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First-principles study on thermoelectric transport properties of Ca3Si4
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Thermoelectric properties of a semiconducting silicide, Ca3Si4, were investigated by first-principles
calculations. The calculation results revealed that Ca3Si4 has a relatively low lattice thermal conductivity of around
1.2 Wm−1K−1 at 800 K. The Seebeck coefficients and the electrical conductivities of Ca3Si4 were evaluated by
using the Boltzmann transport equation with an energy-dependent relaxation time under the assumption of
electron scattering by acoustic phonons. The Seebeck coefficient of n-type Ca3Si4 along the x axis is larger
than that along the z axis, while the Seebeck coefficient of p-type Ca3Si4 along the x axis is smaller than that
along the z axis. The electrical conductivity of p-type Ca3Si4 is higher than that of n-type Ca3Si4 owing to the
smaller effective mass of holes, which results in the higher power factor of p-type Ca3Si4. Maximum ZT (a
dimensionless figure of merit) of single-crystalline p-type Ca3Si4 is higher than that of n-type Ca3Si4, reaching
0.9 at 800 K. Grain-size effects on the lattice thermal conductivities and power factors were also investigated.
Reducing lattice thermal conductivities overcomes the decrease of electrical conductivities and thereby enhances
ZT , taking maximum of 1.0 for n-type Ca3Si4 and 1.5 for p-type Ca3Si4 when the grain size is 10 nm.
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I. INTRODUCTION

Recently, thermoelectric materials have attracted much in-
terest because thermoelectric modules incorporating them can
directly convert wasted heat into electric energy. The efficiency
of thermoelectric materials is measured by a dimensionless
figure of merit, ZT = S2σT/(κl + κe), where S is Seebeck
coefficient, σ is electrical conductivity, T is temperature, and
κl and κe are lattice thermal conductivity and electronic thermal
conductivity, respectively. For practical use of thermoelectric
materials, a value of ZT exceeding 1.0 is desirable, and various
bulk materials, such as Skutterudite, clathrates, Heusler alloys,
chalcogenides, Zintl phases, and silicides, have been investi-
gated [1–7]. However, in many cases, their toxicity, scarcity,
and high cost prevent their practical use. Among a variety of
materials, silicide semiconductors such as Mg2Si, β-FeSi2, and
MnSi1.7 are expected to be promising candidates because their
constituent elements are environmentally friendly, abundant,
and nontoxic [8–13]. Thermoelectric properties of Mg2Si
have been extensively studied while silicides with alkaline-
earth metals (calcium, strontium, and barium) have been less
studied. In the Ca-Si system, several compounds, namely,
Ca2Si,Ca5Si3, CaSi, Ca3Si4, Ca14Si19, and CaSi2, exist [14].
Only Ca2Si and Ca3Si4 are reported to have semiconducting
properties, while the others are metal or semimetal [15–24].
Ca2Si is a direct-band-gap semiconductor, while Ca3Si4 has
been predicted as a semiconductor with an indirect band gap
and its optical, electronic, elastic, and thermophysical proper-
ties have also been investigated by first-principles calculations
[24–26]. Although there are a few experimental reports on
Ca3Si4 [14,27], the thermoelectric properties have not been
clarified. For improving thermoelectric properties, reducing
thermal conductivity is essential. The crystal structure of
Ca3Si4 (having 42 atoms in a primitive unit cell as shown in
Fig. 1) could cause low lattice thermal conductivity owing to its
complexity. Due to the anharmonic nature, however, accurately
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calculating lattice thermal conductivity is still challenging.
There are several ways to calculate lattice thermal conductivity
by using the Boltzmann transport equation (BTE), equilibrium
molecular dynamics (MD) with the Green-Kubo formula, and
nonequilibrium MD [28–31]. Recently, lattice thermal con-
ductivities were successfully evaluated from first-principles
calculations by using anharmonic interatomic-force constants
(IFCs) [28–34]. As for this calculation method, anharmonic
IFCs are extracted by fitting a set of Hellmann-Feynman forces
acting on atoms in displaced configurations, and they are then
used to calculate lattice thermal conductivities.

