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Predictive modeling of nanoscale domain morphology in solution-processed organic thin films
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The electronic and optoelectronic properties of molecular semiconductor thin films are directly linked to their
extrinsic nanoscale structural characteristics such as domain size and spatial distributions. In films prepared
by common solution-phase deposition techniques such as spin casting and solvent-based printing, morphology
is governed by a complex interrelated set of thermodynamic and kinetic factors that classical models fail to
adequately capture, leaving them unable to provide much insight, let alone predictive design guidance for
tailoring films with specific nanostructural characteristics. Here we introduce a comprehensive treatment of
solution-based film formation enabling quantitative prediction of domain formation rates, coverage, and spacing
statistics based on a small number of experimentally measureable parameters. The model combines a mean-field
rate equation treatment of monomer aggregation kinetics with classical nucleation theory and a supersaturation-
dependent critical nucleus size to solve for the quasi-two-dimensional temporally and spatially varying monomer
concentration, nucleation rate, and other properties. Excellent agreement is observed with measured nucleation
densities and interdomain radial distribution functions in polycrystalline tetracene films. Numerical solutions
lead to a set of general design rules enabling predictive morphological control in solution-processed molecular
crystalline films.
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I. INTRODUCTION

Solution-processed polycrystalline molecular films are in-
creasingly used as active layers in electronic and optoelectronic
device applications such as flexible integrated circuits, dis-
plays, photovoltaics, actuators, and sensor arrays [1–12]. For
these and related applications, optimizing device performance
requires careful control over the morphology, size, spatial
positioning, and other nanoscale growth characteristics of
crystalline domains, which strongly influence charge carrier
mobility, trap densities, optical scattering, and other active
layer electronic properties [13–22]. In films prepared by
spin casting, dip coating, stamping, and related methods,
crystallization is typically induced by solvent evaporation,
which is used to drive the concentration of dissolved molecular
monomers above a critical level, nucleating a film of crystalline
precipitates. Under these conditions nucleation is influenced
by a combination of interrelated thermodynamic and kinetic
factors, including the rate of solvent loss, monomer diffusivity,
and the size and monomer concentration dependence of the
free-energy barrier to nucleus formation. Classical models
treating crystal formation in bulk solution or on bare surfaces
in vacuum-deposited films are unable to adequately capture
these phenomena, and the current theoretical understanding of
crystallization in solution-deposited films is unable to provide
much insight, let alone predictive design guidance for tailoring
films with specific nanostructural properties [23]. For example,
even basic morphological characteristics of solution-processed
films, such as the number of crystals nucleated per unit area,
their spacing statistics, or size distribution, are generally not
possible to predict for a given set of materials and conditions,
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but rather must be determined on the basis of trial-and-error
experimentation. This represents a major barrier to rational
design and selection of new molecular thin-film materials,
processing conditions, and applications based on them.

Here we introduce a model for molecular crystallization
applicable to solution-processed molecular films enabling
quantitative prediction of the time- and chemical potential
driving rate-dependent crystal coverage and intercrystalline
spacing statistics. Based on a small number of experimentally
measureable parameters, we show that the model produces
good agreement with observed nucleation densities and inter-
domain separation radial distribution functions and leads to
a set of general design rules useful for guiding the selection
of experimental conditions. Our treatment combines mean-
field rate equation (MFRE) and competitive diffusion models
constructed around a modified version of the classic Walton
relation [24] for the nucleation free energy, as well as a
concentration-dependent critical nucleus size. The approach
can be considered as an adaptation of well-established pre-
dictive models, originally developed to treat submonolayer
island formation by vacuum deposition [e.g., physical vapor
deposition (PVD)], translated to the solution environment.
Such an adaptation is possible because vacuum and solution
thin-film growth involve fundamentally the same underlying
phenomena, namely, a driven time-dependent increase in
the monomer supersaturation to induce crystallization, quasi-
two-dimensional (2D) growth environments, and dynamic
competition for monomers between nucleation and growth.
Hence, they should be amenable to treatment by a similar set
of principles. The main difference is that the critical nucleus
size in solution tends to be much larger than in vacuum and
is moreover strongly dependent on monomer concentration,
which is itself a dynamic (both spatially and temporally
varying) quantity. We account for this by incorporating
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corrections to the Walton relation accounting for the su-
persaturated liquid environment and implementation of a
straightforward numerical scheme in the solution of the
MFREs enabling on-the-fly computation of the critical nucleus
size. The model is shown to provide an accurate description of
solution-deposited tetracene (TET) films, including quantita-
tive agreement with the measured induction time, nucleation
rate, number of crystals formed per unit substrate area, and
their spacing statistics. The resulting findings represent a
step toward the development of the first generally applicable,
predictive model of nanoscale domain morphology in solution-
processed molecular crystalline films.

