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Investigating gas-phase defect formation in late-stage solidification using
a novel phase-field crystal alloy model
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We study late-stage solidification and the associated formation of defects in alloy materials using a novel model
based on the phase-field-crystal technique. It is shown that our model successfully captures several important
physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid
cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage
and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification
can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by
gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence
of gas pockets in confined liquid pools.
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I. INTRODUCTION

Solidification of crystalline materials, particularly alloy
materials, has been a topic of both theoretical and practical
importance for many years [1,2]. Extensive works have been
dedicated to understanding solidification patterns and resulting
microstructures [3,4]. Near the end of solidification process,
the volume fraction of solidified dendritic network reaches
90% or greater. This late stage solidification happens in highly
confined interdendritic channels separated by solute-enriched
liquid pools [2,4]. It has long been known that the solidification
behavior at this late stage is associated with the formation of
defects and second phase particles. Gas-phase defects, such
as microporosity and hot tears in particular, form at this
stage and are imprinted into the final solidified microstructure.
However, our knowledge on late-stage solidification of low-
concentration alloys is still very limited despite of its strong
impact on final material properties [5].

In the classic picture of late-stage solidification, a partially
solidified region with a small liquid volume fraction is called
mushy zone and is typically seen as a semisolid [2]. Many
experimental and theoretical studies have been dedicated to
understand materials behavior in the mushy zone [6–11]. Since
there is typically a density difference between the solid and
the liquid melt, solidification in this confined environment
has been known to generate local pressure changes due to
shrinkage of the solid caused by density change. It has
been shown in experiments that the pressure induced from
solidification shrinkage may lead to porosity formation, hot
tearing failure, deformation of the dendritic network and
even recrystallization in solidified structure [12–15]. Niyama’s
criterion was developed to explain the formation of gas
porosity [16]. Rappaz, Drezet, and Gremaud (RDG) developed
a two-phase theory that takes into account both elastic and
plastic deformation of the solid confinement in the formation
of hot tears [17]. The nucleation of gas phase (or cavitation)
in those continuum based models is typically determined by
setting up a pressure threshold, which can be obtained from
atomic level models [18,19].

Another important phenomenon that happens at the late
stages of solidification is the precipitation of nonequilibrium
or second phases [20]. Continuous enrichment of the confined

liquid melts due to solute rejection at the solidification front
(commonly known as microsegregation) leads to the formation
of small secondary solid phases below the eutectic point [21–
23]. Materials strength can be strongly affected by the size
and distribution of those small particles [24,25]. Based on
local solute partitioning, the Gulliver-Scheil equation has been
widely used to explain the solute enrichment in eutectic liquid
at the late stage. It is noteworthy that the solidification of
secondary phases due to microsegregation and the formation of
gas-phase defects (gas porosity and hot tears) have mainly been
studied in separate contexts in most previous works despite of
the fact that they can be coupled at the small length scales
involved during the late stages of solidification.

While the classic solidification theory has been very
successful in predicting microstructures on the order of
microns and above, its fundamental length scale is tied to
the Mullins-Sekerka instability wavelength [1]. Since the
initial size of the confined interdendritic channels and isolated
liquid pools is usually associated with the primary and the
secondary dendrite arm spacing, which are manifestations of
the Mullins-Sekerka instability wavelength, the most relevant
length scale in the late stages of solidification is likely to be
smaller than the length scale of classic solidification theory.
On the other end, when the liquid channels are narrowed down
to the size that is comparable to the solid-liquid interface width
(on the order of 1 nm), theories based on interface disjoining
potentials have been developed recently to explain coalescence
and bridging of grains during the last stages of solidification
[5,26]. A comprehensive understanding of the solidification
behavior that occurs in a confined environment on the size of
10 nm up to a few microns is still largely missing.