In this study, the semiconducting silicide Ca3Si4 was
focused on as a candidate thermoelectric material. Its lattice
thermal conductivities were investigated by first-principles
calculations and BTE within a relaxation-time approximation
considering three-phonon interactions. Seebeck coefficient,
electrical conductivity, and power factors of Ca3Si4 were eval-
uated by first-principles calculations and BTE, where electron-
relaxation time was obtained from a single-parabolic-band
(SPB) model with acoustic-phonon scattering [35–37]. ZT

values of Ca3Si4 and grain-size effects on the thermoelectric
properties were also evaluated.

II. PHONON PROPERTIES AND
LATTICE THEMAL CONDUCTIVITY

A. Methodology

To obtain the phonon properties of Ca3Si4, first-principles
calculation based on density-functional theory (DFT) under
the generalized gradient approximation (GGA) was per-
formed by using the Vienna Ab initio Simulation Package
(VASP) [38,39]. In the calculation, projector-augmented-wave
pseudopotentials were used [40]. The lattice parameter of
Ca3Si4 was optimized with a 5 × 5 × 3 Monkhorst-Pack
k-sampling grid and cut-off energy of 500 eV. Precision of
total energy convergence during relaxation was as high as
10−9eV. The convergence criterion for the forces on atoms was
10−6eV/Å. The relaxed lattice constants, namely, a = 8.552
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FIG. 1. Crystal structure of Ca3Si4.

and c = 14.91 Å, agree well with previously reported ones
[14,24]. The harmonic and cubic IFCs in real space were
computed by taking the finite-displacement approach using
the program package Anharmonic Lattice Model (ALAMODE)
[31,32]. Cut-off radii of 10.0a0 and 8.5a0 (where a0 is Bohr
radius) were used for harmonic and cubic IFCs, respectively.
The harmonic IFCs within the cut-off radius of 10.0a0 include
interaction pairs up to the 20th nearest neighbors, resulting
in 344 independent parameters. The cubic IFCs within a
cut-off radius of 8.5a0 result in 1714 independent parameters.
The convergence of the dependence of cut-off radius on
phonon-band dispersion and mode Grüneisen parameters was
checked. The relaxation time of phonons was determined by
using the imaginary part of the phonon self-energy under the
assumption of the lowest-order three-phonon process with
the anharmonic IFCs as input. The detailed computation of
the IFCs is described in detail in Ref. [31]. Lattice thermal

conductivity was also determined by phonon BTE within
the single-mode relaxation-time approximation. A 22 × 22 ×
12-q-point sampling grid was used for the phonon BTE.
To evaluate the phonon-scattering effect of grain boundaries,
phonon-relaxation time was estimated by using Matthiessen’s
rule including boundary scattering rate 2 v/L, where v is
phonon group velocity and L is grain size.

B. Phonon dispersion and density of states

Phonon dispersion of Ca3Si4 is shown in Fig. 2(a). The
acoustic-phonon group velocities in the �-M direction are
found to be 6500 m/s for a longitudinal-acoustic (LA) phonon
and 3450 and 3900 m/s for transversal acoustic (TA) phonons,
while the group velocities in the �-A direction are 6600 m/s
for a LA phonon and 3520 m/s for TA phonons, respectively, in
agreement with a previous study [26]. Total phonon density of
states (DOS) and partial DOS of Ca3Si4 are shown in Fig. 2(b).
In the low-frequency range below 70 cm−1, the contribution
of calcium (Ca) atoms and silicon (Si) atoms to the DOS is
the same level because of the acoustic phonon’s nature. In
frequency range around 150 cm−1, partial DOS of Ca atoms
is larger than that of Si atoms, while above the frequency of
220 cm−1, partial DOS of Si atoms is larger than that of Ca
atoms. Figures 2(c) and 2(d) also show the partial DOS of
various kinds of Ca and Si sites. The crystal Ca3Si4 has four
kinds of Wyckoff positions of both Ca sites (2a,2b,2c,12i) and
Si sites (2d,4f,6h,12i). The contribution to the DOS from
Ca and Si atoms at different Wyckoff positions is shown in
Figs. 2(c) and 2(d). The peak of partial DOS of the Ca atom
at Wyckoff positions of 2a has the lowest frequency, which is
attributed to smaller IFCs compared to that of other Ca sites
[41].