II. MODELING THE NUCLEATION RATE

We begin by considering the time evolution of the number
of crystals formed per unit volume of solution (crystal density
N ) as the monomer chemical potential μ1(t) is driven toward
and ultimately beyond a critical level inducing crystallization.
Here N (t) is a central quantity governing film structure; it
determines the average domain size at high coverage (∼1 ML)
and is connected to the crystal size distribution and spacing
statistics at all coverages. The method for driving μ1(t) may
vary depending on the experimental details, via including
solvent evaporation, a reduction in temperature of a saturated
solvent, or introduction of an antisolvent. Here we explicitly
consider the situation where μ1(t) is driven via the continual
addition of new monomers to a quasi-2D liquid solvent layer
having fixed volume, temperature, and pressure. This is the
situation represented by our experimental system, in which
fresh monomers are continually and uniformly added to a thin
liquid solvent layer coating a glass substrate at a constant
flux rate F (monomers μm−3 s−1). New monomers are carried
by a gas flow impinging on the surface of the solvent layer,
which undergoes negligible evaporation due to its low vapor
pressure. Once a monomer impinges on and dissolves into the
solvent it is assumed to be irreversibly trapped in the liquid.
It is important to note that, within the context of our model,
at an early stage of film formation this method of driving
μ1(t) is functionally equivalent to evaporating solvent from a
saturated solution at a fixed rate; here monomers are added
to a fixed initial solvent volume, rather than fixing the initial
number of monomers and decreasing the volume. We choose
this organic vapor-liquid-solid deposition method because it
enables greater experimental control over the driving rate
dμ1(t)/dt , it produces large high-quality crystallites suitable
for device applications, and it enables growth of molecular
films from compounds of even very low solubility [25].

Crystal formation and the addition and loss of monomers
to/from solution can be treated using a set of coupled mean-
field rate equations governing the concentrations of monomers
n and crystals N [26]:

dn

dt
= F − KP (i∗,n)n − KnN, (1a)

dN

dt
= KP (i∗,n)n. (1b)

Here K (m3 s−1) is a collision/capture kernel for the rate
of uptake of monomers by crystals and P (i∗,n) is the concen-

tration of aggregates of size i∗ at concentration n, where i∗ is
one monomer less than the critical nucleus size. We model the
collision kernel with a Smoluchowski function for diffusion-
limited coalescence of spherical particles with diffusivity
D : K = γ 4π (a + ai∗

1
3 )(D + Di∗− 1

3 ) ≈ γ 4πai∗
1
3 D, where

γ is a unitless parameter used to correct for microscopic
processes that have been omitted from the full kernel, such
as the effects of attractive or repulsive intermolecular forces
on the aggregation rate [27], and a is the radius of a TET
molecule. We derive the function P (i∗,n) from the free-energy
change for the formation of aggregates of size i∗ in the solvent,
which is given by [28,29]

�Gi(n) = −(i − 1)kT ln(n/n0) + 4πσa2(i
2
3 − 1). (2)

The concentration of critical clusters P (i∗,n) =
n exp[−�G∗

i

kT
] is then

P (i∗,n) = n

(
n

n0

)i∗−1

exp

[−4πσa2(i∗
2
3 − 1)

kT

]
, (3)

where n0 is the equilibrium saturation value of monomers in the
solvent, σ is the solid-liquid interfacial energy associated with
the formation of the cluster, k is the Boltzmann constant, and T

is the solvent temperature. Because temperature is held fixed
in our experiment, we omit the temperature dependence of n0

and D. In our treatment we consider only two cluster sizes,
monomers and stable crystals, combining all other cluster
sizes into these binary categories. This approach is consistent
with dividing the complete (infinite set of) rate equations for
clusters of all sizes into subcritical (assumed to be dominated
by monomers) and stable sizes and summing over the stable
crystals to create a net stable density [30,31]. The units in
Eqs. (1) are in volumetric flux, i.e., number per volume per
time.

