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Lattice polarization effects on the screened Coulomb interaction W of the GW approximation
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In polar insulators where longitudinal and transverse optical phonon modes differ substantially, the electron-
phonon coupling affects the energy-band structure primarily through the long-range Fröhlich contribution to the
Fan term. This diagram has the same structure as the GW self-energy where W originates from the electron part
of the screened Coulomb interaction. The two can be conveniently combined by combining electron and lattice
contributions to the polarizability. Both contributions are nonanalytic at the origin, and diverge as 1/q2 so that
the predominant contribution comes from a small region around q = 0. Here we adopt a simple estimate for
the Fröhlich contribution by assuming that the entire phonon part can be attributed to a small volume of q near
q = 0. We estimate the magnitude for q → 0 from a generalized Lyddane-Sachs-Teller relation, and the radius
from the inverse of the polaron length scale. The gap correction is shown to agree with Fröhlich’s simple estimate
−αP ωLO/2 of the polaron effect with αP the polaron coupling factor.
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I. INTRODUCTION

The GW approximation [1,2] provides one of the most suc-
cessful many-body-perturbation theoretical approaches to the
electronic band structure of solids. It is based on an expansion
of the self-energy in the screened Coulomb interaction W . In
fact, the self-energy schematically is approximated as � =
iGW with G the one-electron Green’s function. In its most
recent quasiparticle self-consistent all-electron version [3,4],
which we label QSGW , it has become applicable to a wide
range of systems. Nonetheless, it significantly overestimates
the band gap in strongly ionic systems. This effect has been
attributed to the neglect of ladder diagrams, which describe
electron-hole pair attraction, and thereby enhance the screen-
ing, which reduces W and the splitting between occupied and
unoccupied states (see, e.g., Ref. [5]). However, the lattice
polarization also contributes to W and enhances the screening.
Previous estimates of both of these effects in literature [5–7]
attribute most of the band gap overestimate by straight GW to
just one of these but did not consider them together.

Both electronic and polaronic terms are bosonic in origin,
have the same diagrammatic structure, and can be conveniently
combined into a single GW diagram where W includes both
electronic and lattice contributions to the polarizability. This
fact was first used by Bechstedt [8] to modify W when solving
both the GW band structure and the Bethe-Salpeter equation
for the polarizability in strongly ionic materials. They apply
the effect only in the static limit (ω = 0) and within the
Coulomb-hole static screened exchange (COHSEX) frame-
work. Furthermore, using a model dielectric function, their
correction amounts to replacing the macroscopic ε∞ by ε0 in
the q → 0 limit. Vidal et al. [9] estimated the renormalization
of band gaps in materials with a large Fröhlich coupling
parameter. They adopted Bechstedt’s approach and estimated
a gap reduction of about 1 eV in CuAlO2. Subsequently Botti

and Marques (BM) made a refinement, taking into account the
dynamics in W by using a generalized Lyddane-Sachs-Teller
relation [7]. However, they did not properly take into account
the volume confinement of W in q space.

The main physics was already laid out by Hedin [2] in the
framework of many-body perturbation theory. He partitioned
out the Fan term as a separate contribution to the self-energy
iGW ph; and indeed this has been the customary approach.
The main effects on temperature dependent band structure
and the zero-point motion corrections have been worked
out in the Allen-Heine-Cardona (AHC) theory [10–12].
More recently both Fan and Debye-Waller contributions have
been implemented in a density-functional framework [13,14].
A recent review by Giustino [15] describes the different
approaches to the electron-phonon coupling problem and
points out the relations between the adiabatic AHC theory and
the more general Hedin [2] and Baym [16] field theoretical
approaches and their modern implementation. The latter rely
on interpolation of the electron-phonon coupling coefficients
on a fine k-point integration mesh by means of maximally
localized Wannier functions [17]. This approach however
becomes problematic for the long-range parts of the electron-
phonon coupling in polar materials, the so-called Fröhlich part
[18–21], because the latter decay as 1/q and lead to a divergent
1/q2 contribution (and which becomes 1/q4 near band extrema
if applied straightforwardly to the AHC equations). While
these problems can be overcome by removing the adiabatic
approximation [15,22], it seems worthwhile pursuing simpler
approaches to estimate the Fröhlich part of the Fan term, which
dominates in compounds where ε∞ is small compared to εtot.