C. Lattice thermal conductivity

Temperature dependence of lattice thermal conductivity
of intrinsic Ca3Si4 and that of Ca3Si4 with grain sizes of
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FIG. 2. (a) Phonon dispersion of Ca3Si4. (b) Total and partial phonon density of states, and partial phonon density of states of (c) Ca sites
and (d) Si sites.
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FIG. 3. Temperature dependence of lattice thermal conductivities of intrinsic Ca3Si4 and that of Ca3Si4 with grain sizes of 100, 50, and
10 nm along the (a) x axis and (b) z axis. Cumulative lattice thermal conductivity of Ca3Si4 at 300, 500, and 800 K along the (c) x axis and
(d) z axis.

100, 50, and 10 nm along the x and z axes are shown
in Figs. 3(a) and 3(b), respectively. Intrinsic lattice thermal
conductivities in both the x and z directions reach around
1.2 W m−1K−1 at 800 K. The difference between the intrinsic
lattice thermal conductivities along the x axis and z axis is
small, so the conductivity is almost isotropic due to the small
anisotropy of phonon group velocities. The values are lower
than that of MnSi1.7 owing to the complicated crystal structure
of Ca3Si4 [12]. The intrinsic lattice thermal conductivities
also show temperature dependence; they are approximately
proportional to inverse temperature 1/T . Such temperature
dependence is known as a common behavior of crystals in the
high-temperature regime (in which phonon-phonon scattering
is dominant) [29,42]. In terms of the grain-size dependence, the
lattice thermal conductivities decrease due to grain-boundary
phonon scattering with decreasing grain size. In particular,
they are reduced to less than 0.5 W m−1K−1 at 800 K when the
grain size is 10 nm. As the grain size decreases, the temperature
dependence weakens and deviates from 1/T , because grain-
boundary scattering becomes dominant. To understand the
above grain-size effect quantitatively, the cumulative direc-
tional lattice thermal conductivity was analyzed with respect to

the mean free path of phonons. Figures 3(c) and 3(d) show the
cumulative lattice thermal conductivities of Ca3Si4 along the
x and z axes, respectively. The mean free paths corresponding
to 50% of the cumulative lattice thermal conductivities along
the x and z axes at 300, 500, and 800 K are 43, 26, and 16 nm,
respectively. In fact, at 300 K, the lattice thermal conductivities
of Ca3Si4 with grain size of 50 nm are approximately equal
to half that of intrinsic Ca3Si4. The phonons with mean free
paths of less than 50 nm contribute to about half of the total
lattice thermal conductivities at 300 K, while about half of the
phonons are well scattered by the grain boundary.

To further understand the relationship between phonon
properties and lattice thermal conductivities, phonon-
scattering rates, phase spaces for three-phonon-scattering
processes, mean-free-path distributions, and contributions of
phonon modes to lattice thermal conductivity were calculated
with respect to frequency. Scattering rates are plotted with
respect to frequency in Fig. 4(a). Below a frequency of
50 cm−1, the scattering rate of phonon (acoustic phonon)
modes exhibit ω2 dependence, which is in good agreement
with Klemens’ formula and other calculations [30,43]. In
this calculation, the scattering rate of phonon mode q is
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FIG. 4. (a) Scattering rates, (b) energy- and momentum-conserving phase space for three-phonon-scattering processes, (c) mean free paths,
and (d) contribution of phonon modes to the lattice thermal conductivities of Ca3Si4 along the x and z axes (solid and dashed lines) with respect
to frequency.

