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Quantum twin spectra in nanocrystalline silicon
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Using inelastic neutron-scattering spectroscopy, we have identified twin-split scattering spectra in hydrogen-
terminated nanocrystalline silicon. We show that this duality originates from the cooperative motion of hydrogen
and silicon. Our formalism for the inelastic neutron-scattering spectrum, which is derived from the Hermite
orthogonal wave functions in terms of the normal coordinates, elucidates the physical origin of the observed
quantum twin spectra and predicts the possible occurrence of this behavior in other materials such as metal
hydrides.
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Hydrogen plays an important role in the fabrication of
semiconductor devices such as in the passivation of defects
and dangling bonds [1–3]. These features are deeply related
to the degradation of silicon devices, e.g., by increasing the
threshold voltage in metal oxide transistors [4,5], reducing
the photoconduction in hydrogenated amorphous silicon solar
cells, which is known as the Staebler-Wronski effect [6,7],
and reducing the luminescence efficiency in nanocrystalline
silicon (n-Si) [8–12].

The stability of hydrogen-passivated materials depends not
only on the bonding energy between silicon and hydrogen
but also on the vibrational frequency and the overlap of
the hydrogen wave functions with adjacent atoms. From
an experimental viewpoint, high-resolution electron energy
loss spectroscopy (HREELS) [13,14], infrared absorption,
and Raman spectroscopy [15–17] were used to clarify the
dynamical properties of the hydrogenated silicon surface. In
addition, theoretical calculations for the surface structure and
lattice vibrations of the hydrogenated silicon system were
performed using a semiempirical approach [18,19] and ab
initio methods [20–22].

The measured vibrational energy levels using the above
spectroscopic techniques (e.g., HREELS, infrared absorption,
and Raman spectroscopy) cannot fully exploit the dynamics
of the hydrogen nuclei because these spectroscopic techniques
probe charge distributions surrounding the nuclei caused by
Coulomb interactions. On the other hand, uncharged neutrons
primarily interact with the nucleus itself and are scattered
by nuclear forces (Fermi pseudopotential [23]). Therefore,
neutrons can probe nuclear information inside the electron
cloud [24,25].

Other advantageous features of the use of neutrons is
their strong scattering by hydrogen nuclei. For example, the
neutron-scattering cross section for protons is one to two orders
of magnitude larger than that for any other atom [26], and the
scattering intensity is related to the mean-square amplitude of
the displacement scaled by the nuclear cross section for each
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atom. Another advantageous feature, in addition to this strong
scattering property, is that the energy of thermal neutrons is of
the same order as the vibrational energies, so when a neutron
is inelastically scattered by the phonons and vibrations, the
observed change in the energy of the neutron is a large fraction
of its initial energy. Hence, neutron spectroscopies [27–31]
provide crucial information on the vibrational dynamics of
hydrogen nuclei helping to understand the degradation [6–12]
and giant isotope mechanisms [32,33].

Here, using incoherent inelastic neutron-scattering (INS)
spectroscopy, we elucidate the dynamics of hydrogen termi-
nating the surface of n-Si in detail. We observed two split
scattering spectra in the three-dimensional neutron-scattering
contour maps [scattering intensity (S), energy (h̄ω), and
momentum-transfer (Q) axis], and it is found that these two
spectra have twin spectral characteristics; here, we define the
twin spectra as spectra at different energy levels with a constant
intensity ratio for any momentum-transfer axis. This twin
spectral characteristic is not explained by a standard neutron
analysis based on the scattering from single atoms (hydrogen
nuclei) [34,35]. We therefore establish a quantum double
oscillator (QDO) model based on the cooperative motion of
hydrogen and silicon. We quantitatively describe this twin
spectral characteristic as the product of the harmonic oscil-
lators expressed in normal coordinates that are obtained by
diagonalizing the displacement coordinates for both Si and H.