A key feature of this formulation, necessary for the accurate
description of crystallization in solution, is that i∗ is a function
of the monomer concentration [26]. In classic MFRE models
treating submonolayer island nucleation in films prepared
by PVD, i∗ is always assumed constant, independent of
the adatom coverage. This approximation is possible when
i∗ is small (�∼5), as is normally the case in vacuum
nucleation. However, for molecular crystallization in a liquid
solvent, where i∗ is much larger (�10, discussed below), the
assumption i∗ = const is no longer adequate. Treating the
critical size i∗(t) as a dynamical variable thus distinguishes
the present treatment from classic MFRE models of submono-
layer island formation in vacuum-deposited films and turns out
to be a necessary ingredient to describe nucleation behavior
in the liquid environment. Here i∗(t) is derived assuming
homogeneous nucleation using classical nucleation theory
(CNT) based on the free energy of formation of spherical
clusters of size i∗ at (supersaturated) concentration n, which
gives [26,32]

i∗(n) =
(

8πσa2

3kT ln
(

n
n0

))3

. (4)

We note that more sophisticated and potentially more ac-
curate expressions for i∗(n) are available using contemporary
theories of nucleation [33], but for the sake of simplicity and
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FIG. 1. (a) Schematic of the deposition apparatus. The com-
ponents are housed inside a sealed nitrogen-filled chamber. TET
vapor produced in a heated crucible is carried to a squalane-coated
ITO-glass substrate by a stream of gas exiting through a tapered
nozzle, impinging with axisymmetric stagnation point flow resulting
in uniform deposition over a 1-cm2 area. The substrate temperature is
held fixed by a thermoelectric element. Film growth is monitored in
situ via fluorescence videomicroscopy through a viewport in the lid.
(b) Epifluorescence micrograph showing a representative TET film.
The scale bar is 100 µm. (c) Chemical structures of squalane and
tetracene.

because the present approach already provides good agreement
with experiment, here we use CNT to describe the critical
nucleus size and its dependence on supersaturation n/n0.

Before continuing further with the development of the
model, we first examine how well Eqs. (1) agree with exper-
iment. To do so, we studied crystallization of submonolayer
2,3-benzanthracene (TET) films in a thin layer of the organic
solvent squalane (2,6,10,15,19,23-hexamethyltetracosane) ap-
plied to an indium-tin-oxide (ITO)–glass substrate whose
temperature was controlled by a thermoelectric element. As
noted above, rather than driving μ1(t) by solvent evaporation,
instead monomers are continually delivered to the liquid layer
from the gas phase, carried by an impinging laminar stream of
high-purity nitrogen gas containing tetracene vapor generated
in a heated crucible. This results in a well-controlled and
spatially uniform driving force for crystallization, the rate
of which can be varied by changing the flux [Fig. 1(a)].
The flux rate is computed from the induction time (i.e., the
lag between the onset of deposition and first appearance of
crystals), based on knowledge of the solvent layer thickness
and critical supersaturation concentration (details are given in
[34]). We chose this method for driving μ1(t) for the higher
degree of control it affords over the driving rate d[μ1(t)]/dt

and because the liquid layer thickness and temperature remain
constant, simplifying the analysis.

Once the concentration of TET becomes high enough,
small crystals nucleate in the solvent, adopting stationary
positions as a result of pinning capillary forces. This gives
each crystal a well-defined and fixed separation from its neigh-
bors. Nucleation was monitored in situ by epifluorescence
videomicroscopy, enabling detection of crystallites as small

as ∼1 μm2 in area [Fig. 1(b) and Fig. S1 in [34]]. Videos
were then analyzed to determine the nucleation coordinates
and time of formation of each crystal for a range of flux rates
at a single temperature. Though rare, very small crystals were
occasionally observed to be mobile in the liquid, consistent
with (though not proof of) the assumption of homogeneous
nucleation made in the development of the model above.

Because the solvent layer was very thin, the time
scale for mixing throughout the thickness of the liquid
τmix = dsD

−1/2 ∼ 10−2 s is essentially instantaneous on the
time scale of the experiment, which lasts ∼102 s. Here
ds = 100 nm is the solvent thickness measured by ellipsometry
and D ≈ kT /6πηa is the diffusivity of TET in squalane (k is
Boltzmann’s constant, T = 60 ◦C is the substrate temperature,
η = 7.87 mPa s is the viscosity [35], and a = 4.09 × 10−10 m
is the molecular radius of TET [36]). Note that, since ds/a �
1, the contribution of the solid substrate to the Stokes drag
in these thin films is negligible, leading to bulklike isotropic
Brownian diffusion [37]. The solvent layer thickness was
also much less than the separation between crystals. The
concentration can thus be considered essentially uniform
throughout the thickness of the solvent, though spatially
varying within the substrate plane, as discussed below.