given as [44]

1

τp

= π

N

∑
q ′,q ′′

|V3(−q,q ′,q ′′)|2

× [(nq ′ + nq ′′ + 1)δ(ω − ωq ′ − ωq ′′ )

− 2(nq ′ − nq ′′ )δ(ω − ωq ′ + ωq ′′ )] (1)

where ωq is the phonon frequency, N is the number of q points,
and nq is the Bose-Einstein distribution function. V3 is the
matrix element for three-phonon interaction, which measures
the strength of the scattering events. Energy- and momentum-
conserving phase space for three-phonon-scattering processes
is given as

W±
q = 1

N

∑
q ′,q ′′

{
nq ′′ − nq ′

nq ′ + nq ′′ + 1

}
δ(ωq − ωq ′ ± ωq ′′ ), (2)

where W+
q and W−

q are the phase spaces corresponding to
absorption and emission of phonon mode q, respectively. We
use the variable q defined by q = (q,j ) and −q = (−q,j )
where q is the crystal momentum and j is the branch index of
phonons. As shown in Fig. 4(b), the phase spaces do not show
ω2 dependence so that the low scattering rates of acoustic-

phonon modes are attributed to not only phase spaces but also
small values of three-phonon scattering matrix elements. In
high-frequency range, the scattering rates are much larger than
that of acoustic-phonon modes. The phase spaces of emission
of high-frequency phonons (above a frequency of 200 cm−1)
also increase with increasing frequency. The large phase spaces
contribute to high scattering rates in high-frequency range. The
mean free paths of low-frequency phonons are much longer
than those of high-frequency phonons as shown in Fig. 4(c). As
a result of short mean free paths in high-frequency range above
200 cm−1, as shown in Fig. 4(d), high-frequency phonons
hardly contribute as heat carriers.

The phonon properties of Ca3Si4 are interesting because
it is preferable to reduce the lattice thermal conductivities
by nanostructuring compared to semiconductors such as
PbTe and PbSe having lattice thermal conductivities of
1.7–2.2 W m−1K−1 at 300 K [45]. The previous report has
shown that phonons of PbTe with a mean free path smaller than
10 nm comprise about 90% of the lattice thermal conductivity.
On the other hand, phonons of Ca3Si4 with a mean free path
smaller than 10 nm comprise about less than 20% and the
majority of phonons have longer mean free paths. In Ca3Si4,
the contribution of high-frequency phonons (optical phonons)
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to the lattice thermal conductivity is small owing to the high
scattering rates, therefore the acoustic phonons are dominant
heat carriers in Ca3Si4 which enables them to be scattered by
the grain boundary.

III. ELECTRONIC PROPERTIES

A. Methodology

The electronic structure and transport properties of Ca3Si4
were obtained by first-principles calculations (based on the
DFT within the GGA) using the OPENMX code [46–48].
Norm-conserving pseudopotentials generated with multiple
reference energies and a linear combination of pseudoatomic
orbitals (PAOs) were used for the basis set [49]. The PAO basis
functions are specified as Ca9.0-s3p3d1 and Si7.0-s3p3d1,
where the atomic symbol is followed by the cut-off (Bohr)
radius (9.0 or 7.0) in the generation-by-confinement scheme
and three primitive orbitals for the s and p orbitals and one
primitive orbital for the d orbital. Real-space grids are used
with cut-off energies of 500 Ry in numerical integrations
and the solution to the Poisson equation using fast Fourier
transform. k-point samplings of 15 × 15 × 7 are used for self-
consistent calculation, and those of 45 × 45 × 25 are used for
evaluating Seebeck coefficients and electrical conductivities
[50]. Electron-relaxation times considering acoustic phonons
scattering for many materials have been estimated by using the
SPB model [35–37]. In this study, electrical conductivities and
Seebeck coefficients are evaluated by using the BTE with an
energy (ε)-dependent relaxation time (τep) under the assump-
tion of electron scattering by acoustic phonons and a relaxation
time attributed to grain-boundary scattering. The relaxation
time attributed to acoustic-phonon scattering is given by