Noting that the main problem with the Fröhlich term occurs
near band edges, Nery and Allen [23] developed a k · p
approach for the band near the band edge, dividing the Fan term
into a nonanalytic Fröhlich part and a remainder. Using the
resulting simple form of the Fröhlich term, the singular integral
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can be done analytically and can then be combined with the
numerical integration without the need for an excessively fine
integration mesh. Here we take their approach a step further
toward simplification. As they showed, the crucial length scale
for the effect is the polaron length scale. Therefore, we use
the inverse polaron length directly as an integration limit for
the singular Fröhlich term. While this is a more approximate
estimate than theirs, in principle, an exact approach, which
subtracts the singularity from the numerical integration and
replaces it by the analytical result for a simple model, we use
directly the simple model and estimate the size of the region
in q space where it is applicable as the inverse polaron length.

The BM approach is another option worth revisiting. This
is the main goal of our paper. We identify the problem in
BM’s treatment of the q → 0 limit. Again, our solution is to
base this on the polaron-length scale. We show that the BM
approach, as is, depends crucially on the size of the integration
mesh and the gap correction decreases proportional to 1/Nmesh

and would thus go to zero at convergence. Instead, we assume
that the correction applies in a finite q region of the size of
the inverse polaron length. The advantage compared to a full
evaluation of the Fröhlich contribution to the Fan terms is
that the computational effort is vastly simpler; moreover, the
phonon contribution to the entire band structure is obtained in
a single calculation.

We apply both approaches to a set of strongly ionic
materials, MgO, NaCl, LiF, LiCl, and show that the modified
BM approach leads to results in good agreement with the above
simplified Nery-Allen polaronic estimate. We also consider
zincblende GaN for a direct comparison to Nery and Allen’s
more complete approach, although the effect here is an order
of magnitude smaller. Admittedly, our approach does not
address the full electron-phonon coupling renormalization of
the band gap, only the Fröhlich part. However, for strongly
ionic materials, this is arguably the largest contribution. The
other electron-phonon contributions to the zero-point motion
correction are large only in systems with only light atoms.
Finally, we consider the relative importance of this effect
to the effects of missing electron-hole interactions based on
literature data. The conclusion is that the latter are in fact a
more important correction to the band-gap reduction.

II. THEORY

As is well known [24,25], optical phonon modes can
strongly modify the screening in polar compounds. This is
nicely encapsulated by the generalized Lyddane-Sachs-Teller
(LST) relation in the q→0 limit

εα
tot(q → 0,ω)

εα
el(q → 0,ω)

=
∏
m

(
ωα

LO;m

)2 − ω2

(ωTO;m)2 − (ω + i0+)2
. (1)

The product runs over all optical modes m which are
infrared active and have a longitudinal-transverse splitting
(ωLO;m > ωTO;m) and belong to the irreducible representation
corresponding to the polarization direction α. The superscript
α indicates the direction along which q → 0 approaches zero
and the LO modes depend on this direction. We next examine
how this affects the screened Coulomb interaction W in the
GW theory.

In practical calculations, W (q,r,r′,ω) is represented by an
expansion in a basis set. In our all-electron implementation
[4] this consists of a mixed product basis with Bloch sums of
products of partial waves inside augmentation spheres and
plane waves in the interstitial. Thus W becomes a matrix
Wμν(q,ω). More commonly plane waves are used for these
bosonic degrees of freedom, in which case μ becomes G.
As noted already, the effect is dominant in the q → 0 limit.
Treatment of Wμν(q → 0,ω) requires special care because of
the divergence of the Coulomb interaction v(q) = 4πe2/q2.
(There is a similar divergence for Fröhlich contribution.) It is
however integrable, because what is needed for the self-energy
is a convolution integral over both energy and wave vector,

�c
nm(k,ω) = i

2π

∫
dω′

BZ∑
q

all∑
n′

Gnn′ (k − q,ω − ω′)

×
∑
μν

Wc
μν(q,ω′)e−iδω′

× 〈
ψkn

∣∣ψk−qn′Eq
μ

〉〈
Eq

ν ψk−qn′
∣∣ψkm

〉
. (2)

The sum over q becomes an integral and the contribution
from the region near q = 0 over a small sphere multiplies
the divergence by q2dq. Here the Green’s function Gnn′ (k −
q,ω − ω′) = [ω − ω′ − εk−q ± iδ]−1δnn′ is a diagonal matrix
in the basis of one-electron states ψkn; the screened Coulomb
interaction is expanded in an auxiliary mixed product basis
set Eμ which diagonalizes the bare Coulomb matrix [26], and
conversion factors from one basis to the other are included. The
superscript c refers to taking the correlation part Wc = W − v.

