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Transport waves as crystal excitations
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We introduce the concept of transport waves by showing that the linearized Boltzmann transport equation admits
excitations in the form of waves that have well-defined dispersion relations and decay times. Crucially, these
waves do not represent single-particle excitations, but are collective excitations of the equilibrium distribution
functions. We study in detail the case of thermal transport, where relaxons are found in the long-wavelength
limit, and second sound is reinterpreted as the excitation of one or several temperature waves at finite frequencies.
Graphene is studied numerically, finding decay times of the order of microseconds. The derivation, obtained by
a spectral representation of the Boltzmann equation, holds in principle for any crystal or semiclassical transport
theory and is particularly relevant when transport takes place in the hydrodynamic regime.
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I. INTRODUCTION

Classical theories of transport are based on the Boltzmann
transport equation (BTE), that abstracts the microscopic
dynamics of the carriers in an out-of-equilibrium system into
a dynamics of the carriers’ distributions. In its complete form
it is a nonlinear integrodifferential equation that includes a
drift-diffusion and a scattering term; close to equilibrium
it simplifies in the linearized Boltzmann transport equation
(LBTE), with the scattering term taking a linear matricial form
[1]. As such, it has often been applied in a semiclassical form
to study transport phenomena in crystals, where the carriers
are, e.g., phonon or electron wave packets with well-defined
energies and quasimomenta, and where the scattering rates or
the lifetimes can be calculated from model or first-principles
interactions. For the case of thermal transport, in particular,
a number of fairly exotic phenomena have been studied
both experimentally and theoretically [2]. One of these is
the propagation of second sound: a temperature wave that
has been observed in a handful of materials at cryogenic
conditions, namely, solid helium [3], sodium fluoride [4,5],
bismuth [6], sapphire [7], and strontium titanate [8,9], and has
been suggested to exist in two-dimensional (2D) or layered
materials [10–12].

Despite the fact that second sound has been known for
decades, its microscopic underpinnings have proven chal-
lenging, while evoking some paradigmatic, and fundamental,
collective behavior. In fact, second sound arises out of a
collective response of the phonon “gas,” so that the challenge
arises in using microscopic degrees of freedom to build
a macroscopic equation for a damped temperature wave.
The earliest attempts [13–16] relied on ad hoc assumptions,
namely, the introduction of some inertial term as an intrinsic
property of the phonon gas. Subsequent studies [17–19] have
shown that the phonon LBTE can be used as the starting point
to derive a damped temperature-wave equation. In particular,
it was shown that a material can host second sound when
normal (momentum-conserving) scattering events are much
more frequent than umklapp processes (where a quantity of
momentum equal to a reciprocal lattice vector can be lost);

this can happen at low temperatures or in 2D materials. A few
years later, it was shown [20] that this condition on normal
and umklapp processes is not necessary for the existence of
second sound; more generally, second sound relies on the
existence of a mechanism by which the energy flux decays
slowly enough so that the crystal can sustain a temperature
wave for long times. We refer the reader to Ref. [21] for a
thorough review of studies until 1989. We note, however, that
all existing studies of second sound rely on simplifications of
the LBTE: In most cases the description of phonon scattering
is simplified, for example, making use of the relaxation-time
approximation or the Callaway approximation [22]. To our
knowledge, only Hardy [20] attempted a study of second sound
using the complete LBTE, but resorted to assumptions on the
eigenvalue spectrum of the scattering matrix and limited his
study to systems of cubic symmetry. These simplifications are
not necessary and it is our aim to characterize second sound
by solving exactly the LBTE.

In this paper, we show very generally that the LBTE
admits the existence of excitations in the form of propa-
gating waves for the carrier distributions. By means of a
spectral representation, we recast the solution of the LBTE
in the form of an eigenvalue equation, where each damped
oscillator identifies an excitation (the transport wave) with
well-defined dispersion relations and decay times. We stress
that these waves do not represent single-particle excitations,
but are collective excitations of the equilibrium distribution
functions. For the case of thermal transport, these excitations
represent energy (heat) or temperature waves, that in the
long-wavelength limit reduce to relaxons [23], i.e., the heat
carriers of bulk steady-state transport. The proof does not rely
on any particular assumption in the LBTE, so that temperature
waves exist in principle in every dielectric crystal, if for a
short time, and analog transport excitations would be present
in other different models of semiclassical transport.