τep = 2πh̄4ρv2
l

(2m∗)3/2E2
dkBT

ε−1/2, (3)

where m∗ is single-valley effective mass, Ed is the deformation
potential, ρ is mass density, vl is longitudinal sound velocity,
h̄ is the reduced Planck constant, and kB is the Boltzmann
constant. In this study, the group velocity of LA phonons
was used as vl . Effective masses of holes and electrons at the
conduction-band minimum and the valence-band maximum
were calculated. Values of Ed for holes and electrons were
calculated in the same manner as described in Ref. [37]. In the
case of evaluating grain-size effect, the electron-relaxation
time was estimated by using Matthiessen’s rule and boundary
scattering rate vn(k)/L, where vn(k) is the electron or hole
group velocity at wave vector k in the Brillouin zone, n is band
index, and L is grain size. To evaluate the Seebeck coefficients
at high temperature, it is very important to calculate the
band gap accurately. Conventional DFT functionals are
known to underestimate band gaps [51]. In the case of
silicon, the band gap calculated with the GGA is about half
the experimental value, while the Heyd-Scuseria-Ernzerhof
(HSE) hybrid function well reproduces the band gap of silicon
[52]. Accordingly, in this study, the band gap of Ca3Si4 was
computed with the HSE06 hybrid functional by using VASP

[52–55]. A scissors operation was performed to fix the band
gap at the value obtained by VASP with HSE06; namely, all the
calculated conduction bands by the OPENMX code are shifted
up, uniformly, in reciprocal space. To calculate the dependence
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FIG. 5. (a) Electronic band structure of Ca3Si4, and Fermi
surfaces (b) for n-type Ca3Si4 and (c) for p-type Ca3Si4.

of doping concentration on Seebeck coefficients and electrical
conductivities, Fermi levels (which account for additional
electrons for n-type Ca3Si4 and reduced electrons for p-type
Ca3Si4) at given temperature are determined. This definition
of Fermi levels is similar to that determined by taking into
account activated dopant concentration in semiconductors.

B. Electronic band structure

The electronic band structure of Ca3Si4 is shown in
Fig. 5(a). The Fermi surface (constant energy surface) of
n-type and p-type Ca3Si4 are shown in Figs. 5(b) and
5(c), respectively. The valence-band top locates in the �-M
direction, while the conduction-band bottom locates in the
M-K direction. From the figures, it is clear that these two
bands contribute to the Fermi surface for n-type Ca3Si4, while
the sixfold degenerate valence bands contribute to the Fermi
surface for p-type Ca3Si4. The indirect band gap of Ca3Si4
is 0.35 eV, which agrees well with previously reported values
[24]. The calculated effective masses of holes and electrons are
0.55 m0 and 0.85 m0, respectively, where m0 is free-electron
mass. The band gap was also calculated by using HSE06 hybrid
functions, resulting in a band gap of 0.76 eV, which is twice
that calculated by using the GGA.