The approach dealing with this integrable divergence has
been described by Freysoldt et al. [27] in the context of a plane
wave basis set expansion of the bare and screened Coulomb
interaction and by Friedrich et al. [26,28] in terms of a mixed
product basis set expansion. The method consists of replacing
the integral over the BZ by an exactly integrable function with
the same type of divergence. The difference between the two is
then a smooth function for which the integral can be replaced
by a discrete sum. The approach originally was introduced by
Massida et al. [29] in Hartree-Fock calculations because, in
fact, the same problem already affects the bare exchange. In the
context of GW theory, it requires a knowledge of the screened
Coulomb interaction near q = 0 and this can either be obtained
by an analytical k · p approach [26] or by using the offset-�
method. The actual approach used in the QSGW program [30]
is described in Kotani et al. [31] and provides an improved ver-
sion of the offset-� method used in Ref. [4]. To obtain the be-
havior W (q) near q = 0, one needs the macroscopic inverse di-
electric constant, which is 1/ε−1

00 (q → 0,ω). It is calculated by
a block matrix inversion separating out the divergent term from
the known behavior of the polarizability matrix as a function of
q. Here the subscripts 00 of the dielectric function matrix refer
to the reciprocal lattice vector G = 0 in a plane wave basis set,
or equivalently the first mixed-product basis set function in the
basis set that diagonalizes the bare Coulomb interaction [26].
Both of these in fact correspond to the average over the unit
cell. The inverse of this quantity is then expanded in spherical
harmonics and only the L = 00 spherical average is required
for the integral of the “head” of ε−1

00 . This is if we neglect some
higher order corrections, discussed by Betzinger et al. [32].
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For a simple estimate of the phonon contribution, we use
the fact that (1) the Fröhlich contribution to W originates
predominately from the divergent, small-q region [23], and
(2) we handle this region using the usual formulation of the
GW self-energy calculation through a special treatment of
the integrable divergence of W in the neighborhood of q = 0
only. Equation (2) is integrated numerically on a discrete q
mesh, and the “central” cell term is treated specially to handle
the divergence. Our approach simply modifies the central cell
dielectric function ε−1

00 (q = 0) using the appropriate Lyddane-
Sachs-Teller factor. The fact that its limit is nonanalytic, i.e.,
depends on the direction of q means that it is a second rank
tensor with nonzero components dictated by symmetry. For
example for an orthorhombic crystal, it will have only diagonal
components but the xx, yy, and zz diagonal elements are all
different. In general in the anisotropic offset-� method [31] it is
expanded in invariant tensors corresponding to the symmetry
of the cell and requires at most six q points close to q = 0
where the macroscopic dielectric constant must be evaluated
and for which we need to know the corresponding LO-TO
splittings.

In a full approach to the electron-phonon coupling, one
can arbitrarily cut out some small region near the singularity,
subtract the standard mesh integration technique result for that
region, and replace it by the properly integrated singularity.
This is the approach followed by Nery and Allen [23]. Here
we focus exclusively on the Fröhlich term, and thus we cannot
rely on a cancellation of the two treatments to the self-energy
integral. We thus need an accurate estimate of the range of the
polaron effect. In the treatment of the q → 0 limit for the purely
electronic screening, the relative weight of the specially treated
� cell depends on the size of the q-point mesh. The finer the
mesh, the less the weight of the � cell. The electron-phonon
contribution should not depend on the mesh spacing, but since
we lump the entire contribution into the central cell and omit
contributions from other microcells, the Fröhlich contribution
to W00(q = 0,ω) should be rescaled as described below.