To investigate late-stage solidification in confined volumes
and its associated phenomena involving gas-phase defect
formation and secondary solid phase formation, one requires
a model that is capable of capturing solute segregation,
solidification shrinkage, gas-phase nucleation, elastic and
potential plastic deformation in the solid under confinement
[27]. This seemingly daunting task has been made possible by
recent progress in the phase-field-crystal (PFC) methodology
[28,29]. Originally developed for solidification problems in
pure materials, the PFC model naturally incorporates elasticity
and lattice defects (dislocations and grain boundaries) in solid
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state [30]. Later works extended this modeling technique
to alloy materials [31], solid-state structural transformation
[32–34], and gas-phase nucleation [35]. Typical length scale
of PFC model is about 10–100 nm, which coincides with what
is required to investigate late-stage solidification process. This
method has been also used to study dendritic crystal growth,
which is the dominant form of solidification at low solid
volume fraction [29], and the effect of disjoining potential in
grain coalescence which is the very last stage of solidification
[36]. Studies of late-stage solidification using microscopic
continuum techniques have been lacking. Specifically, here
have been no systematic PFC studies of density change in
solidification, and until recently there were no PFC models
developed to incorporate gas-phase formation during solidifi-
cation. Moreover, traditional phase-field solidification models
typically preclude both these effects explicitly.

In this work, we formulate a novel PFC model that naturally
and self-consistently incorporates both solidification shrinkage
and gas phase nucleation, alongside the usual elasto-plastic
effects that the PFC paradigm is well known for. It is
shown that shrinkage induced pressure in the liquid near the
solidification front is reproduced. By considering gas-phase
formation, it is shown that the late-stage Gulliver-Scheil (GS)
type microsegregation behavior in the liquid can be modified.
As a result, we also demonstrate that the formation of gas
porosity can facilitate the nucleation and growth of second
phase particles in enriched liquid pools.

II. MODEL FORMULATION

A. Free energy functional

The PFC model developed for this work is a synthesis
of previous alloy and gas-phase models [31,34,35]. The
dimensionless free energy functional is formulated in terms
of a concentration filed c(r) and dimensionless PFC density
field n(r)= (ρ − ρ̄)/ρ̄, where ρ̄ is the reference fluid density
around which the free energy is expanded. Its form is

FPFC = Fideal + Fpair + FMP , (1)

where the expanded ideal part is given by

Fideal =
∫ [

ε
n(r)2

2
− W1

n(r)3

6
+ W2

n(r)4

12

]
dr, (2)

and ε, W1, and W2 are constants (defined below). The spatial
coordinate is scaled by the solid phase lattice constant. The
pair correlations terms are

Fpair = Fnn + Fnc + Fcc, (3)

where Fnn denotes density correlations, Fcc correlations in
concentration, and Fnc density-concentration correlations. The
above pair correlation contributions are written as in Ref. [34]

Fnn =
∫

n(r1)

{∫
[ξ (c)CAA(r1 − r2)

+ ξ (1 − c)CBB(r1 − r2)]n(r2)dr2

}
dr1, (4)

Fnc =
∫

ζ (c(r1)) n(r1)

[∫
χc(r1−r2) ζ (c(r2)) n(r2) dr2

]
dr1,

(5)

and

Fcc =
∫

α|∇c|2dr., (6)

where α is a constant. The contribution from multipoint
correlations is [35]

FMP =
4∑

m=3

1

m

∫
dr1...drmχm(r1,...,rm)n(r1)...n(rm). (7)

For the density pair correlation functions in Eq. (4), we
consider single peak approximations, i.e., CAA = Bx1(q2

1 +
∇2)2 and CBB = Bx2(q2

2 + ∇2)2, with q1 and q2 being the
first peak positions of the c = 0 and c = 1 structures,
respectively, in reciprocal space. Solid phase lattice pa-
rameter a is given by a = 4π/(

√
3q1). The function ξ is

smooth and interpolates between crystal structures depend-
ing on local concentration as in Ref. [34]. Assuming the
concentration field c changes slowly on the scale of the
atomically varying density n, Eq. (5) is approximated by
replacing c(r2) with c(r1) and choosing |ζ (c)|2 = u1

2 (c −
c0)2 + v1

4 (c − c0)4. The density-concentration pair correlation

is approximated by χc(k) = e− k2

2λc in reciprocal space. The
multipoint density correlations are chosen as in Ref. [35] to
be χ3 = (a1ε + b1)χ (r1 − r2)χ (r1 − r3) and χ4 = c1χ (r1 −
r2)χ (r1 − r3)χ (r1 − r4), with χ (k) = e− k2

2λ in reciprocal
space. The parameters λc, λ, a1, b1, and c1 are constants
used to set the thermodynamic properties of the alloy system.