INS measurements were performed on a time-of-flight
MARI chopper spectrometer at ISIS (ISIS Facility, Rutherford
Appleton Laboratory). The incident energy Ei was varied
from 0.1 to 1 eV with a resolution of �Ei/Ei

∼= 2% . We
measured the S(Q,ω) contour maps for both n-Si and bulk
Si crystals. For the n-Si measurement, 1 g of powdered
n-Si fabricated by electrochemical anodization [36–38] was
wrapped in aluminum foil and rolled into a cylindrical shape
to minimize the extinction effect. The average diameter of
n-Si was 2.4 nm as evaluated by small-angle x-ray scattering
measurements [38]. Then, this sample was enclosed in a
cylindrical aluminum sample cell. For the bulk Si crystal
measurement, 10 g of powdered Si crystals (0.1–0.2 mm in
diameter) was placed on the MARI spectrometer, and the
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FIG. 1. S(Q,ω) contour maps for n-Si [(a) and (b)] and bulk
Si [(c)] as measured by INS. The energy of the incident neutron is
(a) Ei = 300 meV, (b) Ei = 100 meV, and (c) Ei = 100 meV. The
obtained energy states are 1K = 59.2 meV, 1N = 81.2 meV, 2M =
137.6 meV, 2N = 158.8 meV, 3M = 217.1 meV, 3N = 236.5 meV,
and STN = 261.2 meV. Other energy states such as A = 15−20 meV
(acoustic Si phonons) and SC = 114.7 meV (scissor mode) are also
observed. Each energy state (denoted by 1, 2, and 3) is split into two
states with identical momentum-transfer dependences, as shown in
the contour map. (b) Phonon energies of n-Si observed through the
hydrogen motion. (c) Phonon energies of the bulk Si. A comparison
of (b) and (c) shows that the Si phonon dynamics can be observed
via scattering from the H nucleus. For example, the energy of the 1K
state corresponds to the LO and TO phonon states, and the A state
corresponds to the LA and TA phonon states. However, the 1K state

peaks at Q = 6.5 Å
−1

, whereas the LO and TO phonon states peak

beyond Q � 13 Å
−1

.

measurements were performed following the procedure of the
n-Si measurements.

Figure 1 shows the INS data of the n-Si and bulk Si. Fig-
ures 1(a)–1(c) show contour maps of the scattering intensity,
S(Q,ω) as a function of momentum transfer Q, and the energy
h̄ω for n-Si [(a) and (b)] and bulk Si [(c)]. Here, the momentum
transfer vector Q is defined as Q = ki−kf(Q = |ki−kf |) with
ki = 2π/λi and kf = 2π/λf , where λi and λf are the incident
and scattered wavelengths, respectively. The neutron energy
transfer is E = h̄ω. The energy of the incident neutron was (a)
Ei = 300 meV, (b) Ei = 100 meV, and (c) Ei = 100 meV.

Dispersionless spectra that originate from Si-H vibrations are
clearly observed in the S(Q,ω) contour maps.

First, we consider the spectra of the scattering intensity as
a function of energy S(ω). Inelastic scattering peaks appeared
at the energy levels of h̄ω = 59.2 meV (1K), 81.2 meV
(1N), 114.7 meV (SC), 137.6 meV (2M), 158.8 meV (2N),
217.1 meV (3M), 236.5 meV (3N), and 261.2 meV (STN),
as indicated by pink arrows in Fig. 1(a). The characteristic
feature of the contour map is the presence of two split
energy levels with identical Q-dependent peak position and an
energy difference of approximately 20 meV, e.g., 1N − 1K =
2N − 2M = 3N − 3M = 20 meV. Furthermore, the energy
difference between the higher number state and the lower
number state is nearly equal to 78 meV; for example, 3N −
2N = 2N − 1N = 3M − 2M = 2M − 1K = 78 meV. The ex-
perimental results for the equally separated energy states with
the two split energy levels are not explained by a standard
neutron analysis based on the scattering from single atoms
(hydrogen nuclei) [34,35].

Second, the energy of the 1K state of n-Si coincides
with the energy of the LO and TO phonon states of bulk
Si [39]. However, the momentum-transfer dependence (Q
dependence) is different, as shown in Figs. 1(b) (n-Si) and 1(c)
(bulk Si). For example, the energy of the 1K state corresponds
to the LO and TO phonon states, and the A state corresponds
to the LA and TA phonon states. However, the peak position

of the 1K state is at Q = 6.5 Å
−1

, whereas the peak positions

of the LO and TO phonon states are beyond Q � 13 Å
−1

(Q = 28 Å
−1

, as estimated by the QDO model). This result
shows that the 1K state contains information on the LO
and TO phonon dynamics for n-Si and can be observed via
scattering from the Si and H nuclei.

