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Tunable dimensional crossover and magnetocrystalline anisotropy in Fe2P-based alloys

I. A. Zhuravlev,1 V. P. Antropov,2 A. Vishina,3 M. van Schilfgaarde,3 and K. D. Belashchenko1

1Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience,
University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

2Ames Laboratory, Ames, Iowa 50011, USA
3Kings College London, London WC2R 2LS, United Kingdom

(Received 8 August 2017; published 11 October 2017)

Electronic structure calculations are used to examine the magnetic properties of Fe2P-based alloys and the
mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific
applications. It is found that at elevated temperatures the magnetic interaction in pure Fe2P develops a pronounced
two-dimensional character due to the suppression of the magnetization in one of the sublattices, but the interlayer
coupling is very sensitive to band filling and structural distortions. This feature suggests a natural explanation for
the observed sharp enhancement of the Curie temperature by alloying with multiple elements, such as Co, Ni,
Si, and B. The magnetocrystalline anisotropy is also tunable by electron doping, reaching a maximum near the
electron count of pure Fe2P. These findings enable the optimization of the alloy content, suggesting coalloying
of Fe2P with Co (or Ni) and Si as a strategy for maximizing the magnetocrystalline anisotropy at and above room
temperature.
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Transition-metal pnictide alloys based on Fe2P have at-
tracted considerable attention due to the unusual sensitivity
of their magnetic properties to temperature, pressure, external
magnetic field, and alloying [1–5], as well as their possible
magnetocaloric applications [1], and they have been exten-
sively studied theoretically [6–9]. Of particular interest is
the magnetocrystalline anisotropy (MCA) of Fe2P, which, at
2.3 MJ/m3, is record high at zero temperature for systems
without heavy elements [10,11]. Although ferromagnetism
in Fe2P vanishes through a first-order phase transition at
TC = 216 K, this temperature can be greatly increased by
alloying with Si, Ni, Co, and other easily available elements
[1,2,12–14]. The origin of such unusual TC sensitivity to
alloying is not understood. In combination with large MCA
and appreciable coercivity observed [15] in Fe2P alloyed
with Co, this feature makes Fe2P-based alloys interesting for
permanent-magnet applications.

Here, we use first-principles calculations to study the
magnetic properties of Fe2P-based alloys. We propose that
TC is easily tunable owing to the two-dimensional (2D)
character of the exchange interaction developing at elevated
temperatures. We also find that MCA is controlled largely
by band filling and is maximized close to the electron count
corresponding to pure Fe2P. Based on these findings, we argue
that coalloying with Co (or Ni) and Si is the optimal strategy
to maximize the MCA at and above room temperature.

We use the Green’s function-based formulation of the tight-
binding linear muffin-tin orbital method in the atomic sphere
approximation [16]. Substitutional disorder was treated using
our implementation of the coherent potential approximation
(CPA) [17] with spin-orbit coupling (SOC) included and
the MCA energy K calculated following Refs. [18–20]. The
atomic sphere radii were carefully chosen to reproduce the
full-potential band structure. Exchange and correlation were
treated within the generalized gradient approximation [21].
A uniform mesh of 12 × 12 × 20 points provided sufficient
accuracy for the Brillouin zone integration.

At x < 0.2 the (Fe1−xCox)2P alloy has a hexagonal struc-
ture with lattice constants that are almost independent of x

[2]. Therefore, we used the experimental values for pure Fe2P
(a = 5.8675 Å, c = 3.4581 Å) [2] at all concentrations in these
alloys, and the internal coordinates from Ref. [22].

There are two inequivalent Fe sites in Fe2P: the tetrahedral,
weakly magnetic FeI and the pyramidal, strongly magnetic
FeII [4,8]. Co and Ni have a strong tendency to occupy the
FeI site [2,23]. The results we report here assume 100% site
preference, but there is no qualitative difference with equal
substitution on both types of sites.