B. Thermodynamic properties

Some basic thermodynamic properties of our PFC model
with the parameters used in this work are shown in Fig. 1.
Model parameter ε serves as a model temperature parameter
of our PFC model [30], while in Fig. 1, c and no refer
to the mean concentration and mean density, respectively.
Figure 1(a) is a typical eutectic phase diagram of a binary
alloy. Figure 1(b) shows that the uniform phase in this model
may have a coexistence region (the solid line) of a high density
phase (liquid phase) and a low density phase (vapor phase)
depending on model parameter ε. Figures 1(c) and 1(d) show
the density change associated with solidification in the α-liquid
and β-liquid coexistence region. It is noted that cavitation can
occur in one of two ways. One is a localized transition of
liquid (or solid) to vapour, leading to a gas-phase pocket. The
second is dissolved gas content. The demonstrated cavitation
thermodynamics in Fig. 1(b) can be adjusted to account for
dissolved gas content by changing the initial conditions and
density of the liquid to correspond to different dissolved gas
fractions. However, the current model does not incorporate
such dissolved gas concentration explicitly.

C. Dynamics

Dynamical evolution of n and c follow conserved varia-
tional dynamics given by

∂n

∂t
= ∇ ·

(
Mn∇ δF

δn

)
+ η, (8)
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FIG. 1. Basic thermodynamic properties of PFC model. Here c and no refer to mean concentration and mean density, respectively.
(a) Numerical phase diagram showing two solid phases α and β and a liquid phase L. (b) Demonstration of liquid→ liquid-vapour transition
in eutectic liquid (c = 0.5) with temperature (ε). This transition in a liquid is a path to cavitation of the liquid. (c) and (d) Demonstration of
α-liquid (c) and β-liquid (d) coexistence region at a given concentration, where solid and liquid state free energies are shown with dashed
and solid lines, respectively. Model parameters used in this work are W1 = 1.3, W2 = 0.6, α = 8.0, Bx1 = 0.3, Bx2 = 0.9, q1 = √

2, q2 = 1,
u1 = 6.0, v1 = 3.0, c0 = 0.5, a1 = 43, b1 = −30, c1 = 90, and λ = λc = 0.04.

for density field and

(1 + n̄)
∂c

∂t
= ∇ ·

[
(1 + n̄)Mc∇ δF

δc

]
, (9)

for the concentration field, with corresponding mobility
Mn and Mc. Here, n̄(r) = ∫

n(r ′)χ (r − r ′)dr ′ is the locally
averaged spatial density and the stochastic noise η sat-
isfies the fluctuation-dissipation theorem 〈η(r,t),η(r′,t ′)〉 =
−2(Mn/ρ̄ad )∇2δ(r − r′)δ(t − t ′), where ρ̄ is the reference
density about which the PFC model is expanded. Equation
(9) approximates c dynamics by weighting changes in solute
concentration and flux by the local average density since c is
not in general a conserved field. This generalized concentration
dynamics for spatially inhomogeneous n̄ is reduced to the
classic concentration dynamics when n̄ is assumed to be
constant in the system as in previous PFC literature. It
has been shown that nucleation related critical fluctuations
are essentially on the interface length scale, therefore we
only included a noise term in the atomically resolved order
parameter field and ignored fluctuations in the slow varying
concentration field.

III. RESULTS AND DISCUSSIONS

A. Shrinkage pressure

An important phenomenon that arises at the late stage of
solidification is a pressure drop in a liquid pool confined by
a surrounding solid network. Since solidification shrinkage
happens at the solid-liquid interface, the local mass shortage
at the interface needs to be fed through liquid transport.