A representative epifluorescence micrograph showing a
typical film is presented in Fig. 1(b). Tetracene crystals
are visible as bright rod-shaped features. X-ray-diffraction
measurements performed on films after solvent removal agreed
with TET’s reported crystal structure and showed random
in-plane but uniform out-of-plane alignment, with the (001)
crystal plane parallel to the ITO substrate (Fig. S2 in [34]).
High-resolution polarized optical microscopy images indicate
the majority are single crystals, undergoing uniform extinction
upon sample rotation when viewed between crossed polarizers
(Fig. S3 in [34]). Crystals grow with thin prismatic mor-
phologies, reaching an eventual size of 10–100 µm in length
and 100–150 nm in thickness as measured by atomic force
microscopy, about equal to the thickness of the liquid solvent
layer. The observed growth habit is much less compact than the
predicted equilibrium barrel morphology and more elongated
than the predicted growth morphology, which is platelike,
based on shape simulations from molecular binding energies
[38–40]. Films prepared at significantly lower flux rates than
those reported here included a higher proportion of crystals
with platelike morphologies, suggesting that the elongated
shape is kinetically influenced. The (001) form dominates all
others, comprising ∼97% of total crystal surface area. Growth
of this form is very slow and limited to dislocations except at
very high driving forces [39].

We are interested in comparing the time evolution of the
experimentally measured nucleation rate dN/dt and crystal
density N (t) to Eqs. (1). Each is readily determined simply
by counting the number of crystals in each video frame.
The results are shown in Fig. 2 for films prepared using
several different flux rates, where the origin on the time axis
corresponds to the onset of monomer flux, initiated by opening
a shutter. Three distinct regimes may be identified [26]:
(i) There was an induction regime between the onset of
deposition and the first appearance of crystals. Its duration
depended on F (i.e., on both the areal flux rate and the solvent
layer thickness), being shorter for higher rates. Since the
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FIG. 2. Time-dependent nucleation rate for TET films prepared
using four different flux rates. The flux in units of 1021 monomers
m−3 s−1 is indicated for each sample. Nucleation occurs in a brief
burst, preceded by an induction regime and followed by a growth
regime. The inset shows the time evolution of the number of crystals
per unit area. Solid lines result from fitting using Eqs. (1).

smallest crystal that could be detected was ∼1 μm2 in area
and since during the nucleation regime crystals grew in size
at a rate of ∼10 μm2 min−1, the induction time coincided to
within ∼6 s with the first appearance of crystals in the video
images, which were acquired in 5-s intervals. (ii) The induction
regime was followed by a nucleation regime during which all
crystals formed in a narrow time interval lasting 30–60 s. In
terms of 2D coverage, the projected fractional surface area
occupied by crystals was ∼1% at the peak nucleation rate,
increasing to ∼2% by the time nucleation ceased. (iii) The
nucleation regime was followed by a growth regime during
which crystals increased in size but no new crystals formed.

The solid-line fits in the inset of Fig. 2 were obtained by
numerical integration of Eqs. (1), using experimental values
for all the relevant parameters (n0 = 3.36 × 1023 m−3, a =
4.09 × 10−10 m, D = 7.58 × 10−11 m2 s−1, and T = 333 K).
Fits were obtained by varying the Smoluchowski correction
parameter γ and the surface energy σ , which are challenging
to independently measure experimentally.1 This gave (in order
of increasing flux) σ = 24 m N m−1 and γ = 13.6, σ =
24 mN m−1 and γ = 12.6, σ = 23 mN m−1 and γ = 11.9,
and σ = 23 mN m−1 and γ = 14.4, respectively. The inde-
pendently fit Smoluchowski coefficients and surface energies
are thus very consistent between independent experiments
and essentially independent of F , as expected. To compare

