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Fermionic correlations as metric distances: A useful tool for materials science
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We introduce a rigorous, physically appealing, and practical way to measure distances between exchange-only
correlations of interacting many-electron systems, which works regardless of their size and inhomogeneity. We
show that this distance captures fundamental physical features such as the periodicity of atomic elements, and
that it can be used to effectively and efficiently analyze the performance of density functional approximations.
We suggest that this metric can find useful applications in high-throughput materials design.
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I. INTRODUCTION

The discovery of innovative materials and engineering
devices with targeted properties involves substantial exper-
imental and theoretical efforts. Their progress ultimately
relies on our understanding of the physics at the nanoscale.
Atomistically, the possible constituents and their combinations
are vast. One can often focus on the state of electrons within the
Born-Oppenheimer approximation; however, a too direct com-
putational approach is in general unpractical because of the
presence of many degrees of freedom and the fact that these are
interrelated in a nontrivial fashion. Density functional theory
(DFT) proposes an alternative by transforming the problem of
determining interacting many-body system properties into the
solution of the Kohn-Sham (KS) equations, which only involve
auxiliary noninteracting particles [1–3]. Practically, the KS
approach relies on the possibility of devising approximate
forms for the exchange-correlation (xc) energy—a functional
of the particle density. This functional embodies the effects
of many-body correlations due to the intrinsic antisymmetry
of the many-electron state and to the electrostatic electron-
electron repulsions; it also accounts for the auxiliary KS
system being noninteracting. Within this context, we wish to
expose the usefulness of introducing metric spaces to analyze
many-body correlations—when the protocol to define these
spaces is both rigorous and based on quantities with a deep
physical meaning.

There is an increasing interest in the use of metrics to
explore quantum mechanical systems [4–10], and appropriate
(“natural”) metrics for particle densities, wave functions, and
external potentials [4,7] already shed light on (previously un-
known) features of the mappings at the base of the Hohenberg-
Kohn theorem, the cornerstone of DFT. Among the ultimate
goals of DFT applications is the determination of properties
such as total energies, ionization potentials, electron affinities,
the fundamental gaps, and lattice distances of crystalline
structures. All these quantities can be computed accurately
only if the relevant two-body correlations are properly captured
by the underlying approximations. The xc energy, at the core
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of the KS DFT approach, can be expressed in terms of the
aforementioned two-body correlations by means of the xc-hole
function as defined in the so-called adiabatic coupling-constant
integration [1–3]. Furthermore, the xc hole can be split into a
correlation (c) and an exchange (x) component. Here, we focus
on an exchange-only analysis of this quantity (more details
follow below), which is useful for dealing with relatively
weakly correlated systems’ ground states. First, we will
introduce a “natural” distance for the x hole and show that it
captures fundamental physical features such as the periodicity
of atomic elements; afterwards we will also demonstrate
that it can be used to effectively and efficiently analyze the
performance of density functional approximations.

II. METRIC SPACE DESCRIPTION OF
EXCHANGE HOLES

Let us briefly remind the reader of a few fundamental
definitions [11]. The exchange hole (x hole) has an expression

nX(r,r′) = −
∑

σ |γσ (r,r′)|2
n(r)

, (1)

which can be evaluated once the KS one-body reduced density
matrix (1BRDM)

γσ (r,r′) =
∑

k

fkσψkσ (r)ψ∗
kσ (r′) (2)

is known. This, in turn, only requires the knowledge of
the occupied single-particle orbitals ψk,σ (r). Here, fkσ are
occupation numbers and σ is the z projection of the spin index
[12]. At the denominator of Eq. (1), the particle density is
determined from the trace n(r) = ∑

σ γσ (r,r). Note that the
calculation of the x energy, EX, can be based on the knowledge
of the system-averaged x hole, 〈nX〉, as follows:

EX = 2π

∫ ∞

0
udu〈nX〉(u), (3)

where

〈nX〉(u) :=
∫

drn(r)nX(r,u), (4)

with

nX(r,u) := 1

4π

∫
d�unX(r,r + u) (5)

2475-9953/2017/1(4)/043801(5) 043801-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevMaterials.1.043801


SIMONE MAROCCHI, STEFANO PITTALIS, AND IRENE D’AMICO PHYSICAL REVIEW MATERIALS 1, 043801 (2017)

being the spherical average of the x hole, and �u being the solid
angle defined by u around r. Therefore, practical calculations
in DFT can be enabled by providing approximations for
〈nX〉(u). Sensible approximations must satisfy important exact
conditions. In this respect, it is well known that the property∫ ∞