Using the linear-response formalism [25], we find, in
agreement with earlier results [7], that the exchange parameters
in the ferromagnetic state do not change much with 10%–15%
substitution of Co, Ni, or Si, while the experimental TC

increases sharply. For example, TC nearly doubles at 10%
Co substitution, while the paramagnetic Curie temperature
θP increases only by 14% [26]. The dominant exchange
parameters are strong ferromagnetic FeII-FeII and a weaker but
comparable FeI-FeII. Mean-field theory predicts TC of order
700 K that depends weakly on concentration, consistent with
the behavior of θP . Thus, the dramatic influence of various
alloying elements on TC is quite puzzling. It was suggested
[8] that the stabilization of the FeI local moments at elevated
temperatures is responsible for the TC increase in Si-doped
Fe2P, but it is unclear how this mechanism would apply to Co
and Ni doping, which have an opposite effect on band filling.

We propose the following scenario, which is consistent
with first-principles calculations and experimental evidence.
We observe that the magnetic structure of Fe2P consists of
alternating layers of FeI and FeII sites. The FeI sites are
weakly magnetic, and their exchange coupling to FeII sites is
considerably weaker than the in-plane FeII-FeII coupling, while
the FeI-FeI exchange is negligibly small. Therefore, we expect
that the FeI sublattice magnetization declines much faster
than FeII as the temperature approaches TC . Indeed, a neutron
diffraction measurement found a very small FeI magnetization
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FIG. 1. Dependence of exchange interaction on the Fermi level
in paramagnetic Fe2P. Black: Total exchange interaction (J0). Blue:
Interlayer exchange between two nearest layers of pyramidal FeII

sites (Jz). Inset: Enlargement of Jz at small doping. Top axis: Band
filling �N .

just below the first-order TC in 7% Ni-substituted Fe2P [27].
As a result, the FeI-mediated coupling between the FeII layers
is strongly suppressed near TC . On the other hand, as we
will now show, direct interlayer FeII-FeII coupling is weak
in pure Fe2P and strongly sensitive to band filling. Overall,
this behavior indicates a crossover from three-dimensional
to quasi-two-dimensional magnetism as a function of both
temperature and composition of the alloy.

To calculate the direct coupling between the FeII layers,
we model the paramagnetic state using the disordered local
moment approach and calculate the FeII-FeII exchange pa-
rameters Jij using the linear-response formalism [28]. The
local moments on the FeI site vanish in this approach. We
focus on the total effective exchange J0 = ∑

j Jij and the
interlayer exchange Jz = ∑′

j Jij , where the prime restricts
the summation to sites j in the FeII layer that is adjacent to
the one containing site i. Figure 1 shows J0 and Jz calculated
as a function of the Fermi energy EF in the rigid-band model
[29]; the upper axis shows the band filling �N , which is the
electron count per formula unit, referenced from pure Fe2P. It
is seen that J0 increases smoothly by about 30% at �N ∼ 1,
which corresponds to a 50% substitution of all Fe atoms by
Co. In a real alloy, J0 is not expected to increase as much,
because alloying with Co reduces the magnetic moments. On
the other hand, although Jz shows a similar trend, it is small
at �N ≈ 0 and changes sign at a small hole doping (see the
inset in Fig. 1).

This result suggests that the magnetic structure effectively
becomes quasi-2D at elevated temperatures. In this scenario,
TC can be strongly suppressed from its mean-field value
[30], while nothing special happens to θP . Moreover, Fig. 1
shows that the degree of two-dimensionality is sensitive to
electron doping, and we expect the effect of alloying or another
perturbation on TC should correlate with its effect on Jz. While
the electron (hole) doping makes the exchange interaction less
(more) two-dimensional, specific alloying elements can also
affect Jz in ways that are unrelated to electron count, such as
through the structural distortions induced by the size effect.