We may decouple the convergence in q space of the
electronic polarizability from that of the phonon contribution
as follows. We define the LST factor fLST to be the factor
that corrects W , so that the additive correction is �W =
(fLST − 1)W . At q = 0, fLST is the inverse of the factor in
Eq. (1). Now, according to the above discussion, we want to
correct the q = 0 value of W but this represents an effective
volume in q space. So we need to estimate separately the
size of this q-space region over which the effect of the lattice
polarization is to be taken into account. Let us call this qLP

and the corresponding volume LP = q3
LP. When we calculate

the convolution integral ��(k) = ∑
q G(k − q)�W (q) as a

discrete sum, we assume only the q= 0 microcell of volume
GW = BZ/Nmesh contributes, so ��(k) = iG(k)�W (0). If
the GW mesh is coarser than qLP, then we might overestimate
the effect. On the other hand, if it is finer, then the phonon
correction should be extended to GW -mesh points beyond k =
0. Instead, we may simply rescale �W (0) to W (0)LP/GW .
This means that for the pure electronic screening part, the
usual compensation between the discrete sum (nondivergent
part) and the special treatment of the � cell is still valid. But
for the added �� = i(fLST − 1)G(k)W (0)LP/GW we use
a fixed volume of q space corresponding to qLP

The essential problem to obtain meaningful results within
this approach is thus to pick qLP. We note that it cannot
be obtained from considerations of the phonons or of the
dependence of εtot(q)/εel(q) alone because of the latter
lack of information on the electron-phonon coupling to the
bands, which must involve the effective masses of the bands.
Following Nery and Allen’s idea [23], the relevant length
scale here is the polaron length aP = √

h̄/2ωLOm∗, where
ωLO is the longitudinal phonon for which we consider the
electron-phonon contribution and m∗ is the band effective
mass. This means there is actually a different polaron length
for electrons and holes, which we denote aPe and aPh. Using
an electron (hole) effective mass of 0.35 (1.26) for MgO as
an example, we obtain polaron length scales of 20.84 and
10.96 a0 (a0 is the Bohr radius). We use (2mhh + mlh)/3
along the [100] direction for the holes. We use this type of
average because the heavy hole band is doubly degenerate. The
average aP = (aPe + aPh)/2 defines an inverse length scale of
0.06 a−1

0 which for MgO is about 1/12 of the BZ. Typically,
for a two atom unit cell system like MgO, a 8 × 8 × 8 mesh
already gives both the GW and phonons very well converged.
We also found that the gap correction in the BM approach
varies as 1/Nmesh. We can thus extrapolate to the appropriate
q = 1/aP or use the approach for decoupling from the mesh
size described in the previous paragraph. The precise way of
averaging the effective masses here is not crucial because we
are only trying to estimate the polaron length and the results
are not very sensitive to this estimate.

The approach described here is similar to that of Botti and
Marques [7], except that they did not take into account the
range of the Fröhlich interaction. In their formulation the effect
would have vanished in the limit of small microcell size.

They also appeared to confuse the relevant length scale:
they said “It is easy to understand that the coupling of phonon
waves and electromagnetic waves is effective only for q → 0,
since the speed of sound is negligible if compared with the
speed of light.” This is true but rather irrelevant to the problem
considered here. In fact, the coupling of electromagnetic waves
to phonon waves, i.e., polariton formation, following Pick [33],
occurs only when q = |q| � ω0/c with ω0 a typical phonon
frequency and c the speed of light. Decoupling occurs for
q � ω0/c. This is about q = 10−4 of the Brillouin zone (BZ).
In other words, this theory provides a cutoff above rather than
below in which the effect comes into play. However, we are not
concerned with the retardation effects of polariton formation
here, we are interested in the applicability of the LST relation
and the polaronic effect on the band gap.

We may also directly estimate the Fröhlich singularity inte-
gral. Following Nery and Allen [23], the singular contribution
near the band edge to the zero-point motion self-energy is
given by