Under sharp interface conditions, this mass balance leads to
a liquid velocity normal to the solidification front given by
vln = β̄vn, where vn is the velocity of the solid-liquid front
and β̄ = (ρS − ρL)/ρL is the shrinkage factor [2], where ρS

is the solid density and ρL is the liquid density. Assuming
liquid flow in the small confined geometry is driven only by
a pressure gradient (Darcy’s law), the pressure drop in the
liquid at distance d from a large liquid reservoir is described
by an effective 1D equation �P (d) = β̄vn

∫ d

0 g(x)dx where
g(x) = μfl(x)/K(x), with μ the liquid viscosity, K the mushy
zone permeability, and fl the local liquid volume fraction. The
boundary condition fl(0) = f D

l where f D
l the upper limit of

the liquid fraction from which the Darcy type flow becomes
dominant. This is a quasi-one-dimensional model where the
effective material properties perpendicular to the interface
normal enters in the liquid fraction fl . It has also been extended
to incorporate elastic and plastic deformations due to solid
confinement [17]. It considers fluid flow due to density change
caused by shrinkage. While the PFC model does not allow
for fluid flow, we expect that it qualitatively captures pressure
change effects due to shrinkage in a narrow channel.

We examined shrinkage-induced pressure drop for so-
lidification in a typical geometry shown in the inset of
Fig. 2 using the PFC model formulated in Eqs. (1)–(9).
Simulations are performed in a 4096 by 512 grid box with
grid spacing �x = √

3π/(8q1) and �y = π/(4q1). Pressure
in the liquid is measured along the center line shown in the
inset of Fig. 2. The main part of Fig. 2 shows the model’s
predicted shrinkage-induced pressure drop through the liquid
channel. This maximum pressure change is found to
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FIG. 2. Pressure drop in liquid due to solidification shrinkage.
Pressure change is plotted along the horizontal line shown in the
inset as a function of position (x) in the liquid. x/a measures the
distance from reference liquid reservoir. The green vertical dashed
line indicates the position where fl = 0. In the inset, S refers to solid
and L to liquid. Numerical dimensions are given in the text. Other
model parameters are given in Fig. 1.

depend on both shrinkage factor β and solid interface
velocity vn in the simulation. This behavior is shown in
Fig. 3. It is noted that the relation between pressure drop
and solidification velocity (or shrinkage factor) in Fig. 3 is
monotonic but not necessarily linear as predicted by the classic

FIG. 3. (a) Peak pressure drop ahead of the interface as a function
of solidification velocity. (b) Pressure drop as a function of shrinkage
factor β̄. P0 is the liquid pressure far from the solid. The green dashed
lines are to guide the eye. Model parameters are given in Fig. 2.

FIG. 4. Solute segregation in eutectic liquid channel with (red
curve) and without (green curve) gas-phase formation in late-stage
solidification. The top left inset figure corresponds to the top
(green) data. The bottom right inset figure corresponds to the
bottom (red) data. The color fields in the inset figures show the
density configuration of the system corresponding to the highest
concentration of of each curve. Solid phase has the highest density
and is colored as bright yellow. Gas phase has the lowest density
and is colored as dark blue. Liquid is colored as dark yellow. Solid,
liquid, and gas phases are labeled using letters S, L, G, respectively.
The simulations start with fL = 0.06, cL = 0.15 and liquid density
ρL/ρS = 1.0 for the bottom line, ρL/ρS = 0.85 for the top line.
Cooling rate ε/t = 10−6. Solute concentration is averaged over the
liquid.

shrinkage model discussed above, which considers only pure
materials and fluid flow.

B. Segregation and gas-phase nucleation

Microsegregation of solute atoms into the last eutectic
liquid is another important phenomenon that could strongly
affect the properties of final solid since it is related to
precipitation of second phase particles. To increase the solid
volume fraction by dfs , the solidification process has to
reject solute (cl − cs)dfs with local liquid concentration cl

and solid concentration cs . The remaining liquid is then
enriched due to this rejected solute by dcl = (cl − cs)dfs/fl

assuming it is evenly redistributed within the liquid. With
fs + fl = 1, partition coefficient k = cs/cl and boundary
condition cl = c0 at fs = 0, the averaged concentration seg-
regation cL can be expressed as a function of the final solid
fraction fS ,

cL = c0(1 − fS)k−1, (10)

which is commonly known as the Gulliver-Scheil equation
[2]. It has been widely used to explain the formation of
high concentration nonequilibrium phases at the late stage
of solidification. However, Eq. (10) does not take into account
the effect of liquid pressure drop and gas phase nucleation
(cavitation), which can also happen at late-stage solidification
(or high solid volume fraction). A modification of Eq. (10) that
considers a gas-phase fraction fg can be written as