Going beyond the rigid-band model, Fig. 2 shows J0 and
the Jz/J0 ratio computed using CPA in paramagnetic Fe2P

FIG. 2. Dependence of the exchange coupling on band filling �N

in paramagnetic Fe2P-based alloys. (a) J0. (b) Jz/J0 ratio. Symbols
connected by lines: At experimental lattice parameters for Fe2P. Blue
squares: At experimental lattice parameters [13] for Fe2P0.9Si0.1.

alloyed with Co, Ni, or Si, treating substitutional [25] and
spin [28] disorder on the same footing. If the lattice constants
are kept fixed (solid lines), the CPA results are similar to the
predictions of the rigid-band model. However, it turns out
the lattice distortion induced by Si overwhelms its effect on
the electron count, and overall Si increases Jz (blue square).
On the other hand, the structural distortion induced by alloying
with Co or Ni is negligible. Thus, Co, Ni, and Si all increase
Jz, despite their opposite effects on the band filling. All these
alloying elements also sharply increase TC , which supports the
idea that the degree of magnetic two-dimensionality correlates
with TC and is otherwise hard to explain, given the opposite
(and small) effects of Co and Si on J0.

We now turn to magnetocrystalline anisotropy. Figure 3
shows the dependence of K in Fe2P on the electron doping in
the rigid-band model, as well as the CPA results for various
alloys, all plotted as a function of the electron count �N .
First, we focus on three-component alloys with Co, Ni, Si,
or B. As in the case of the exchange coupling, the rigid-band
approximation agrees quite well with CPA calculations for

FIG. 3. Dependence of K on band filling �N in different alloys
(see legend) calculated in CPA. Inverted brown triangles (labeled
Co∗): (Fe1−xCox)2P0.9Si0.1 with experimental lattice parameters [13]
for Fe2P0.9Si0.1. Diamonds: Rigid-band approximation for Fe2P.
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FIG. 4. Orbital-resolved partial density of 3d states for an FeII

atom.

these alloys. This agreement suggests that the MCA energy
in Fe2P is not dominated by spin-orbit “hot spots,” which
would be strongly suppressed by disorder [20]. Further, we see
that the behavior of K is primarily controlled by band filling.
For example, K behaves very similarly in (Fe1−xCox)2P and
(Fe1−xNix)2P alloys when plotted against �N , which means
that the effect of Ni is equivalent to twice as much Co. The
effect of Si or B also fits closely with the band filling trend.

The small offset of the maximum in Fig. 3 is likely an
artifact of the atomic sphere approximation, which slightly
overestimates the exchange splitting. While there is no intrinsic
reason for the maximum to occur exactly at �N = 0, we found
that a full-potential rigid-band calculation reproduces the trend
seen in Fig. 3, but the maximum occurs almost exactly at
�N = 0. The decline of the MCA energy with the increasing
concentration of Ni or Co agrees with the experimental data
[10,11,26].

To identify the mechanisms of MCA and its dependence on
band filling, we first consider the site and spin decomposition
of the anisotropy of the SOC energy [19,31]. We have
verified that, as expected, this quantity closely follows the
concentration dependence of K in these alloys. The dominant
term in the spin decomposition comes from the mixing of the
minority-spin states of FeII by the ŜzL̂z term in SOC, while the
majority-spin and the spin-off-diagonal term are fairly small
in the interesting range of concentrations. The contribution of
FeI behaves similarly but is a few times smaller. Given that the
diagonal minority-spin contribution dominates, the MCA is
approximately proportional to the orbital moment anisotropy
[31,32], which may be easier to measure [32].

The orbital-resolved density of states for an FeII atom in
pure Fe2P (Fig. 4) shows two closely spaced peaks of the xy

and x2-y2 character (or m = ±2 in the Ylm basis) separated
by the Fermi level. Mixing of these states by the L̂z operator
leads to the MCA maximum seen in Fig. 3.