The hydrogen dynamics in coordination with the Si motion
are quantitatively described by the QDO model, as shown in
Fig. 2. The model represents lateral vibrations in the X-Y plane
(bending motion) and longitudinal vibrations in the Z axis
(stretching motion). Here, the position of each atom (Si: r1 and
H: r2) may be expressed by introducing displacement vectors
u1 = (u1X,u1Y ,u1Z) and u2 = (u2X,u2Y ,u2Z) from the equilib-
rium positions R1 and R2 : r1 = u1 + R1 and r2 = u2 + R2,
where subscript 1 indicates Si and subscript 2 indicates H.

Newton’s equations of motion for both Si and H vibrations
from the equilibrium positions may be written as

μ 1
d2u1ρ

dt2
= −κ1ρ u1ρ + κ2ρ (u2ρ − u1ρ), (1)

μ 2
d2u2ρ

dt2
= − κ2ρ (u2ρ − u1ρ), (2)

where the Si and H masses are defined as μ1 and μ2, and
the force constants for the Si-Si and Si-H bonds are given
as κ1ρ and κ2ρ , respectively, where ρ denotes the X, Y ,
or Z coordinates. Here, we assume that the anharmonicity
is negligibly small based on the experimental results of the
equally separated energy states shown in Fig. 1(a).

The above diagonalization procedure for the equations of
motion gives a set of six components for the orthogonal
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FIG. 2. QDO model for the description of hydrogen dynamics
with the silicon motion. The position of each atom (Si: r1 and H:
r2) is expressed by the displacement vectors u1 and u2 from the
equilibrium positions R1 and R2 as r1 = u1 + R1 and r2 = u2 + R2,
where subscript 1 indicates Si, and subscript 2 indicates H. The Si
and H masses are defined as μ1 and μ2, respectively. The force
constants for the Si-Si and Si-H bonds are expressed as κ1ρ and κ2ρ ,
respectively, while ρ denotes the X, Y , or Z coordinates. The inset
shows the eigenvalue frequency curves of the normal mode, ωνρ/	ρ ,
to determine the ratio γρ = [(κ2ρ/μ2)/(κ1ρ/μ1)]. Here, the dispersion
curves for ρ = X are drawn for clarity.

harmonic oscillators described by the normal coordinate ξνρ

(see Supplemental Material S1 [40]). The Schrödinger equa-
tion described by the normal coordinate takes the following

form:

2∑
ν = 1

Z∑
ρ =X

(
− h̄2

2

∂2

∂ ξ 2
νρ

+ 1

2
ω2

νρ ξ 2
νρ

)
(ξ1X, ξ2X, . . . , ξ2Z)

= E (ξ1X, ξ2X, . . . , ξ2Z), (3)

where ωνρ is the eigenvalue frequency obtained by the
diagonalization procedure (see Supplemental Material S1
[40]), E is the energy eigenvalue. and (ξ1X, . . . , ξ2Z) is the
wave function of the eigenstate.

The wave function (ξ1X, . . . , ξ2Z) is described by
the product of the harmonic oscillator wave functions
�nνρ

(ξνρ) as

(ξ1x, . . . , ξ2z) =
2∏

ν = 1

Z∏
ρ = X

�nνρ
(ξνρ)

=
2∏

ν = 1

Z∏
ρ = X

1

(
√

π 2nνρ nνρ! χνρ)1/2

× exp

[
−1

2

(
ξνρ

χνρ

)2
]

Ηnνρ

(
ξνρ

χνρ

)
, (4)

with the energy eigenvalue E as

E =
2∑

v=1

Z∑
ρ=X

(
nvρ + 1

2

)
h̄ωvρ, (5)

where nνρ is the quantum number, χνρ = √
h̄ /ωνρ , Hnνρ

is
the Hermite polynomial with the number nνρ , and the energy
eigenvalue E is expressed by the sum of the frequency of each
normal mode.