1The squalane-TET interfacial energy for a bulk film was measured
by contact angle goniometry and found to be 5 ± 10 mN m−1 (details
are given in [34]). This measurement was made at room temperature
on a planar TET film prepared by vacuum deposition and may not be
representative of the interfacial energy of a nanoscale TET cluster of
size i∗ ∼ 10–100 monomers in TET-saturated squalane at 60 ◦C– the
conditions under which nucleation occurs. For this reason we elected
to include σ as a fitting parameter in the treatment of the data in
Fig. 2.

the experimentally measured critical concentration c∗ to the
critical concentration n∗ implied by solving the MFREs, we
define the latter as being the concentration at which the
nucleation rate becomes high enough to produce an average
of one crystal per video frame (i.e., every 5 s) within a
volume of solvent equal to that visible within the observation
area (1.56 × 10−13 m3). Using this definition, the average
critical concentration determined from the fits in Fig. 2
is n∗ = (2.1 ± 0.3) × 1024 m−3 = 3.5 mM, again essentially
independent of F , which compares to the experimental value
c∗ = (1.6 ± 0.2) × 1024 m−3 = 2.7 mM. Equations (1) are
thus able to quantitatively capture all the major features of
nucleation in these films, including the existence and duration
of the induction, nucleation, and growth regimes, and the flux
dependence of the nucleation rate, onset time of nucleation,
and limiting crystal density at high coverage.

Before proceeding to discuss application of the model to
the treatment of crystal spacing statistics, it is instructive
to examine the action of the concentration P (i∗,n) and i∗
during the time integration of Eqs. (1). The integration is
done numerically, updating the monomer and stable crystal
concentrations, as well as the critical cluster concentration
and the critical size, at each time step. The characteristic burst
of nucleation seen in Fig. 2 arises from the interplay of i∗
and P (i∗,n); at low monomer density (but still maintaining
supersaturation with n > n0) the critical size is large and thus
P (i∗,n) ≈ 0 and the nucleation rate [given by KP (i∗,n)n]
is suppressed. In this case, the monomer density increases
linearly with flux. As the monomer density increases, i∗
decreases and eventually P (i∗,n) increases sharply, triggering
a burst of nucleation. Following nucleation, the uptake of
monomers by stable crystals [governed by the third term
on the right-hand side of Eq. (1a)] becomes appreciable
and the critical size again increases, accompanied by a
corresponding decrease in the concentration of clusters of
size i∗, and nucleation is once again arrested. The evolution
of the critical cluster size and concentration with time are
shown in Fig. 3, using the same parameters as Fig. 2. The
general behaviors described above are evident: The nucleation
regime is demarcated by a minimum in the critical size and a
corresponding maximum of the critical concentration. Several
other features are also apparent. Since the nucleation rate is
proportional to P , we see that the origin of the flux dependence
of the limiting crystal density Nmax stems from the increase
in the maximum Pmax with flux. In addition, the width of
the critical size concentration peak decreases markedly with
increasing flux and therefore the nucleation regime becomes
shorter in duration, resulting in a more rapid increase in N

with increasing flux. The same behavior is also observed in
the experimental results of Fig. 2.

According to the results in Fig. 3, the critical nucleus size at
the onset of nucleation (i.e., at n = n∗) is i∗ ≈ 59 monomers
for all four flux rates studied, close to the previously reported
minimum critical size of TET in the organic solvent bis(2-
ethylhexyl)sebecate (i∗ ≈ 53) [26]. This may be compared to
the critical nucleus size of TET in vacuum-deposited films,
which was estimated to be i∗ ≈ 3 on bare SiO2 [41] and
to that of structurally similar compounds such as pentacene
[i∗ ≈ 6 on Si(001)] [42] and sexithiophene [i∗ ≈ 5 on H-
terminated Si(100)] [43]. Thus i∗ is consistently about an order
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FIG. 3. Critical nucleus size i∗ (left axis) and the concentration
of critical clusters P (i∗,n) (right axis) as functions of time, obtained
from solving Eqs. (1)–(3) using the same parameters as in Fig. 2.
The flux in units of 1021 monomers m−3 s−1 is indicated for each
calculation. Note the correspondence of a minimum in critical cluster
size with a maximum in the concentration of critical clusters, the
driver of burst nucleation.

of magnitude larger in the liquid solvent environment than in
vacuum.