We now examine the contributions to K coming from
different regions in the Brillouin zone [19]. Figure 5 shows
the difference of the minority-spin single-particle energies for
magnetization along the x and z axes in pure Fe2P, resolved by
k. We see that the MCA accumulates over a fairly large part
of the Brillouin zone, with the most important contribution
coming from the region with kz ≈ k1/3 = |�A|/3 (bright red
area in Fig. 5). Note that an earlier analysis [6] focused only
on high-symmetry directions in the Brillouin zone, leading to

FIG. 5. Brillouin zone map of the k-resolved minority-spin
contribution to K for pure Fe2P. Color intensity indicates the
magnitude of positive (red) or negative (blue) contributions. The
�′ and M ′ points are at kz = |�A|/3 on the �A and ML lines,
respectively.

an erroneous conclusion that the dominant contributions to K

come from band splittings along the KM and �A lines. This
observation underlines the need to examine the contributions
coming from the entire Brillouin zone.

The origin of the dominant positive contribution from
the vicinity of the kz ≈ k1/3 plane can be understood by
examining the partial minority-spin spectral function for the
transition-metal site. Figure 6 shows this spectral function
for pure Fe2P, resolving 3d orbital contributions by color.
We see two intersecting bands with the Fermi level cutting
through them. The SOC strongly splits these bands for M ‖ z

[Fig. 6(b)], while the splitting is much weaker for M ‖ x (not
shown). Although there is no exact spin-orbital selection rule,
the states near the Fermi level are predominantly of the xy

and x2-y2 character (see Fig. 4). These orbitals are strongly
mixed by the L̂z (but not L̂x) operator, which gives a positive
contribution to K .

The dependence of K in (Fe0.85Co0.15)2P on the c/a ratio
is similar to the results of Ref. [6] for pure Fe2P: A 5%
increase in c/a results in a 30% increase in MCA, while the
magnetization is slightly decreased. With increasing volume

FIG. 6. Partial minority-spin spectral function in the kz = |�A|/3
plane for the transition-metal site in Fe2P. (a) Without SOC. (b) With
SOC for M ‖ z. The intensities of the red, blue, and green color
channels are proportional to the sum of m = ±2 (xy and x2-y2), sum
of m = ±1 (xz and yz), and m = 0 (z2) character, respectively.
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the MCA increases slightly, at a rate of about 2% per 1%
volume increase, while the magnetization is nearly constant.

At room temperature the anisotropy field and coercivity
in (Fe1−xCox)2P are maximized at certain Co concentrations
[15]. This is because there is a tradeoff between low TC at
low concentrations and low MCA, even at T = 0, at high
concentrations. For permanent-magnet applications, it is of
interest to maximize the MCA at the operating temperature.
First, we considered the prospects of increasing the MCA of
the (Fe0.85Co0.15)2P alloy by substituting a small amount of Fe
by an additional alloying element, such as one with a stronger
SOC. We found that Mn, Tc, and Re increase K when equally
substituted on both Fe sublattices, with Mn having the largest
effect and Re the smallest. For example, a 5% substitution of
Re increases K by about 15%, and that of Mn by as much as
70%. However, if Mn fully segregates to the pyramidal site
(which it strongly prefers [33]), the MCA is only enhanced by
20%. The effect of Mn is then essentially that of the reduced
band filling, which could be achieved by simply reducing the
amount of Co. Equal substitution of both Fe sites by Ru and
Os has almost no effect on K , while Rh and Ir reduce it. Thus,
double substitution of Fe by Co and another transition-metal
element is not promising.

On the other hand, given that K is sensitive to band
filling and is maximized close to the electron count of pure
Fe2P, the following strategy suggests itself: coalloy Fe2P with
Co or Ni and Si (on Fe and P sublattices, respectively) to
maintain the optimal band filling while increasing TC well
above the operating temperature. For example, as shown in
Fig. 3, the MCA in (Fe1−xXx)2P0.9Si0.1 alloys, where X is
either Co or Ni, has the same dependence on band filling
as in three-component alloys. Although the lattice distortion
corresponding to Fe2P0.9Si0.1 reduces the maximal MCA, it is
still achieved at the same band filling.