0
4πu2du〈nX〉(u) = −N (6)

together with the pointwise negativity condition are of outmost
importance. These two properties can be combined, giving
raise to the constraint∫ ∞

0
4πu2du|〈nX〉(u)| = N. (7)

Crucially, through Eq. (7) and by following the protocol for
deriving natural metrics of Ref. [5], these same conditions
allow us to define the natural distance between two given
system-averaged x-hole functions,

DX

[〈
n(1)

X

〉
,
〈
n(2)

X

〉]
:= 4π

∫ ∞

0
u2du

∣∣〈n(1)
X

〉
(u) − 〈

n(2)
X

〉
(u)

∣∣. (8)

Equation (8) is the key result of the present work. We
emphasize that the same exact conditions that are essential
to explain surprisingly good performance of even very rough
DFT approximations allow us to introduce a rigorous metric:
we expect then this metric to capture the essential physics of
exchange-only correlations.

Equation (8) summarizes the difference between the
exchange-only correlations of two many-body systems into a
single number. While differences of exchange energies could
be thought too as “single numbers” to estimate the difference
between the exchange in two systems, Eq. (8) not only
rigorously satisfies the mathematical properties of a distance
[13] but also enables a comparative analysis of the systems
that is far more detailed than the claim that they have the same
exchange energy—the examples illustrated below will provide
a vivid illustration of this point. By the metrics’ axioms,
Dx = 0 if and only if the two systems considered have the same
system-averaged x hole (modulo irrelevant differences over
sets of vanishing measure). For nonvanishing distances, Eq. (8)
implies a well-defined maximum, given by the sum of the two
systems’ particle numbers. This can be evinced from Eqs. (8)
and (7) by considering two systems of particle numbers N1

and N2 for which the system-averaged x holes do not overlap:
in this case, DX = N1 + N2. Because the system-averaged
x holes have a definite sign, this also corresponds to the
maximum distance between the two systems. This property
implies that the x-hole distance between two systems gives
us a nonarbitrary “absolute” measure of their closeness, as
their distance can be recast in terms of a percentage of their
maximum possible distance.

Furthermore, Eq. (8) implies a very effective geometrical
structure of the physical Fock space. Consider the application
of Eq. (8) to compute the distance between the exact system-
averaged x holes of two different systems. This distance
represents a measure of the difference of the exchange-only
correlations between two systems. A system with no particles
may be thought of as a point, say, at the center of the
Fock space. Because of Eq. (7), all the other systems will
be distributed at a fixed distance equal to the number of
particles in the systems. Thus, the overall Fock space can

be thought of as the union of disjoint “onionlike” shells:
systems with same number of particles are on the same shell;
systems whose external potentials differ only by a constant
are separated by a vanishing distance (i.e., they occupy the
same point) as the orbitals and therefore the 1BDM and
corresponding particle densities do not change. Exchange
holes and therefore their distances are unchanged if each
single-particle orbital is multiplied by the same constant phase.
This embodies the fact that both the Schrödinger equation
and the DFT framework are invariant under global gauge
transformations [14]. Systems will be on different shells if
they have different particle numbers: the distances acquire
minimum value (i.e., the absolute value of the difference of
the shell radii) if the systems “face each other,” and they
acquire maximum value (i.e., the sum of the shell radii) if
the systems are “on opposite poles” [15]. Of course, the
configurations which generate maximum and—for systems
on different shells—minimum distances are not unique.

Finally, let us consider the evaluation of Eq. (8) using
some approximate 〈nX〉. Since Eq. (7) must be fulfilled, proper
approximations preserve the mentioned onionlike structure of
the Fock space. Also the minimum and maximum distances are
unchanged, but the configurations at which these occur may
vary from the exact case. The errors due to the approximation
may be viewed as fictitious displacements of the systems from
their exact locations on the aforementioned shells. Having the
possibility to quantify these errors through a rigorously defined
distance that can also be visualized is, per se, very appealing.
In the rest of this paper, we will give explicit examples of how
powerful this approach can be.