Based on the results obtained from Eq. (5), we can compare
the experimentally observed energies to the theoretically
obtained values. The experimentally observed spectral energy
states (indicated by arrows) in Fig. 1(a) can be assigned using
the set of quantum numbers in Table I. Based on the symmetry
of the model in Fig. 2, the lateral vibration in the X-Y plane

TABLE I. Energy states obtained from the INS data (first row), experimentally determined energy levels (second row), theoretically
determined energy levels (third row), experimentally determined ratios (fourth row), theoretically determined ratios (fifth row), and the set of
quantum numbers for a given energy state (sixth row). The possible combinations for each set of quantum numbers are described in algebraic
form.

Energy Observed Estimated Observed Estimated
level energy (meV) energy (meV) ratio ratio Set of quantum numbers

1N 81.2 79.4 1 1 n2X + n2Y = 1, n1X = n1Y = n1Z = n2Z = 0
1K 59.2 59.4 0.33 0.32 n1X + n1Y = 1, n2X = n2Y = n1Z = n2Z = 0
2N 158.8 158.8 1 1 n2X + n2Y = 2, n1X = n1Y = n1Z = n2Z = 0
2M 137.6 138.8 0.53 0.53 n1X + n1Y = 1, n2X + n2Y = 1, n1Z = n2Z = 0
2K NA 118.8 NA 0.07 n1X + n1Y = 2, n2X = n2Y = n1Z = n2Z = 0
3N 236.5 238.2 1 1 n2X + n2Y = 3, n1X = n1Y = n1Z = n2Z = 0
3M 217.1 218.2 0.77 0.81 n1X + n1Y = 1, n2X + n2Y = 2, n1Z = n2Z = 0
3L NA 199.6 NA 0.2 n1X + n1Y = 2, n2X + n2Y = 1, n1Z = n2Z = 0
3K NA 178.2 NA 0.02 n1X + n1Y = 3, n2X = n2Y = n1Z = n2Z = 0
STN 261.2 261.2 1 1 n2Z = 1, n1X = n2X = n1Y = n2Y = n1Z = 0
STK NA 61 NA 0.16 n1Z = 1, n1X = n2X = n1Y = n2Y = n2Z = 0
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FIG. 3. Experimentally obtained S(Q) spectrum sliced from the S(Q,ω) contour map in Fig. 1(a): (a) first excited states (n = 1) of 1K
[60 meV (black circles)] and 1N [80 meV (red circles)]; (b) second excited states (n = 2) of 2M [140 meV (orange circles)] and 2N [160 meV
(green circles)]; (c) third excited states (n = 3) of 3M [220 meV (blue circles)] and 3N [240 meV (purple circles)]. The theoretically fitted
S(Q) curves for each energy state are shown with solid lines. The theoretically calculated lowest-intensity triplet spectrum (dashed brown line)
in (b) and the two lowest-intensity quadruplet spectra (dashed green and blue lines) in (c) are also included. The insets show the twin spectral
characteristics of the two spectra for each energy state. The identical spectral shape is obtained by adjusting the peak intensity of the lower
energy state to the magnitude for the higher energy state.

is degenerate. We describe the set of quantum numbers in the
form of algebraic equations, as shown in the list of Table I.
The theoretically estimated energies shown in Table I agree
well with the experimentally observed energies, where the
values of ωνρ are obtained by the normal mode analysis
(see Supplemental Material S1 [40]). Therefore, the energy
is equally separated between the first (1K and 1N), second
(2M and 2N), and third (3M and 3N) energy states, and each
state has two split levels.

Using the theoretically estimated energies shown in Table I,
we can calculate the neutron-scattering spectrum intensity
S(Q) as a function of the magnitude of the momentum transfer
Q. Figure 3 shows the experimentally obtained S(Q) spectrum
sliced from the S(Q,ω) contour map in Fig. 1(a) for (a) first
excited states (n = 1) of both 1K [60 meV (black circles)] and
1N [80 meV (red circles)], (b) second excited states (n = 2)
of both 2M [140 meV (orange circles)] and 2N [160 meV
(green circles)], and (c) third excited states (n = 3) of both
3M [220 meV (blue circles)] and 3N [240 meV (purple
circles)]. The peak intensity decreases, and the peak position
shifts to higher Q values when the total quantum number
n = ∑2

ν = 1

∑Z
ρ =X nνρ increases. Furthermore, for a given

total quantum number state, the spectral peak positions of
both levels are at the same Q value. We show that these
physical properties from the S(Q) spectra in Fig. 3 can be
quantitatively described by the scattering from the initial state
to the final state. To obtain the theoretical S(Q,ω) curve, we
use the Hermite orthogonal wave functions given in Eq. (4).
The theoretical S(Q,ω) curve can be written as the absolute
square of the transition matrix elements from the initial ground
state �0(ξνρ), to the final state �Nνρ