�Enk = −αP h̄ωLO tan−1 (qF aLO)
2

π
, (3)

where

αP = e2

2aP

1

h̄ωLO

[
1

ε∞
− 1

ε0

]
(4)

is the dimensionless polaron coupling constant. The question
now is what to use as an integration cut-off qF for the
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upper limit of the Fröhlich singularity integral. Clearly an
overestimate will be obtained if we use qF = qBZ = 2π/a

because the expression is supposed to be valid only over
the region where the band dispersion is parabolic. It is even
customary to let qF → ∞, in which case we obtain −αh̄ωLO

as an upper limit [18]. In Nery and Allen’s approach this choice
is not crucial because they look at where this explicit approach
becomes equivalent to the standard integration approach of the
other electron-phonon coupling terms besides the long-range
Fröhlich one. This occurs at about 1/6 of the BZ in their case of
GaN. A better estimate would be qF = 1/aP ; then the inverse
tangent factor is simply π/4 and Eq. (3) simplifies to

�Enk = −αP ωLO/2 = e2

4aP

(
ε−1
∞ − ε−1

0

)
, (5)

where if n corresponds to the conduction band minimum
(CBM), we use aPe and if n corresponds to the valence band
maximum (VBM), we would use aPh as polaron lengths. So,
this is simply half the difference in Coulomb interaction at
the polaron length calculated with purely electronic screening
and electronic plus lattice screening. This differs from the
upper limit by only a factor of 2, so the estimation of qF

is not very crucial if our goal is to obtain the right order of
magnitude. For the example of GaN used by Nery and Allen,
we find this already gives an excellent approximation to their
full calculation. We will show that it also agrees well with the
modified BM approach described above, in which qLP is also
set to 1/aP .

We emphasize again that if one applies the electron-phonon
coupling fully at all q points then one can subtract out the
region of the singularity from the mesh sum and add it back in
integrated analytically. However, in the BM approach we focus
entirely on the singular contribution, and thus we are limited
by how reliably we estimate the size of the singularity. This
is true both if one thinks of it as a Fröhlich coupling strength
dipole singularity or as the 1/q2 singularity in the W screened
Coulomb potential. In fact, both are essentially the same and
both give a correction proportional to ε−1

∞ − ε−1
0 and inversely

proportional to aP .
As far as the frequency dependence is concerned, it is clear

from Eq. (1) that for ω > ωLO the factor quickly goes to 1.
Therefore in the integral over frequency, it is sufficient to
apply the effect only at ω = 0 as long as the first nonzero
ω-mesh point is already well above ωLO. If one wishes to
apply the effect including its frequency dependence, then one
needs to use a sufficiently fine integration mesh near the ωTO

and ωLO phonons to carry out the integrals over these poles
correctly. We have done both and find that reliable results can
be obtained using a coarse mesh, and scaling W (q = 0,ω = 0)
only. This is further discussed in the Appendix. Since a very
fine frequency mesh is required if the pole is properly summed
over, this greatly simplifies the computational effort.

III. COMPUTATIONAL DETAILS

All calculations before are carried out using the QSGW

approach in the LMTO basis set implementation [4], which
can be found online in Ref. [30]. The relevant phonons are
taken from experiment or can be calculated using the ABINIT
program [34].

TABLE I. Parameters used to calculate the polaron length and
polaron coupling strength in various materials and the polaron shifts
of the band edges and gap. Effective masses in units of free electron
mass mh = (2mhh + mlh)/3. Phonon frequency ωLO in cm−1, and
polaron lengths aPe and aPh in Bohr units a0. Polaron coupling
constants αPe and αPh for electrons and holes are dimensionless.
Energy shifts in meV.

MgO NaCl LiF LiCl GaN

me 0.35 0.35 0.61 0.40 0.18
mhh[100] 1.70 2.10 2.83 1.06 1.70
mlh[100] 0.40 0.55 1.10 0.56 0.50
mh 1.26 1.58 2.25 0.89 1.30
ωLO (cm−1) 722 265 656 382 730
aPe (a0) 20.8 34.4 16.6 26.8 28.9
aPh (a0) 11.0 16.2 8.6 17.9 10.7
aP (a0) 15.9 25.3 12.6 22.4 19.8
ε∞ 3.0 2.3 1.95 2.8 5.6
ε0 9.8 5.9 9.0 11.2 9.9
αPe 1.7 3.2 4.1 2.9 0.4
αPh 3.2 6.9 7.8 4.4 1.1
�ECBM (meV) 75 53 165 69 18
�EVBM (meV) 144 113 317 103 49
�Eg (meV) 219 166 483 172 67

The experimental lattice constants were used, MgO
(4.21 Å [35]), NaCl (5.64 Å), LiCl (5.14 Å [36]), LiF (4.02 Å
[36]). In the QSGW calculation, for MgO we used semicore
Mg 2p and high lying 3s states as local orbital for the
completeness of the basis set. For NaCl we also used semicore
2p as local orbitals.