II. TRANSPORT WAVES AND SECOND SOUND

To begin with, we focus on thermal transport, and recall
that the state of crystal lattice vibrations is determined by the
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phonon population nμ(x,t) for any possible phonon state μ

[a shorthand notation to label μ = (q,s) with q the phonon
wave vector and s the phonon branch] at position x and time t .
At equilibrium, the phonon excitation number is given by the
Bose-Einstein distribution function n̄μ = 1

exp(h̄ωμ/kBT0)−1 , with
T0 the temperature of the crystal and ωμ the phonon frequency.
Out of thermal equilibrium, one observes a deviation of
the phonon population �nμ(x,t) = nμ(x,t) − n̄μ. Note that,
keeping the crystal at constant temperature, the Bose-Einstein
distribution does not depend on space or time.

Temperature waves are directly related to oscillations in
the phonon population. To see this, note that �nμ induces a
change �E to the total energy E of the crystal (i.e., heat),

E(x,t) =
∑

μ

(
n̄μ + 1

2

)
h̄ωμ +

∑
μ

�nμ(x,t)h̄ωμ

= E0 + �E(x,t), (1)

where E0 is the energy at thermal equilibrium. Therefore,
oscillations in �nμ are carried over to �E. From kinetic
arguments [20], a change in energy corresponds to a change in
temperature through the relation �E = C�T , where C is the
specific heat. Therefore, to find an equation for a temperature
wave, one must look for waves in the phonon excitation
numbers �nμ.

One can use the LBTE to describe the dynamics of �nμ

[23],

∂�nμ(x,t)

∂t
+ vμ · ∇(�nμ(x,t)) = − 1

V
∑
μ′

�μμ′�nμ′(x,t),

(2)

where V is a normalization volume, vμ the phonon group
velocity, and �μμ′ the scattering matrix [one can derive (2)
from Eq. (2) of Ref. [23] by setting temperature derivatives to
zero, since the average crystal temperature T0 is constant]. The
scattering operator contains the rates for all transitions μ → μ′
and will be later constructed with first-principles scattering
rates of three-phonon and phonon-isotope processes (for their
expressions, we refer to Refs. [23–25]).

We now look for wave solutions for the phonon excitation
numbers,

�nμ = Re(Iμei(k·r−ωt)), (3)

where Iμ is the wave amplitude for the mode μ, k is the
wave vector, and ω is the frequency (not to be confused with
the phonon frequency ωμ). The LBTE is most conveniently
solved in the complex plane and then projected on the real
axis (Re denotes the real part). Inserting this ansatz in Eq. (2),
i.e., applying a Fourier transform, one finds

−iωIμ + iIμk · vμ + 1

V
∑
μ′

�μμ′Iμ′ = 0. (4)

Rearranging the terms, Eq. (4) can be recast as an eigenvalue
problem, ∑

μ′
Bμμ′(k)Iα

μ′(k) = ωα(k)Iα
μ (k), (5)

where

Bμμ′ = k · vμδμμ′ − i

V�μμ′, (6)

and α is the eigenvalue index. This equation represents
the central result of this paper and shows that the LBTE
admits temperature-wave solutions whenever Iα

μ (k) is a right
eigenvector of B(k) with ωα(k) as a corresponding eigenvalue.
Equation (5) identifies with its eigenvectors a set of crystal ex-
citations which appear in the form of oscillators characterized
by a dispersion relation.

The matrix B is complex, non-Hermitian, and can be
written in a symmetric form by means of a simple scaling of
variables (the same transformation used in Ref. [23]); in order
to keep the main text as simple as possible we only discuss
the transformation in the Appendix, although later numerical
results rely on such a symmetrized form. As a consequence of
these properties, eigenvalues ωα(k) are complex. Therefore, it
is more convenient to write them as

ωα(k) = ωα(k) − i

τα(k)
. (7)

The wave of phonon populations is thus rewritten as

�nα
μ(k) = ∣∣Iα

μ (k)
∣∣e−t/τα (k) sin[k · x − ωα(k)t + φ], (8)

where the phase shift φ arises from the imaginary part of
I . With this notation, the real part of the eigenvalue ω is the
oscillation frequency and the imaginary part τ is the relaxation
time associated with the temperature wave. We mention in
passing that left and right eigenvectors of B do not need to
coincide and thus care must be taken in performing algebraic
manipulations.