(ξνρ), on the basis of the

normal coordinate ξνρ :

S(Q,ω ) =
˝∣∣∣∣∣∣

2∑
β=1

bβ

2∏
ν = 1

Z∏
ρ = X

∫
�∗

nνρ
(ξνρ)

× exp

(
−i√
μβ

Qρϑ
(ρ)
βν ξνρ

)
�0 (ξνρ) dξνρ

∣∣∣∣∣∣
2˛

× δ

⎡
⎣ω −

2∑
ν =1

Z∑
ρ =X

nνρωνρ

⎤
⎦ , (6)

where Qρ is the momentum-transfer vector component defined
by Qρ = k(i)

ρ − k
(f )
ρ , in which k(i)

ρ and k
(f )
ρ indicate the wave

vector components of the incident and scattered neutrons,
respectively. In the above Eq. (6), bβ is the scattering length of
each nucleus (β = 1 for Si and β = 2 for H) [24–26], and 〈· · · 〉
indicates the powder average [34,35], which represents the av-
eraging of the absolute square of the transition matrix elements
over the solid angle between Q and the displacement vector of
each nucleus. Assuming that there is no correlation between
the b values of different nuclei [24,25], S(Q) becomes the sum
of the three terms as S(Q) = SH(Q) + SSi(Q) + SC(Q),
where the superscripts denote the scattering from H nuclei,
Si nuclei, and their cross term, respectively. The theoretically
evaluated cross-term scattering SC(Q) has a weaker intensity
than the other scattering parts (see Supplemental Material S1
[40]); therefore, we can ignore the SC(Q) term, and we will
consider the two SH (Q) and SSi(Q) terms in order to fit the
experimental results shown in Fig. 3.
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By substituting �nνρ
in Eq. (4) into Eq. (6) and integrating

with respect to each normal coordinate ξνρ , and then taking the
powder average, we can derive the theoretical SH(Q) function
as (see Supplemental Material S1 [40])

SH(Q) = (bH)2

4
Q2n exp

[
−Q2

2

{(
�H

1X

)2 + (
�H

2X

)2}]

× 1F 1

(
1

2
+ n1Z + n2Z;

3

2
+ n ;

1

2
Q2

[(
�H

1X

)2

+ (
�H

2X

)2 − (
�H

1Z

)2 − (
�H

2Z

)2])

×�

(
1

2
+ n1X + n2X

)
�

(
1

2
+ n1Y + n2Y

)

×�

(
1

2
+ n1Z + n2Z

) 2∏
ν = 1

Z∏
ρ = X

(
�H

νρ

)2nνρ

2nνρ nνρ!
, (7)

where (bH)2 is the average values of the square of the scattering
length for H, n = ∑2

v=1

∑Z
ρ=X nvρ , � denotes the gamma

function, and 1F̄1 is the regularized hypergeometric function
of the first kind, respectively.

In Eq. (7) above, the parameters �H
1 ρ and �H

2 ρ are given as

(
�H

1 ρ

)2 =
[

χ2
1 ρ

μ2
(
α2

ρ + 1
)
]

,
(
�H

2 ρ

)2 =
[

α2
ρχ

2
2ρ

μ2
(
α2

ρ + 1
)
]

, (8)

where αρ is the value obtained by the diagonalization proce-
dure (see Supplemental Material S1 [40]).

The theoretical SSi(Q) function is obtained by replacing
the H superscript with Si as described in Eqs. (7) and (8).
Note that SSi(Q) exhibits a lower intensity in the spectrum
than SH(Q). For example, the spectral intensity of SSi(Q)
in the 1N state is less than ten times smaller than that in
the 1K state, and SSi(Q) has a significantly weaker spectral

intensity than the higher energy states. Furthermore, the
peak position of the SSi(Q) spectrum is located in the