C. Seebeck coefficients

Temperature dependence of the Seebeck coefficients of
Ca3Si4 with a band gap of 0.76 eV (for various doping
concentrations) was calculated under the assumption of a rigid
band model. Temperature dependences of Seebeck coefficients
of n- and p-type Ca3Si4 under various doping concentrations
(ranging from 1 × 1018cm−3 to 1 × 1021cm−3) along the x and
z axes are shown in Figs. 6(a) and 6(b), respectively. Seebeck
coefficients with low doping concentrations show peaks. The
peaks are attributed to electron excitation from valence bands
to conduction bands by thermal energy at high temperature.
This temperature dependence is typical behavior of thermo-
electric semiconductors and depends on the band gap [9,50].
The assumption of a constant relaxation time for electrons
sometimes leads to an overestimation of the absolute values of
the Seebeck coefficient. In fact, this assumption overestimates
the relaxation times of high-energy electrons compared to the
phonon-limited relaxation times, and the Seebeck coefficients
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FIG. 6. Temperature dependence of the Seebeck coefficients for n- and p-type Ca3Si4 with the band gap of 0.76 eV under various doping
concentrations ranging from 1 × 1018cm−3 to 1 × 1021cm−3 along the (a) x axis and (b) z axis. Solid lines are calculated by considering the
energy dependence of electron-relaxation time, while dashed lines are calculated by assuming that the relaxation time is constant.

also are overestimated as shown in Figs. 6(a) and 6(b). Thus,
to accurately predict Seebeck coefficients, it is essential to
consider mode-dependent electron-relaxation time.

Doping-concentration dependences of Seebeck coefficients
along the x and z axes (Sxx and Szz) of n- and p-type Ca3Si4
are shown in Figs. 7(a) and 7(b). The Seebeck coefficients
are approximately proportional to the logarithm of doping
concentration, except at 800 K. The deviation at 800 K is
also attributed to the excitation of electrons from the valence
bands to the conduction bands by thermal energy. The absolute
values of Sxx of n-type Ca3Si4 are larger than those of Szz.
On the contrary, p-type Ca3Si4 shows that the values of Szz

are larger than those of Sxx . This dependence of Seebeck
coefficients on lattice direction reflects the anisotropy of
effective masses. In terms of carrier type, the absolute values
of the Seebeck coefficients of n-type Ca3Si4 are slightly larger
than those of p-type Ca3Si4 at the same doping concentration,
which reflects the difference between the effective masses of
electrons (0.85 m0) and holes (0.55 m0).

D. Electrical conductivity and power factor

The dependence of electrical conductivities along the x and
z axes (σxx and σzz) on doping concentration with a band gap
of 0.76 eV for n- and p-type Ca3Si4 are respectively shown
in Figs. 8(a) and 8(b). As doping concentration increases,
electrical conductivities monotonically increase (except at
800 K). The deviation from the monotonously increasing
behavior at 800 K is due to extra carriers generated by
thermal excitations. The values of σxx for n-type Ca3Si4 are
larger than those of σzz. On the other hand, as shown in
Fig. 8(b), p-type Ca3Si4 shows slightly higher σzz than σxx . The
directional anisotropy of electrical conductivities also reflects
the anisotropy of the group velocity of holes or electrons. The
electrical conductivities for p-type Ca3Si4 are much higher
than those for n-type Ca3Si4 at the same doping concentration.
The higher electrical conductivity is also attributed to the
smaller effective mass of holes (0.55 m0) than that of electrons
(0.85 m0).

-800

-600

-400

-200

0

Se
eb

ec
k

co
ef

fic
ie

nt
( μ

V
/K

)

10
18

2 4 6 8

10
19

2 4 6 8

10
20

2 4 6 8

10
21

Doping concentration (cm
-3

)

Sxx Szz
300 K
500 K
800 K

(a)
800

600

400

200

0

Se
eb

ec
k

co
e f

fi c
ie

nt
(μ

V
/K

)

10
18

2 4 6 8

10
19

2 4 6 8

10
20

2 4 6 8

10
21

Doping concentration (cm
-3

)

Sxx Szz
300 K
500 K
800 K

(b)

FIG. 7. Seebeck coefficients of Ca3Si4 as a function of doping concentration along the x axis and the z axis (Sxx and Szz) for (a) n-type and
(b) p-type Ca3Si4. Solid lines are Seebeck coefficients along the x axis (Sxx). Dashed lines are Seebeck coefficients along the z axis (Szz).
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FIG. 8. Electrical conductivities of Ca3Si4 as a function of doping concentration along the x and the z axes (σxx and σzz) for n-type and
(b) p-type Ca3Si4. Solid lines are electrical conductivities along the x axis (σxx). Dashed lines are electrical conductivities along the z axis
(σzz).