So, the LBTE admits a basis set of solutions that corre-
sponds to temperature oscillations and, since the derivation
does not rely on any specific assumption about the crystal under
examination, temperature waves should exist in all crystals.
This observation may appear in contrast with the fact that
second sound has been observed only in a handful of materials.
We speculate that this might be due to a number of practical
difficulties. First, relaxation times may often be too short to
detect temperature waves before these are dissipated, and only
in a few circumstances (e.g., when normal processes dominate)
the decay time might be long enough to allow for experimental
observations on macroscopic time scales. Another potential
problem could arise if more than one mode is simultaneously
excited during an experiment: In this case, the superposition of
several modes could hide the original wave behavior. We there-
fore remark that further investigations are needed to interpret
second-sound experiments in light of these considerations.

The long-wavelength limit of temperature waves is of
relevance for macroscopic thermal conduction. When k = 0,
the matrix B reduces to the scattering matrix and the eigenvalue
problem is simplified to

1

V
∑
μ′

�μμ′Iα
μ′(k = 0) = iωα(k = 0)Iα

μ . (9)

Since � is real and symmetric [23], the eigenvalues of B at
k = 0 are purely imaginary and determined by the relaxation
time ω = i

τα(k=0) . The eigenvalue problem thus reduces to
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the case of relaxons [23]. Therefore, thermal transport in the
presence of macroscopic thermal gradients can be thought of as
originating from long-wavelength oscillations of temperature
and phonon populations.

III. RELATION WITH PREVIOUS LITERATURE

We now compare this model of second sound with the
studies of Guyer and Krumhansl (GK) [18] and Hardy [20]
(which paved the way to many studies of second sound, this
one included). We briefly recall here that GK’s approach
is based on the representation of the phonon population
in terms of the eigenvectors of the momentum-conserving
part of the scattering matrix. Their work takes advantage
of the fact that D + 1 of these eigenvectors are analytically
known, D being the dimensionality of the system. Of these
eigenvectors, D are associated with the drifting distribution
n̄drift

μ = 1
exp[(h̄ωμ−q·V drift)/kBT ]−1 , with V drift the drift velocity

(a Langrange multiplier that conserves momentum); the
remaining eigenvector is associated with the Bose-Einstein
distribution (more on this later). Hardy instead studied sec-
ond sound by first writing the BTE in the complete basis
of eigenvectors of the scattering matrix and then Fourier
transforming the resulting equation. We refer to their works
for more details; but some improvements are needed to
reduce the number of hypotheses required to model second
sound. In contrast with GK’s work, the present work (a)
avoids the single relaxation-time approximation and uses
the complete scattering matrix, (b) employs the complete
dispersion relations rather than the Debye approximation,
and (c) is not restricted to isotropic crystals. (Hardy limited
the discussion to an isotropic crystal, whereas the present
discussion applies to any crystal symmetry.)

Simplifying assumptions lead also to qualitative differences
in the results; for example, in the number of second-sound
modes found. Direct diagonalization approaches, such as the
present one, provide a complete basis set for the solution
of the BTE. As a result, we have shown the existence—in
the thermodynamic limit—of an infinite number of modes.
In contrast, GK only found D modes as a consequence of
their choice of an incomplete basis set, driven by a lack of
knowledge of the complete eigenvalue spectrum. The physical
implication of this basis set truncation has been noted by
Hardy [20]: Within GK’s approach, second sound can only
exist when momentum-conserving normal processes dominate
over momentum-dissipating umklapp events. However, this
conclusion is limited by the fact that the basis set is incomplete
and that the basis functions are already associated with the
conservation of momentum. By using a complete basis set,
Hardy managed to construct second-sound modes that do not
require an approximate momentum conservation: The more
general condition for observing second sound is the slow decay
of the energy flux, GK’s condition being a special case where
both energy and momentum fluxes decay slowly. For this
reason, Hardy was able to derive up to 3×D second-sound
modes without excluding the existence of other solutions:
Indeed, the present work finds an infinite number of modes.
We note in passing that the definition of normal and umklapp
processes is not unique, since it depends on the choice of the
unit cell; it is therefore desirable to provide explanations of

second sound that do not rely on a distinction between the
two.