III. NUMERICAL RESULTS

We start by considering a set of systems for which the exact
x holes can be calculated: we will discuss the exact results as
well as compare and contrast these with corresponding results
from DFT approximations. Here we shall consider popular
approximations for 〈nX〉: the local-density approximation
(LDA), the generalized gradient approximation (GGA), and
the meta-GGA (MGGA). The LDA takes as a reference the xc
energy densities of the homogeneous electron gas; GGA and
MGGA are nonempirical refinements which aim at capturing
the effects of system inhomogeneities—those neglected within
the LDA—while progressively satisfying a larger set of exact
conditions. LDA forms make use only of the particle density
n(r) as input; GGAs also use the reduced dimensionless
gradient, s(r) = |∇n(r)|/{2[3π2]

1/3
n(r)4/3}; n(r) and s(r), the

kinetic-energy density τ = ∑
kσ fkσ |∇ψkσ (r)|2, and, possibly,

the Laplacian of the particle density may be exploited in
MGGAs. MGGA forms are then considered to be the most
accurate approximations among these three. As representative
approximations for 〈nX〉, we choose the versions of the
Perdew-Wang LDA and of the Perdew-Burke-Ernzerhof GGA
by Ernzerhof and Perdew [16] and the version of the Tao-
Perdew-Staroverov-Scuseria MGGA by Constantin et al. [17].

Figure 1 shows the distances of the exact 〈nX〉 (solid line)
from a reference system chosen (arbitrarily) at Zref = 50 for
the isoelectronic heliumlike sequence [18]. Distances from the
reference system increase monotonically for both increasing
and decreasing values of Z. As the distance increases,
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FIG. 1. The x-hole distance Dx from the reference state Zref = 50
is plotted against the atomic number Z for the heliumlike ion series.
The exact results correspond to the solid lines, LDA to the dashed
lines, GGA to the dash-dotted lines, and MGGA to the dash-double-
dotted lines.

the spatial overlap of the related system-averaged x holes
decreases. The system-averaged x holes 〈nX(u)〉 describe the
system-averaged electron depletion observed at separation u

from a reference electron due to the effect of electron-electron
exchange, so an increasing distance Dx implies systems with
an increasingly different spatial exchange pattern. When there
is no overlap between these patterns, their distance saturates
at its maximum, which is Dmax

x = 4 for the set of systems of
Fig. 1. Next we check how the trend for the exact exchange of
heliumlike ions is reproduced by the approximations (dotted,
dashed, and dash-dotted lines, as labeled in Fig. 1). While the
qualitative general trend is mostly reproduced, we note that,
quantitatively, the fewer exact conditions an approximation
satisfies, the higher the inaccuracy, which in fact increases
as we move from MGGA to GGA to LDA. In particular,
LDA becomes unable to reproduce, even qualitatively, the
saturation to maximum distance, despite considering ion’s
nuclear charges as large as Z = 2000.

Distances can also be used to perform “point-by-point”
exact-to-approximated comparisons, by directly computing
the distance between exact and approximated exchange for
each system. Figure 2 shows the distances of approximated

FIG. 2. The x-hole distance Dx is plotted against the atomic
number Z for the heliumlike ion series. For each Z, the distance
is calculated between the exact x hole and several approximated x
holes (LDA, GGA, and MGGA), as labeled. The black dashed line
represents 10% percent of the maximum distance from the exact x
hole.

〈nX〉 from the corresponding exact quantity for each ion
in the isoelectronic heliumlike sequence. As the electrons
get strongly confined around the nucleus, the effect of the
electron-electron interaction becomes negligible with respect
to an external potential which increases linearly with Z. In
this way, the noninteracting limit of an infinitely charged
ion is approached. Interestingly, errors with respect to the
exact results quickly saturate at a finite constant. For LDA
and GGA, these errors may be mainly related to spurious
self-interactions. Notably, although the considered MGGA
gives rather accurate x energies for two-electron systems, it is
obvious that a sizable error still persists at the level of 〈nX〉. Im-
portantly, the use of natural metrics allows us to quantify what
we mean by “sizable,” by expressing the error as a percentage
of the maximum distance. In the case at hand then, a 10% error
threshold would correspond to Dx = 0.4 (dashed black line).
We can then assert that for the heliumlike ion series, both GGA
and MGGA always provide results which are closer than 10%
to the exact ones (about 7.8% for GGA and between 4.0% and
3.0% for MGGA), while LDA estimates, at about 24.0% of
Dmax

x , are always well above the chosen error threshold.
Consistent with the general expectation, both in Fig. 2

and Fig. 1, the GGA performs in between the MGGA and
LDA; however, our method and results show in an immediate
and appealing visual way how substantial is the improvement
obtained in going from an LDA to a GGA. The improvement
of the MGGA over the GGA is not as large as from LDA to
GGA, but still significant.