The dependences of the power factor along the x and z

axes (Pxx and Pzz) on doping concentration for n- and p-type
Ca3Si4 are shown in Figs. 9(a) and 9(b), respectively. The
maximum power factor at 300 K for n-type Ca3Si4 reaches
2.5 mW m−1K−2 and decreases with increasing temperature.
The maximum power factor for p-type Ca3Si4 reaches
5.1 mW m−1K−2, which is twice that for n-type Ca3Si4. This
difference is mainly attributed to the higher electrical con-
ductivities of p-type Ca3Si4 because the difference between
the absolute values of the Seebeck coefficients of n-type and
p-type Ca3Si4 is not large.

The temperature dependence of electrical conductivities
(averaged over three directions) of n- and p-type Ca3Si4 with
a doping concentration of 1 × 1020 cm−3 with grain sizes of
50 and 10 nm as well as without grain boundaries are shown
in Figs. 10(a) and 10(b). The electrical conductivities of both
n-type and p-type Ca3Si4 decrease with decreasing grain size.
As shown in Fig. 10(a), the electrical conductivity of Ca3Si4

with a grain size of 100 nm is almost equal to that without
grain boundaries. As grain sizes decreases, the electrical
conductivities are reduced due to grain-boundary scattering.
When the grain size is 10 nm, the electrical conductivities of n-
type Ca3Si4 at 300 K decrease to 2.4 × 104 S/m (down 19%),
compared to that without grain boundaries. On the other hand,
the electrical conductivities of p-type Ca3Si4 at 300 K decrease
to 6.5 × 104 S/m (down 38%) when the grain size is 10 nm.
The reduction in electrical conductivities of p-type Ca3Si4 is
remarkable. This is due to the longer mean free path of holes
compared with that of electrons. Consequently, the electrical
conductivities of p-type Ca3Si4 tend to be more affected by
grain-boundary scattering compared with n-type Ca3Si4.

The temperature dependences of the power factors of n- and
p-type Ca3Si4 with a doping concentration of 1 × 1020 cm−3

and grain sizes of 50 and 10 nm as well as without grain
boundaries are shown in Figs. 11(a) and 11(b). The power
factors are averaged over three directions. The power factors
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FIG. 9. Power factors of Ca3Si4 as a function of doping concentration along the x and z axes (Pxx and Pzz) for n-type and (b) p-type Ca3Si4.
Solid lines are power factors along the x axis (Pxx). Dashed lines are power factors along the z axis (Pzz).
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FIG. 10. Temperature dependences of electrical conductivities of Ca3Si4 with doping concentration of 1 × 1020 cm−3 without grain boundary
and with grain sizes of 100, 50, and 10 nm along the (a) x axis and (b) z axis.

also decrease with decreasing grain size, and the grain-size
effect on the power factor is similar to that of electrical
conductivity. In the case of n-type Ca3Si4 with a grain size of 10
nm, compared to the power factors without grain boundaries,
the power factors at 300 K decrease to 1.4 mW m−1K−2 (down
19%). These decrease rates of power factors are similar to those
of electrical conductivity, because the Seebeck coefficient of
Ca3Si4 with a grain size of 10 nm is similar to that in the case
without grain boundaries (not shown in the figures).

E. Dimensionless figure of merit

The dependences of ZT values of n- and p-type Ca3Si4
on doping concentration were evaluated. Electronic thermal
conductivity was evaluated by using the Wiedemann-Franz
law, κe = LσT , where L(=2.44 × 10−8W � K−1) is Lorentz
number. The dependences of ZT along the x and z axes (ZTx

and ZTz) on the doping concentration of n- and p-type Ca3Si4
are shown in Figs. 12(a) and 12(b), respectively. Maximum

ZT values with respect to doping concentration increase
with increasing temperature, although the maximum power
factor and electrical conductivities decrease with increasing
temperature, as shown in Figs. 8 and 9. The n-type Ca3Si4
shows maximum ZT of 0.59 along the x axis at 800 K, while
maximum ZT of p-type Ca3Si4 is 0.92 along the z axis at the
same doping concentration. The anisotropy of maximum ZT

corresponds to the behavior of the power factors, since lattice
thermal conductivity of Ca3Si4 is almost isotropic.