IV. RESULTS AND DISCUSSION

In Table I we show the polaron lengths and coupling
strengths for electrons and holes as well as the parameters
entering them. The effective masses are obtained from fitting
the QSGW calculations before adding the lattice polarization
correction. The dielectric constants are taken from experiment
but could also be calculated in DFT using for example the
ABINIT program or using the electronic band structure within
QSGW for ε∞ and calculating ε0 using the LST factor. Finally
it shows the estimated band edge and gap shifts using Eq. (5).
We note that for GaN, this amounts to 67 meV, close to
Nery and Allen’s own estimate of 50 meV, especially when
considering that we expect an error bar of order 10 meV in
view of the various approximations made. We may note that
typically the shift is larger for the VBM because of the shorter
polaron length because of the larger hole mass. For NaCl, we
may compare our result with Fröhlich’s own estimate of the
conduction band shift [18]. He used an effective mass me = 1
and obtained 0.18 eV. Using me = 1 we would obtain 0.09 eV
differing by a factor 2 because in Fröhlich’s estimate the upper
limit of the singularity integral is replaced by ∞.

Next we compare the above polaron estimates of the band
edge shift with the results of the modified BM approach,
in which we use the average polaron length aP to set
the qLP = 1/aP . In Table II we show the LDA gaps, the
QSGW gaps, and the QSGW gaps with the BM-type lattice
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TABLE II. Band gaps in LDA, QSGW, QSGW+LPC in the BM
approach with different k meshes and extrapolated to qLP = 1/aP , as
well as the zero-point motion (ZPM) correction to the gap. All values
in eV. The percent change in QSGW-LDA gap correction due to LPC
is also given.

MgO NaCl LiF LiCl GaN

LDA 4.65 5.01 9.43 6.32 1.76
QSGW 8.69 9.44 16.19 10.19 3.54
QSGW+LPC-BM-6 7.99 8.80 14.87 9.52 3.31
QSGW+LPC-BM-8 8.20 8.99 15.32 9.71 3.50
QSGW+LPC 8.43 9.26 15.64 9.98 3.50
ZPM-Fröhlich −0.26 −0.18 −0.55 −0.21 −0.04
ZPM-polaron −0.22 −0.17 −0.48 −0.17 −0.07
QSGW-LDA 4.04 4.43 6.76 3.87 1.78
% change LPC −6 −4 −8 −5 −2

QSGW-BMa 8.94 9.52 15.81 10.28
QSGW+LPC-BMa 7.71 8.37 13.69 9.05
ZPM-BMa −1.23 −1.15 −2.12 −1.23
Expt. gap 7.8 8.5 14.2 9.4 3.5±0.1

aFrom Botti and Marques [7].

polarization correction using Nmesh = 6 or 8. We note that the
QSGW results are well converged already with a 6 × 6 × 6
mesh, which differ from the 8 × 8 × 8 mesh by only 0.1 eV.
However, the LPC correction is then effectively applied
only to a smaller region and has less weight. Therefore
the corresponding QSGW+LPC-BM-8 gap is less reduced
than the QSGW+LPC-BM-6 one. We then extrapolate from
the qLP = (2π/a)(1/Nmesh) to qLP = 1/aP assuming linear
dependence. This is the result labeled QSGW+LPC. Finally,
the zero-point motion correction, due to the lattice-polarization
correction, labeled ZPM-Fröhlich in Table II is the difference
between the QSGW+LPC and QSGW gaps and should be
compared with the polaron effect given in Table I. Rounding
the values of �Eg of Table I to 0.01 eV, a more realistic
estimate of the uncertainty, we obtain the results in the row
labeled ZPM-polaron. We can see that the two estimates agree
with each other to within a few 0.01 eV. Comparing with the
gaps and gap reduction values given by Botti and Marques in
the next few rows, we see that their calculation significantly
overestimated the effect. This is primarily because they
used a 6 × 6 × 6 mesh but there are also differences in the
QSGW results themselves which result from their use of a
pseudopotential approximation and a plane wave basis set
compared to our all-electron and LMTO basis set. Finally,
we also give the experimental gaps.