III. MODELING DOMAIN SPACING STATISTICS

We next show how the model can be used to under-
stand another important nanoscale morphological property of
solution-processed polycrystalline films, namely, the relative
spatial separation of crystalline domains. A close examination
of images such as the one in Fig. 1 indicates that the positions
of crystals are not entirely random in these films; rather they
tend to be more widely separated than would be expected
for complete spatial randomness (CSR), i.e., a 2D Poisson
point process [44]. This effect is illustrated more clearly in
Fig. 4, which shows the evolution of the mean nearest-neighbor
spacing d̄NN as a function of crystal density ρ (crystals μm−2)
during the nucleation regime for the same four flux rates
examined above. Each symbol type in Fig. 4 represents a
different flux rate, all of which fall onto a single universal
curve. Initially, when few crystals have formed and they are
widely separated, their spacing statistics agree with a random
distribution d̄CSR

NN = 1/(2
√

ρ) (solid line in the main part of
Fig. 4). As the density increases however, d̄NN begins to
deviate from d̄CSR

NN , eventually exceeding it by about 20%
when nucleation finally ceases at the highest flux. The inset
compares the experimental and CSR mean nearest-neighbor
spacing probability distributions at the end of the nucleation
regime for one particular film (F = 18.0 × 1021 μm−3 s−1).
The CSR distribution is given by PCSR(r)dr = 2πrρe−πρr2

dr ,
where r is the radial distance and ρav = 8.1 × 10−5 mm−2 is
the average areal density of crystallites. Compared to the CSR
model, the experimental distribution is skewed toward larger
nearest-neighbor spacing and no crystals are observed to form
closer than about 25 μm from their nearest neighbor. The dis-
tributions produced by other flux rates are qualitatively similar.

FIG. 4. At the beginning of the nucleation regime, the first crys-
tals to become visible are randomly positioned with nearest-neighbor
(NN) spacing close to a CSR (2D Poisson) distribution (line). As
the density increases, the mean NN spacing remains larger than
that predicted by the 2D Poisson distribution, indicating suppressed
nucleation in the vicinity of crystals that have already formed due to
competition for monomers. Squares denote F = 8.0 × 1021 m−3 s−1;
circles, F = 11.0 × 1021 m−3 s−1; upward triangles, F = 12.8 ×
1021 m−3 s−1; and downward triangles, F = 18.0 × 1021 m−3 s−1.
The inset compares the experimental (bars) and Poisson (line) NN
spacing probability distributions at the end of the nucleation regime
for F = 18.0 × 1021 m−3 s−1.

The trends in Fig. 4 indicate that nucleation is suppressed
near crystals that have already formed, a well-known con-
sequence of diffusion-mediated competition for growth units
[45]. The effects are shown clearly in the radially averaged
crystal separation probability distribution ρ(r) equal to the
probability of observing a crystal separated by distance r

from another crystal (Fig. 5). In Refs. [46,47] Evans and
Bartelt postulated a radial probability distribution for 2D island
nucleation in vacuum-deposited films of the form

ρ(r) = J [n(r)]/J [n(r = ∞)], (5)

where the nucleation rate J is proportional to

J ∝ n(r)i∗+1, (6)

using the Walton relation. We utilize the main ideas of this
approach here, but modify the details to account for the
concentration-dependent critical nucleus size and the kinetics
of nucleation in a supersaturated solvent.

Equation (5) equates the probability of observing a crystal
at a distance r from a given crystal with the nucleation rate at r ,
itself a function of the monomer concentration at that distance
n(r). We note that the function n(r) is the position-dependent
monomer density, measured with respect to a crystal center,
in contrast to the monomer and crystal densities calculated
via Eqs. (1a) and (1b), which are average (mean-field)
quantities. For the discussion here, we define this average
monomer density as n(r = ∞) = 〈n〉. The function n(r) may
be constructed by solving the appropriate diffusion equation
for monomers in the presence of a (constant) flux and an island
sink. The problem is made tractable by careful consideration of
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FIG. 5. Comparison of the experimental crystal separation prob-
ability distribution to the predicted distribution given by the treatment
described in the text (solid lines). The inset shows the unscaled
distribution. Squares denote F = 8.0 × 1021 m−3 s−1; circles, F =
11.0 × 1021 m−3 s−1; upward triangles, F = 12.8 × 1021 m−3 s−1;
and downward triangles, F = 18.0 × 1021 m−3 s−1. Line color is
matched to symbol color.

the boundary condition on n(r) as r → ∞, where the solution
for n(r = ∞) = 〈n〉 is governed by Eqs. (1a) and (1b), which
will be elucidated in detail below.