To estimate the ZT values of polycrystalline Ca3Si4 with
nanograins, the power factors and thermal conductivities are
averaged over three directions. The dependences of ZT values
of n- and p-type Ca3Si4 (with a grain size of 10 nm) on doping
concentration are shown in Figs. 12(c) and 12(d), respectively.
Maximum ZT of n-type Ca3Si4 reaches 1.0 at 800 K. The
p-type Ca3Si4 with a grain size of 10 nm shows maximum ZT

of 1.5 at 800 K. The enhancement of ZT is achieved by small
grain size because reducing the lattice thermal conductivities
overcomes the decrease of the electrical conductivities. These
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FIG. 11. Temperature dependences of power factors of Ca3Si4 with doping concentration of 1 × 1020 cm−3 without grain boundaries and
with grain sizes of 100, 50, and 10 nm for (a) n-type and (b) p-type Ca3Si4.
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FIG. 12. ZT values of Ca3Si4 along the x axis (ZTx) and the z axis (ZTz) for (a) n-type and (b) p-type Ca3Si4 as a function of doping
concentration. ZT values of Ca3Si4 with the grain size of 10 nm for (c) n-type and for (d) p-type Ca3Si4 as a function of doping concentration.

ZT values indicate that Ca3Si4 is a potential candidate for
an environmentally friendly thermoelectric material with high
ZT .

The above discussions are somewhat simplistic in clarifying
the precise thermoelectric properties of Ca3Si4. Acoustic-
phonon scattering and grain-boundary scattering were only
taken into account to evaluate the electron-relaxation time of
Ca3Si4. Electron-phonon interaction, electron-electron inter-
actions, and interfacial structures at grain boundary could also
affect electron-relaxation time as well as phonon-relaxation
time. The band gap may have a temperature dependence
which affects the thermoelectric properties. We believe that
most parts of our calculations are valid. However, some
approximations might cause overestimation of ZT . In the
future, to verify thermoelectric properties of Ca3Si4, it is
necessary to compare with experimental measurements and
some other methods.

IV. CONCLUSIONS

Thermoelectric properties, namely, phonon properties, ther-
mal conductivity, electronic structure, electrical conductivity,
and Seebeck coefficient, of a semiconducting silicide (Ca3Si4)

were investigated by first-principles calculations. The cal-
culation showed following results Ca3Si4 has a low lattice
thermal conductivity of around 1.2 Wm−1K−1 at 800 K. The
Seebeck coefficient of n-type Ca3Si4 along the x axis is larger
than that along the z axis, while the Seebeck coefficient of
p-type Ca3Si4 along the x axis is smaller than that along the
z axis. The electrical conductivity of p-type Ca3Si4 is higher
than that of n-type Ca3Si4 due to the smaller effective mass
of holes, which results in a larger power factor of p-type
Ca3Si4. ZT of single-crystalline n- and p-type Ca3Si4 at 800
K reaches 0.59 and 0.92, respectively. Nanostructuring reduces
both lattice thermal conductivities and electrical conductivities
of Ca3Si4. Reducing lattice thermal conductivities overcomes
the decrease of electrical conductivities and thereby enhances
ZT , taking maximum ZT of 1.0 for n-type Ca3Si4 and 1.5 for
p-type Ca3Si4 when the grain size is 10 nm. These results also
indicate that nanostructuring is an effective way to enhance
the thermoelectric properties of semiconducting Ca3Si4.
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