We have examined the Bloch spectral functions in these
alloys and found that, in all cases, all the bands seen in Fig. 6
are easily identifiable and their broadening is fairly small,
while the band filling determines the location of the Fermi
level. The band broadening does, however, reduce the MCA
in (Fe1−xXx)2P0.9Si0.1 compared to (Fe1−xXx)2P at the same
band filling. Therefore, for alloys with the optimal band
filling, coalloying with Co (or Ni) and Si still comes with a
tradeoff between the increasing TC and decreasing MCA at
T = 0.

As mentioned above, the shift of the maximum in K from
�N = 0 is likely due to a slightly overestimated exchange
splitting. Thus, we predict that MCA is maximized close to
the 1:2 doping ratio for Co and Si, or 1:4 for Ni and Si.

CPA calculations show that the ground-state magnetization
in Fe2P alloys with Co, Ni, and Si, in the relevant range
of concentrations, is approximately a linear function of the
band filling, M ≈ M0 + A�N , where A ≈ −0.85μB/f.u. In
particular, at T = 0 the “optimal” codoped alloys should have
approximately the same magnetization as pure Fe2P.

Consider the series of (Fe1−xCox)2P1−ȳSiȳ alloys where
ȳ ≈ 2x maximizes K at T = 0 for the given x. It is of practical
interest to find x that maximizes K(T ,x) in this alloy at the
given T . To find this maximum, we calculate K(0,x) in CPA
and approximate the temperature dependence as follows.

FIG. 7. Concentration dependence of K at 273 K (black), 323 K
(blue), and 400 K (red) in (Fe1−xCox)2P1−ȳSiȳ alloys with optimal
band filling reached at ȳ ≈ 2x. See text for details.

It is often possible to calculate K(T ) using the disordered
local moment method [20,34], but we do not have a
quantitative model to represent the statistical distribution of
the magnetic moments and their orientations in the present
system with a weakly magnetic sublattice and a dimensional
crossover. Therefore, we turn to the experimental data on
K(T ), which were measured at several concentrations in
Ni-doped Fe2P [10,11]. The K(T/TC) curves at 0%, 10%, and
20% Ni are monotonic and essentially identical when scaled by
K(0). Therefore, we assume that K(T ,x)/K(0,x) = f (T/TC)
is the same function of T/TC at any x, and we take it from
experiment [10,11].

The missing piece is the dependence of TC on x. Consider
TC(x,y) in the alloy where x and y are unrestricted concen-
trations of Co and Si. Since we are considering the series of
alloys at optimal band filling, we expect that the increase of
TC(x,ȳ) with x is primarily due to the increase in Jz due to
the structural distortion introduced by Si. In Fe2P1−ySiy , the
hole doping reduces the effect of this structural distortion.
Therefore, we can use TC(0,ȳ) from the experimental data for
Fe2P1−ySiy as the lower bound for TC(x,ȳ) in the lower-bound
estimate for K(T ,x) = f (T/TC)K(0,x).

The resulting lower-bound estimates for K(T ,x) are shown
in Fig. 7 for three different temperatures. At room temperature,
MCA reaches a maximum of about 0.26 meV/f.u. at x ≈
0.09. At higher temperatures this maximum shifts to larger
concentrations, while the maximum MCA declines. Thus,
correcting for the 2% shift of the K(�N ) curve, we predict
that the optimal alloy for permanent-magnet applications in
the 300–400 K operating range has 7%–10% Co (or 3.5%–5%
Ni) and a compensating amount of 14%–20% Si. This target
composition should be the starting point for experimental
verification. More generally, understanding the mechanisms
by which alloying affects the Curie temperature and MCA
provides a path for optimizing the composition of Fe2P-based
alloys for specific applications.
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