The appropriate diffusion equation is given by

∂n(r)

∂t
= D∇2n(r) + F − Dξ−2n(r), (7)

where D is the monomer diffusion constant, ξ is a characteris-
tic diffusion length, and F is the flux rate [we note that we have
explicitly restricted the regime to low crystal coverage, since
the flux rate in Eq. (7) refers to the flux of monomers into the
free solvent, as opposed to impinging upon nucleated islands].
In the limit of r → ∞, Eq. (7) must recover Eq. (1a); in this
case, then, direct comparison yields, utilizing the definition of
the collision kernel K ,

ξ−2 = (4πai∗
1
3 )[P (i,n) + 〈N〉]. (8)

To further simplify this result, we note that Eq. (7) will be
solved in the physically relevant nucleation regime, when the
local kinetics involve the processes of flux, nucleation, and
growth, and therefore the local-density variations are most
significant. In the nucleation regime, P ≈ P (i∗,nmax), where
nmax is the peak in the monomer density (just after the onset
of nucleation) from Eq. (1a), and 〈N〉 ≈ 1

2Nmax, where Nmax

is the final crystal density following cessation of nucleation.
From the numerical solutions to (1a) and (1b), we find that
under these conditions (see Figs. 2 and 3) 〈N〉 � P (nmax,i

∗)
and Eq. (8) simplifies to ξ−2 ≈ (2πai∗

1
2 )Nmax.

In order to proceed to a tractable (analytic) solution to
Eq. (7), we insert Eq. (8) into Eq. (1a) and subtract (1a) from
(7), viz.,

∂

∂t
[n(r) −〈n〉] = D∇2[n(r) −〈n〉] − Dξ−2[n(r) − 〈n〉] ≈ 0,

(9)

where, in the final step, we make the simplifying assumption
that time-varying deviations of the local density from the
average value are negligible [48]. In the present case, this
is largely justified by the fact that in the nucleation regime, 〈n〉
is near a peak and its time derivative is therefore zero; since
〈n〉 drives the time dependence of the overall concentration,
the simplification is a reasonable approximation.

Solving Eq. (9) requires a boundary condition on the
monomer concentration at the crystal boundary, that is,
n(r = R), with R the radius of (an assumed) circular crystal.
The value n(r = R) is given by a dynamic equilibrium at
the crystal boundary. Since nucleation and growth are taking
place in a supersaturated solution under a constant flux of fresh
monomers, this boundary concentration must lie between the
saturation concentration n0 and the critical concentration n∗. In
particular, the value n(r = R) is set by the equilibrium between
uptake of monomers by a crystal and addition of monomers
at rate F , which may be obtained from the rate equations
(1a) and (1b). In the growth regime following the cessation
of nucleation, the crystal density is constant, 〈N〉 = Nmax,
and the nucleation rate is zero, dN

dt
= 0. Equation (1a) then

becomes d〈n〉
dt

= F − KeqNmax〈n〉, where Keq = 4πγD(i∗)
1
3

is the rate for the uptake of monomers at equilibrium. Here
Keq is computed using the value of i∗ given by the critical
monomer concentration n∗ at the onset of nucleation, based on
the experimentally observed nucleation time t∗ and flux rate.
This equation has the solution neq = F

KeqNmax
+ ce−KeqNmaxt , so

at long times the equilibrium value for the monomer density is
given by neq = F

KeqNmax
. During the nucleation regime, we use

this concentration for the boundary condition n(r = R).2 With
this, the solution to Eq. (9) is given (in plane polar coordinates)
by

n(r) = 〈n〉 + (neq − 〈n〉)
K0

(
r
ξ

)
K0

(
R
ξ

) , (10)

where K0 is the modified Bessel function of order zero and
the crystal radius R is taken to equal the radius of a critical
nucleus, found from Eq. (4): R = a[i∗(n = n∗)]

1
3 . In addition,

〈n〉 is set equal to the average monomer concentration during
the nucleation regime, found during the numerical integration
of Eqs. (1). Equation (10) may then be used to produce the
predicted function ρ(r), from Eq. (5), with the nucleation rate
given explicitly by Eq. (1b):

J = dN

dt
= KP [i∗,n(r)]n(r)

= γ 4πa(i∗)
1
3 Dn(r)2

(
n(r)

n0

)i∗−1

× exp

[
−4πσa2(i∗

2
3 − 1)

kT

]
, (11)

where i∗ is again concentration dependent and given by Eq. (4).

