3 to . . . . An arrow
indicates the labelled island nucleates far from the defect (beyond the image size).
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FIG. 10. Intercalated Dy islands (circled) as well as surface Dy
islands for deposition of Dy on Ar+-sputtered HOPG at 800 K.
Brighter regions on the intercalated islands correspond to on-top
surface islands indicating the location of the defect, which primarily
feeds intercalated island growth. The intercalated island on the middle
right has no on-top island and has plausibly nucleated far from a defect
and not grown back to that defect.

their periphery (see Fig. 10 and Ref. [5] for further discussion
of experiments). This suggests that intercalated islands are
generally nucleated at some distance from isolated pointlike
defects, and subsequently exhibit biased growth back towards
the defect. Upon their periphery reaching the defect, injection
of further surface adatoms is presumably blocked or at least
strongly inhibited. This limits further lateral growth of the
intercalated islands, and initiates growth of a multilayer surface
island extending above the top layer of HOPG. This surface
island is generally located near the periphery of the intercalated
island. This feature is consistent with our proposed model.

Our generic model for nucleation and growth of intercalated
islands is not geared to a specific system, for which appropriate
refinements should be made. For example, for Dy/HOPG,
intercalated islands are three atomic layers rather than a single
atomic layer in thickness or height [5]. The model can be
adjusted to incorporate this feature. Preliminary DFT analysis
for this system does indicate the presence of a significant
additional barrier for adatoms to enter the gallery through
a defect. This barrier decreases with increasing defect size
analogous to the study for Cs [4]. Our DFT analysis also
indicated a diffusion barrier for intercalated atoms between
the top two graphene layers of perfect HOPG, which is lower
than might be anticipated from interpretation of STM data in
the context of our modeling. However, the presence of many
small surface islands could induce a higher effective barrier.
Estimation of the effective diffusion rate for intercalated
atoms might be obtained from Eq. (7) using experimental
observations or estimates for 〈rnuc〉 and Jint. Detailed system-

specific modeling for Dy/HOPG and other systems will be
pursued elsewhere.

Finally, we remark that general interest in the formation
of near-surface intercalated islands is expected given the
opportunity to modify surface properties for applications
such as catalysis and magnetism. Of particular appeal is the
possibility to protect metallic surface nanostructures from
degradation under operation due to being covered by one or
more graphene layers for intercalation in HOPG.
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APPENDIX: FAR-FIELD DENSITY OF INTERCALATED
ATOMS VERSUS NUMBER OF ISLANDS.

Here, we consider instructive boundary value problems
(BVPs) for the steady-state diffusion equation (3) with the
scaled intercalated atom density, Cint(r̃,t̃), replacing the delta-
function source with the flux boundary condition, −2πr̃ ∂Cint

∂r̃
=

1, at r̃ = |r̃| = r̃d 
 1. In addition, we introduce one or
more island “sinks” imposing Dirichlet boundary conditions,
Cint = 0, on their edges. We perform a numerical analysis
of this BVP exploiting adaptive mesh refinement methods
and using COMSOL [22] software. However, this requires
analysis for a finite spatial domain, so we impose an additional
zero-flux boundary condition, ∂Cint

∂r̃
= 0, on a large circle r̃ =

|r̃| = R̃ � 1, and solve the Laplace equation on the domain
r̃d 
 r̃ 
 R̃ and also exterior to the prescribed islands, see
Fig. 11.

Our goal in this analysis is to determine the variation in the
far-field steady-state value of Cint in the limit as R̃ → ∞. For
r̃d = 0.1, the rotationally-averaged far-field values of Cint at
r̃ = R̃ are given by 0.2210, 0.05857, and 0.008638 for 1, 2, and
4 islands, respectively, for R̃ = 1024 (not much different from
values of 0.2321, 0.05917, and 0.008683, respectively, for R̃ =
4). For r̃d = 0.01, the rotationally-averaged far-field values of
Cint at r̃ = R̃ change only slightly to 0.2194, 0.05857, and
0.008637 for 1, 2, and 4 islands, respectively, for R̃ = 1024.
Thus the strength of islands as a sink for intercalated atoms
greatly increases the number of such islands as reflected by
the dramatic decrease in the far-field value of Cint. This in turn
greatly reduces the probability of nucleation beyond the islands
closest to the defect, a feature seen in the simulations. Finally,
we note that the strength of the island sinks naturally also
depends on their radii. Specifically, the far-field Cint increasing
logarithmically with decreasing island radius.
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FIG. 11. COMSOL analysis of the steady-state deposition-diffusion equation with a localized source at the origin and perfect sinks at the
periphery on one or more islands. Results shown are for a scaled radius of 0.1 for the source at the origin, scaled radii for all islands of 0.25,
where island centers are a scaled distance 1 from the origin, and an outer radius of 2 where a zero-flux condition is imposed. Legends indicate
the scaled density.
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