As a last difference, it was found in Ref. [23] that the

function θ0
μ =

√
n̄μ(n̄μ+1)
CkBT 2 h̄ωμ derived from the Bose-Einstein

distribution is not an eigenvector of the scattering matrix with
a zero eigenvalue (see Ref. [23] for more details). In contrast,
both GK and Hardy mistakenly considered θ0

μ an eigenvector;
therefore their work should be revised, taking into account that∑

μ′ �̃μμ′θ0
μ′ �= 0. In particular, GK’s results should be revised

after Eq. (20) of Ref. [18], and Hardy’s analysis should be
reexamined from Eq. (5.3) of Ref. [20].

To conclude this section, it is worth commenting on the
limits of applicability of the modeling presented in this
work. All the results have been derived as exact solutions
of the LBTE, which is assumed to hold throughout the paper.
Therefore, we expect our results to be correct in systems where
conduction is limited by scattering events; instead, ballistic
regimes typically fall outside the domain of applicability of
the (L)BTE and are more conveniently described using other
formalisms such as Green’s function techniques. Moreover, the
semiclassical approximation at the base of the (L)BTE requires
the wavelength of the perturbation (λ = 2π

|k| ) to be much larger
than the spread of the phonon wave packet that is used to
derive the (L)BTE [26]. As a result, the (L)BTE only holds for
λ much larger than the lattice constant: The transport waves
obtained here lose their meaning as one moves closer to the
Brillouin zone edge. In fact, one can note that the dispersion
relation ωα(k) does not obey the periodicity of the Brillouin
zone. Therefore, we expect the transport wave solutions to be
suitable for describing long-wavelength excitations, whereas
an alternative microscopic model is needed to accurately study
such modes at small wavelengths.

IV. COMPUTATIONAL CASE STUDY: GRAPHENE

As a practical example, we compute the dispersion relations
of temperature waves in graphene. Lattice harmonic and
anharmonic properties are computed using density-functional
perturbation theory [27–33] as implemented in the Quantum
ESPRESSO distribution [34]. The scattering matrix is built
with three-phonon and phonon-isotope interactions (at natural
carbon abundances) over a 128 × 128 × 1 grid of points
in the Brillouin zone. The matrix B is fully diagonalized
numerically using subroutines of the ScaLAPACK library [35],
and calculations are managed using the Automated Interactive
Infrastructure and Database (AiiDA) materials’ informatics
platform [36]. For all the remaining details, we refer to
Ref. [23], where the same computational parameters were
used.

We first show in Fig. 1 the eigenvalue spectrum of a few
wave vectors between the Brillouin zone center  and the
edge point M . In particular, we plot the decay time τα of the
eigenvalues as a function of the oscillation frequency ω̄α for
all temperature waves computed (≈105 in the calculations).

The majority of temperature waves have relaxation times
of about 10 ps: It is at these values that oscillating frequencies
cover the broadest range, with ω̄ varying from 0 to about
800 cm−1. For simplicity, the negative frequency part of the
spectrum is not shown, since by symmetry both ω̄ + i

τ
and
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FIG. 1. Eigenvalues ω = ω̄ − i

τ
of graphene as a function of the

oscillation frequency ω̄ (horizontal axis) and the relaxation time τ

(vertical axis); colors identify different k points in the Brillouin zone
lying between  and the edge M . The allowed oscillation frequencies
and decay times are both bounded. Frequencies have a strong variation
with the wave vector: In the limit of k = 0 all frequencies must vanish
and the range of allowed frequencies increases with the wave vector.

−ω̄ + i
τ

are eigenvalues: This is simply a consequence of
the Fourier transform (both signs are needed when building a
sinusoidal solution).

The smallest decay times are set by the fastest rates of
phonon scatterings: Since the most frequent events occur
every few picoseconds, a temperature wave with a faster
decay cannot exist. At the top of the scale in Fig. 1, the
microsecond time scale is the same of the longest relaxation
times of relaxons, i.e., of the modes at the Brillouin zone
center. This time scale can be much longer than that of phonon
scattering, because heat flux may not be thermalized by a
single scattering event [23] and thus heat flux can propagate
over several scattering events before it is eventually dissipated.
We also note that the longest-lived temperature waves are
characterized by the smallest oscillation frequencies, and that
they decay at a faster rate as frequency is increased.

The eigenvalue spectrum seems to a large extent con-
tinuous; however, there are a few isolated features at the
bottom and top of the picture. Unfortunately, computational
costs prevent a systematic convergence study of these isolated
modes. Only in the k = 0 limit is the purely imaginary matrix
simpler to diagonalize, and in Ref. [23] we could inspect
convergence, concluding that the longest-lived relaxons form a
discrete spectrum. Therefore, we speculate that the eigenvalue
spectrum of temperature waves consists of a continuum and of
a discrete set.