region with greater transfer momentum Q than 25 Å
−1

.
Therefore, we cannot observe the scattering from SSi(Q)
for higher energy states with the exception of the 1K state.
The total theoretical scattering spectra (solid black line)
composed of both SH(Q) (dotted black line) and SSi(Q)
(broken black line) are plotted for the 1K energy state
in Fig. 3(a). For the other spectra, we only consider the
SH(Q) term to fit the experimental results. To obtain the
best fit of the experimental data shown in Figs. 3(a)–3(c),

we use the following values: (bH)2 = 6.53 b, (bSi)2 = 0.16 b

[26], (�H
1 X)2 = (�H

1 Y )2 = 1.3 × 10−2 Å
2
, (�H

1 Z)2 = 2.6 ×
10−3 Å

2
, (�H

2 X)2 = (�H
2 Y )2 = 4.2 × 10−2 Å

2
, (�H

2 Z)2 =
1.5 × 10−2 Å

2
(see Supplemental Material S1 [40]),

and the Si:H stoichiometric ratio of 3:1, e.g.,
S(Q) = SH(Q) + 3 SSi(Q) is plotted for the 1K energy
state. The stoichiometry is consistent with the size of n-Si (2.4
nm) [38,41]. This fact suggests that the scattering originates
from the Si-H surface and the nanocrystalline Si core.

Finally, the hidden characteristics of the observed S(Q)
spectra were examined, and the two split levels at each energy
state are shown to exhibit identical spectral shapes. This spec-
tral shape was obtained by adjusting the peak intensity of the
lower energy level to the magnitude of the higher energy level,
as shown in the insets of Figs. 3(a)–3(c). These twin spectra
directly prove that the vibrational dynamics are described by
the harmonic oscillators of the normal modes. We consider
the ratio of two scattering functions with the different energy
levels, such as SH(Q,nνρ) and SH(Q,n′

νρ). When the quantum

numbers satisfy the conditions
∑2

ν = 1

∑Z
ρ = X (nνρ − n′

νρ) =
0 and

∑2
ν = 1 (nνZ − n′

νZ) = 0, which implies that the regu-
larized hypergeometric function 1F 1 takes the identical form
for both SH(Q,nνρ) and SH(Q,n′

νρ), we find that the ratio
� ( nνρ, n

′
νρ) can be expressed as

� ( nνρ, n
′
νρ) = �

(
1
2 + n′

1X + n′
2X

)
�

(
1
2 + n′

1Y + n′
2Y

)
�

(
1
2 + n′

1Z + n′
2Z

)
�

(
1
2 + n1X + n2X

)
�

(
1
2 + n1Y + n2Y

)
�

(
1
2 + n1Z + n2Z

) 2∏
ν = 1

Z∏
ρ = X

nνρ!

n′
νρ!

(
�H

νρ

)2(n′
νρ−nνρ )

. (9)

Hence, the dependence on Q of the ratio will vanish. This
similarity rule is the physical mechanism that gives rise to the
twin spectra. The energy states of the identical total quantum
numbers consist of twin spectral groups that are classified as
the energy levels (first row) in Table I. An energy state with
the total quantum number n is composed of the n + 1 family.
Therefore, the second and third excited states have triplet and
quadruplet spectra. For example, the n = 2 state is composed
of the 2K, 2M, and 2N spectral families, and the n = 3 state
is composed of the 3K, 3L, 3M, and 3N spectral families.
The ratio of these spectra, which obeys the similarity rule,
is obtained by substituting the values given in Eq. (8) into
Eq. (9) (see Supplemental Material S1 [40]). The comparison
of the spectral intensity ratios between experimentally and

theoretically obtained values is shown in Table I, where the
ratios are normalized by the peak intensity of each N -level
spectrum. In Figs. 3(b) and 3(c), the theoretically derived
lowest-intensity triplet (2K) and two lowest-intensity quadru-
plet spectra (3K and 3L) are also described by the dashed
lines. The corresponding experimental data are not available
(2K, 3K, and 3L states) because the higher-order scattering
intensities from the Si nucleus are too weak to observe.

In this work, we have shown the hidden quantum dynamics
of hydrogen atoms that terminate the surface of n-Si using INS
measurements. The twin spectral characteristics and similarity
rule were elucidated based on the QDO model which described
the cooperative motion of hydrogen and silicon. The duality
elucidated in this work is likely not unique to n-Si but may also
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be observed for other materials such as metal hydride alloys,
which are important materials for use in hydrogen storage
technologies [42,43].
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