We note that our QSGW gap for MgO is lower than that
of BM (8.94 eV) or Shishkin et al. [5] (9.16 eV) or Chen
and Pasquarello [6] (9.29 eV). We note that if we use a less
converged basis set (leaving out the higher energy 3s local
orbitals on O for example, we also find a higher gap). We
therefore caution that comparisons of the lattice-polarization
effect in GW between different methods should also keep in
mind that differences between all-electron and pseudopotential
methods as well as various convergence issues may play a role.

Our adjusted gaps still overestimate the experimental
gaps. This indicates that the electron-hole effects on the gap
reduction may be more important than the lattice polarization

correction. For MgO, the results of Shishkin et al. [5]
and Chen et al. [6] indicate effects of the order of 20%
of the QSGW-LDA gap correction. The underscreening in
the QSGW due to the lack of electron-hole interactions or
random phase approximation was noted before and for most
semiconductors amounts to about 20%. This has led to a
commonly used correction factor of 0.8� [37,38]. A universal
factor of 0.8 can be approximately justified because ε∞ is
uniformly underestimated by a factor of 0.8 in a wide range
of semiconductors. The results of Chen et al. [6] and Shishkin
[5] MgO, NaCl, and LiCl further support this. Our results
indicate a further reduction of this gap correction by the lattice
polarization by about 5%. The percentage reduction of the
QSGW -LDA gap correction due to the lattice polarization
effect is given in Table II and varies from 2% to 8%. Taken
together this would reduce the QSGW-LDA gap correction
by 25%. The zero-point motion correction of the gap in
MgO was previously estimated to be 0.15–0.19 eV for MgO
[13], but it is not clear whether this properly includes the
long-range Fröhlich contribution. Assuming it is not and
adding the present Fröhlich lattice polarization correction,
the total zero-point motion correction would then amount to
0.4 eV.
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FIG. 1. Band structure of MgO (top) and NaCl (bottom), the red
color for QSGW and blue dashed for QSGW+LPC with Nmesh = 8.
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One advantage of our modified BM approach is that in
principle it not only corrects the gap but the entire band
structure. Plotting the full band structures, as shown in Fig. 1
for two examples MgO and NaCl, and for Nmesh = 8 we find
that the effect amounts pretty much to a constant shift of the
conduction band once the valence bands are aligned. Using
the fixed mesh size may still somewhat overestimate the effect
on the gap as seen from Table II but nonetheless allows us
to estimate how it affects the rest of the band structure. This
constant shift is by no means guaranteed because it is not clear
immediately whether the same polaron length-scale estimates
of the required integration region of the q → 0 singularity qLP

applies also to other bands. Our calculation assumes that this
can be taken the same for all bands. At present we are not
aware of experimental evidence to test this result of a constant
shift.

V. CONCLUSIONS

In this paper we revisited the approach proposed by Botti
and Marques [7] to estimate the lattice polarization effect on
W in the GW method and hence on the band structure in ionic
materials. As pointed out by Giustino [15] the BM approach is
equivalent to the Fröhlich contribution to the Fan self-energy,
which has thus far only received limited attention in spite
of the large amount of work on electron-phonon coupling
renormalization of the band gaps of materials. This is primarily
due to the technical difficulties in calculating it, which require
a very fine k-space integration mesh.

We develop here a simplified approach which takes ad-
vantage of the fact that the Frölich interaction is dominant
in a small region around q = 0. The effective volume of q is
fixed by the polaron length scale aP = √

h̄/2ωLOm∗. With this
length scale for the Frölich interaction, and the LST relations at
W (q = 0), we can construct a simple description that modifies
W directly, which can be used both in GW calculations and
for higher order diagrams involving W , e.g., incorporation of
ladder diagrams via the Bethe-Salpeter equation [39], with
minimal cost.