∫ cL

c∗
L

dcl

cl

= (1 − k)
∫ fS

f ∗
S

1

1 − fs − fg

dfs, (11)
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FIG. 5. Liquid cavitation promoting the nucleation and growth
of the high concentration solid phase. (a)–(d) are average density
maps. (a) Liquid pool confined in a low concentration solid α

phase. The solid and the liquid regions are marked by S and L,
respectively. (b) Cavitation of the liquid triggers the nucleation of
the high concentration solid β phase. (c) Subsequent growth of
the high concentration β solid and associated deformation of the
remaining gas pocket. (d) A second nucleation event occurs to the
left of the gas pocket toward the end of the simulation sequence.
(e) Solute concentration map of (d). The color bar to the right
shows the concentration scale. (f) Microscopic PFC order parameter
(density) field showing different solid structures for the triple-phase
region in the inset box of frame (d). Small dark dots in the solid
seen in (b)–(d) are dislocations formed during solidification. The
starting configuration is a separate liquid pool of size R = 30a with
ρL/ρS = 0.85, cL = 0.3, and cS = 0.07. The system is quenched
below eutectic point (ε = 0.2)

where c∗
L and f ∗

S are corresponding liquid concentration and
solid fraction before gas-phase nucleation. Since the rejected
solute has to be distributed within a smaller liquid volume,
Eq. (11) predicts a potentially higher liquid concentration
for the same solid volume fraction at the late stage of
solidification. Numerical results using our PFC model predict
precisely such a behavior. We simulated solidification of a
nanoscale liquid channel enclosed by two solid slabs for two
cases, one where the channel remains liquid and the other

where the liquid film partially transforms into gas phase.
As shown in Fig. 4, the case where liquid cavitation occurs
leads to a higher concentration of the surrounding liquid.
The simulation in Fig. 4 is performed in a 16384 by 16 grid
where only one unit cell is contained in the y direction. It
is noted that the nucleation of gas phase demonstrated here is
primarily due to change of pressure and is relatively insensitive
to solute concentration. To our knowledge, this is the first
time this modified GS type mechanism is proposed by a
computational model. Such a relation may lead to interest-
ing phenomena, one of which is demonstrated in the next
section.

C. Coupled nucleation of gas-phase defects
and second phase formation

The interplay of segregation and gas-phase nucleation
demonstrated in Fig. 4 should be most significant in deeply
quenched liquid since the fast solidification rate is more likely
to generate large pressure drop that leads to cavitation. A rele-
vant two-dimensional scenario wherein a small confined liquid
pool is quenched below the eutectic point was investigated
using our PFC model. The results are shown in Fig. 5 and
reveal an interesting phenomenon where the pressure change
leading to liquid cavitation promotes the nucleation and growth
of the second phase solid, in this case β phase. Details of this
phenomenon are described in the figure caption. Another inter-
esting phenomenon that we found accompanies this process is
the growth and subsequent migration of dislocations near the
solid liquid interface. We will study the source and migration
of these defects during solidification in a future study as it
goes beyond the scope of this paper, which aims to introduce a
new modeling tool for materials processes. To our knowledge,
this mechanism of second phase solid nucleation facilitated
by gas-phase formation has not been previously reported in
literature.

IV. CONCLUSION

In summary, by incorporating density differences in a
multiphase alloy system, a novel PFC model is developed
to investigate defect formation in the late stages of rapid
solidification. It is shown that this formalism is capable of
capturing the physics of solidification shrinkage, gas-phase
nucleation, microsegregation, elastic and plastic deformation,
all of which are relavent to late-stage solidification. We
revealed, for the first time to our knowledge, an interesting
interplay of microsegregation and gas phase nucleation at the
late stage of solidification that can lead to second-phase solid
formation near gas-phase defects. Although the noise-induced
nucleation mechanism is only qualitatively incorporated in the
current model, it is not crucial to the main results presented
here, and we fully expect these to also occur under a more
realistic form PFC noise added to the dynamical equations.
In this work, since both the modified GS relation in Fig. 4
and the second solid nucleation in Fig. 5 are only affected
by gas-phase fraction and pressure change, the nucleation of
the second phase solid is qualitatively expected to occur due
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to enhanced solute enrichment. The PFC model developed in
this work is expected to be easily generalized to study the
combined effect of segregation and defect nucleation in other
multiphase systems.
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