The spectra of B at various k points are similar. The most
important difference is that, as k diminishes in magnitude, the
range covered by ω̄ narrows until it reduces to 0 in the limit
k = 0. The spread in the relaxation times instead does not
display significant changes.
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FIG. 2. Continuum spectrum of dispersion relations for tempera-
ture waves in graphene at room temperature (shades of green); the red
line marks the largest value for the allowed oscillation frequency, and
all frequencies lying below are valid solutions. Phonon dispersions at
zero temperature are also plotted (black lines). The different shades
of green indicate the decay times of the temperature waves, showing
how such modes can be longer lived, especially in the low-frequency
region.

Last, in Fig. 2 we plot the dispersion relations of the
temperature waves over a high-symmetry path in the Brillouin
zone; for comparison, the phonon dispersions are reported
as black lines. The red line represents the largest oscillation
frequency for a given wave vector k, and is such that for
all frequencies below this line a corresponding temperature
wave exists. The largest oscillating frequency is roughly linear
with the wave vector, with a slope approximately isotropic
and similar to that of the transverse acoustic mode at .
The linearity is reasonable in view that the real part of B is
linear in k. In the long-wavelength limit, the temperature-wave
frequency drops to zero and only the imaginary part of the
spectrum survives. The colored areas indicate the values of
the largest relaxation times available at a given frequency. We
can now see over the entire path in the Brillouin zone that
the largest relaxation times are, as hinted in Fig. 1, roughly
monotonic with the frequency: The slowest decaying modes
all have small frequencies. We thus speculate that experimental
observation could be more likely for these low-lying modes,
since these can propagate undamped for the longest time. The
steplike features in the colored areas are numerical artifacts,
due to the fact that only 25 wave vectors are computed along
the high-symmetry path.

V. CONCLUSIONS

In conclusion, we have shown in all generality how to
construct transport waves from the linearized Boltzmann
transport equation. By looking for wavelike solutions of the
populations in the LBTE, we reduced the equation to a complex
eigenvalue problem where each eigensolution corresponds to
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a transport wave. These transport waves have well-defined
wave vectors, oscillation frequencies, relaxation times, and
dispersion relations, thus behaving as crystal excitations. For
the case of thermal transport, these excitations correspond to
heat or temperature waves and in the long-wavelength limit
give rise to relaxons, i.e., the heat carriers for steady-state
thermal transport. We studied in detail graphene at room
temperature, showing that an entire basis set of wave solutions
exists, with modes that are characterized by relaxation times
that can reach microseconds. Since the entire formalism is
not tied to any assumption besides the validity of the LBTE,
we conclude that temperature waves, and, more generally,
transport waves are excitations present in principle in any
crystal, and whose observation would rely on a combination
of sufficiently long relaxation times and frequency-resolved
experimental techniques.
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APPENDIX

As we discussed in Ref. [23], the matrix � appearing in
Eq. (2) is not symmetric, i.e., �μμ′ �= �μ′μ. Nevertheless,

a simple scaling of the LBTE is sufficient to bring it in a
symmetrized form. To this aim, let us define

�̃μμ′ = �μμ′

√
n̄μ′(n̄μ′ + 1)

n̄μ(n̄μ + 1)
(A1)

and

�ñμ = [n̄μ(n̄μ + 1)]−
1
2 �nμ. (A2)

With this variable change, the BTE becomes

∂�ñμ(x,t)

∂t
+ vμ · ∇(�ñμ(x,t)) = − 1

V
∑
μ′

�̃μμ′�ñμ′(x,t).

(A3)

The structure of the equation remains the same, but now the
matrix �̃ can be shown to be symmetric. The discussion
of temperature waves as shown in the main text applies
identically to this modified equation. One can thus define a
symmetric matrix B̃μμ′ = k · vμδμμ′ − i

V �̃μμ′ and solve an
eigenvalue problem, yielding eigenvalues ω and eigenvectors
Ĩ . In addition, the eigenvalues are left unchanged by the
transformations. The phonon population, however, must be
scaled back via

�nα
μ(k) = √

n̄μ(n̄μ + 1)
∣∣Ĩ α

μ (k)
∣∣e−t/τα (k)

× sin[k · x − ωα(k)t + φ]. (A4)
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