We compared our results of the BM method with a simple
estimate based on directly integrating the Fröhlich electron-
phonon coupling singularity near the band gap and find that the
latter can also be estimated simply by setting the cutoff of the
singularity integral to the inverse polaron length. We note that
the present method allows us to estimate the gap correction to
at best a few 0.01 eV only because of the remaining uncertainty
in the polaron length aP . For a more refined treatment to meV
precision a full electron-phonon calculation of the band shifts
will be required and would allow adjusting aP to fit it.
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APPENDIX: DISCUSSION OF THE ω → 0 LIMIT

Here we address the issue of whether we need the ω

dependence of the LST factor. As far as the frequency
dependence is concerned, we can in principle include the
frequency dependent LST factor as given in Eq. (1) in the main
text. However, in evaluating � we then need to make sure the
extra pole due to the phonon is properly integrated over. The
method for calculating the energy integral in Eq. (2) in the main
text is described in detail in Sec. II F of Ref. [4]. It is done with a
contour integral mostly along the imaginary axis but including
pole contributions from the energy bands along the real axis.
The inclusion of the lattice polarization effect through the LST
factor introduces poles in W (ω) close to ω = 0 in the energy
range of the phonons, more precisely at the ωLO frequencies.
We thus need to ensure that these do not lead to spurious
effects and are adequately integrated over. The behavior of W

near ω → 0 along the imaginary axis is already taken care
of especially in Ref. [4]. The band structure poles, however,
lead to a contribution Wc(ω − εk−qn). These are tabulated on
an ω mesh along the real axis for later interpolation of �(ω)
to the values required. For example, in the QSGW , method
one needs [�nm(εkm) + �nm(εkn)]/2. Thus this mesh must be
chosen fine enough so that adequate interpolation is possible if
ω − εkn ≈ 0 for some energy band. Unphysical values would
result if this energy band is close to the pole. One may avoid
a divergence by adding a small imaginary part to the ω and
using a fine mesh in the region of the phonons. However, for
a reasonable ω-mesh spacing for the electronic part of Wc, all
except the first point ω = 0 are usually well above the phonon
frequencies where the LST factor goes to 1. Thus, we may also
only correct the ω = 0 mesh point where the correction factor
is simply

∏
m ω2

LOm/ω2
TOm. We have tested both approaches

and found that they give the same result for the final band gap.
In fact, intuitively, one does not expect the detailed behavior
near each phonon to have a specific effect. Such an effect would
occur whenever some energy band difference εkn − εk−qn′ is
close to an LO phonon energy and leads to an almost divergent
contribution Wc(ωLO). This means that the ω dependence of
the LST factor, which is one of the distinguishing features of
BM compared to the previous work of Bechstedt [8] who only
applied the correction to the static part of �, is not as important
as one might guess at first sight and Bechstedt’s approach is
adequate, especially in view of the other approximations we
are already making and the overall goal to keep this approach
as simple as possible.

We compare results with different real dω mesh sizes for
MgO. This dω corresponds to the mesh spacing used in the
interpolation of �(ω) as mentioned earlier. From Table III
we see that for dω = 0.0002 Ry the band gap is 8.06 eV
which is very close to the value when we use a large mesh
spacing dω = 0.02 Ry. So, either we pick the mesh so fine the

TABLE III. The band gap (in eV) in MgO as function of dω (in
Rydberg), the mesh size along the real frequency axis used in the
calculation of �.

dω 0.0002 0.0005 0.004 0.01 0.02
Eg 8.06 7.95 7.89 8.12 8.08
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phonon region is integrated and interpolated over correctly, or
we pick it big enough so we just skip over it and effectively
only include the correction at the first ω = 0 point. However,
for intermediate values of dω, the gap seems to vary in a
somewhat uncontrolled way. This results from the difficulty
of interpolating the rapidly varying LST correction factor of
Eq. (1) in the region near the phonon frequency. It is clear
that the latter goes through an asymptote at ωT , or its inverse
goes through an asymptote at ωL. Thus the value can rapidly
change from positive to negative and unreliable results are

obtained if the integration mesh samples just a few random
points on this curve. In fact, note that the ωT ≈ 0.003 Ry. In
this case of MgO and hence dω = 0.0002 is sufficiently fine
compared to ωT and dω = 0.02 is sufficiently large to just
skip over the whole range, while dω ≈ 0.004 is troublesome.
We conclude from this that correcting only the ω = 0 value
is more efficient and sufficiently accurate. Similar results are
obtained for NaCl. However in that case, the relevant phonon
frequencies are significantly smaller and hence an even finer
and ultimately, unpractical mesh would be required.
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