For DFT practitioners, it is important to clarify under which
circumstances numerically “cheaper” approximations could
be used in place of more accurate but computationally more
involved approaches. Toward this goal, in the rest of this paper,
we show how the metric for the x hole can be used to efficiently
compare the performance of different DFT approximations on
large sets of systems. In the process, we will also show how
Dx can be used to capture and compare physical trends within
a large set of systems.

First we focus on physical trends within a set of systems,
and so we consider distances between x holes of different
systems calculated using the same approximation. Figure 3
shows distances between neutral atoms with atomic numbers
Z and Z − 1. Moving along the rows of the periodic table, the
periodicity is well reflected in the behaviors of Dx for MGGA
(solid line), the most accurate approximation considered here.
For example, the curves characteristically peak when consider-
ing the distance between the x holes of the last atom of one row
and the first of the next (as labeled in Fig. 3). This behavior
follows from the sharp change of the corresponding atomic
sizes. The MGGA curves also display characteristic minima
at every start of double occupancy in spin of the p shells: as
the fourth p electron is introduced, the atomic radius does not
change significantly. This implies that the x-hole distance from
the previous atom sharply decreases. Significant deviations
are observed for LDA results for atoms in the first two rows.
We explain this by noting that self-interaction errors become
larger in small systems, and electrons of light elements tend to
behave rather differently from the electrons in a homogenous
gas. GGA improves over this by accounting better for density
inhomogeneity, but it is still quite poor for the smaller Z values.
For larger values of Z, the trends of LDA and GGA looks
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FIG. 3. The x-hole distance Dx between atoms with atomic
numbers Z and Z − 1 is plotted against Z for the s and p blocks
of the periodic table. The distances are calculated for LDA, GGA,
and MGGA, as labeled. The distances between the end and the
beginning of consecutive periods are explicitly labeled with the
corresponding atoms. All the input Kohn-Sham quantities have been
obtained using the APE code [19]. We allow for spin polarization by
performing spin-DFT calculations [12]. We used logarithmic spaced
grids and cubic spline interpolation [20] to calculate the x-hole
distance between different atoms. All the densities and x-hole sum
rules were tested within 10−4.

qualitatively more similar to MGGA results, although, as Z in-
creases, maximum and minimum features related to the filling
of the p shells get displaced with respect to MGGA positions.

Next, we wish to show how distances can lead to direct
comparison between different approximations: here distances
are calculated between different approximations applied to
the same system, e.g., the same atom. In Fig. 4, we report
these distances for the noble gases. The first thing to notice is
that the distances among the various approximations decrease
substantially with increasing Z. This is related to the fact that
in all the considered approximations, the leading contribution
to the semiclassical expansion of the exchange energies is
provided through LDA [21]. The remaining differences can
be attributed to high-orders contributions, more related to
system inhomogeneities. Consistently, thus, the GGA and
MGGA results are closer to each other than to the LDA. We
can now define an error threshold to establish the parameter
region for which LDA and GGA would be a good-enough
cheaper substitute for MGGA. As our best results are already
approximated, we consider in this case a threshold of 5% of the
maximum possible distance, which corresponds in this case to
Dx/Z < 0.1 (black dashed line in Fig. 4). It is immediate to
see then that while LDA would be appropriate only for the
heaviest three, GGA would be a good choice for all noble
gases except helium.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a way to rigorously
and quantitatively compare exchange-only correlations of

FIG. 4. The x-holes distance Dx is plotted against the atomic
number Z for the noble gas series. The distances are calculated
between different approximations to the same x hole for all atoms,
as labeled, and are rescaled by the number of electrons. The black
dashed line marks 5% of the maximum possible distance. All the input
Kohn-Sham quantities have been obtained using the APE code [19].

different systems. We have given evidence that by the
use of a “natural” metrics, it is possible to effectively
and efficiently characterize exchange-only correlations in
many-electron systems. Our metric based on the exchange
hole could have important practical applications in evaluating
DFT approximations. For example, our results suggest that
among the available approximations for the system-averaged
exchange hole, the meta-GGA performs best and could be
used in evaluating distances for systems widely different in
size and level of inhomogeneity. Our x-hole metric could also
help guiding high-throughput materials design [22], e.g., for
searching in large configurational spaces or for validating
the reproducibility of a collaborative database of electronic
calculations, independently from the different methodology,
quantum package, or hardware used [23]. Natural metrics
such as this or the one for the particle density [4] might also
be used to ensure that newly developed functionals optimize,
together with the total energies, other key physical quantities,
helping revert the trend recently described in [24].
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