2This assertion has been checked by simulation of the full diffusion
equation (7) via finite-difference grid methods and found to be exact
in this case.
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Figure 5 shows that this treatment provides a remarkably
accurate prediction of the crystal spacing statistics in these
TET films over the full range of studied flux rates. The
solid lines were computed for each flux rate using Eq. (11),
along with the experimentally measured saturation and critical
concentrations n0 and n∗, and effective interfacial energy σ

determined from the MFRE treatment of the nucleation rate
discussed above. Thus on the basis of the time-dependent
nucleation rate alone, the radial distribution function can be
accurately predicted. Consistent with Eq. (10), the distribu-
tions for different flux rates collapse to a single universal
curve when scaled by ξ , which establishes a characteristic
length scale for the mesoscale structure of these polycrystalline
films. Nucleation is inhibited at distances �∼ 3ξ from existing
crystals, equal to about 1.4 times the average nearest-neighbor
spacing (for comparison, the prediction from the CSR model
gives unity probability for all crystal spacings, in strong dis-
agreement with the experimental observation). These results
demonstrate that the spacing distribution follows a predictable
universal scaling caused by a local depletion of the monomer
concentration around growing crystals, the effects of which
are quantitatively captured by accounting for diffusion using
boundary conditions consistent with the MFRE treatment of
Eqs. (1).

IV. DESIGN RULES FOR PROGRAMMING
NANOSCALE MORPHOLOGY

Finally, to generalize these results to other systems, we
numerically evaluated Eqs. (1) and (11) over a range of
parameter values to explore the effects of changing experi-
mental conditions. As shown in Figs. 6 and 7, this reveals
a set of systematic relationships serving as design rules to
guide the selection of experimental conditions producing
films with targeted morphologies. We examined the effects
of F , D, γ , and D/F on the final number of crystals Nmax

formed per unit volume by the end of the nucleation regime,
as well as a measure of the crystal spacing distribution,
which we characterize by the mean scaled distance r1/2 at
which ρ(r) = ρ(r = ∞)/2. The quantity r1/2 can be thought
of as a nucleation exclusion distance, i.e., the length scale
characterizing the tendency of crystals to avoid nucleating
near one another. As shown in Figs. 6 and 7, this leads to a set
of relationships that turn out to be well described by power-law
scalings:

Nmax ∼ Fv, (12a)

Nmax ∼ Dw, (12b)

Nmax ∼ γ x, (12c)

Nmax ∼
(

D

F

)y

, (12d)

r1/2 ∼ ξσ z, (12e)

where v ≈ 0.99 and w, x, and y ≈ −0.99. The results in Figs. 6
and 7 are obtained by solving Eqs. (1) and (11) numerically,
with all parameters save the variable of interest held constant,
a process that is then repeated for different combinations
of variables. Numerical solutions are necessary because the

FIG. 6. Scaling behavior of Nmax determined from numerical inte-
gration of Eqs. (1). Lines are a power-law fit to a representative series
in each set, chosen to correspond to the average parameters found
from experiment. For each figure part and symbol type the parameters
are given as {σ (N m−1), γ (unitless), D (m2 s−1), F (m−3 s−1)} as
follows: (a) squares {0.017, 18.0, 7.58 × 10−11, variable}, downward
triangles {0.021, 13.0, 7.58 × 10−11, variable}, upward triangles
{0.0235, 13.0, 7.58 × 10−11, variable}, circles {0.0205, 18.0, 7.58 ×
10−11, variable}, diamonds {0.021, 18.0, 7.58 × 10−11, variable},
and solid hexagons are experimentally measured values; (b)
squares {0.013,13.0, variable, 1.05 × 1022}, downward triangles
{0.021,10.0, variable, 1.05 × 1022}, upward triangles {0.021,13.0,
variable, 1.05 × 1022}, circles {0.021,18.0, variable, 1.05 × 1022},
and diamonds {0.03,13.0, variable, 1.05 × 1022}; (c) squares
{0.012, variable, 7.58 × 10−11, 1.05 × 1022}; downward triangles
{0.021, variable, 7.58 × 10−11, 1.45 × 1022}, upward triangles
{0.021, variable, 7.58 × 10−11,1.25 × 1022}, circles {0.0205, vari-
able, 7.58 × 10−11, 8.5 × 1021}, and diamonds {0.03, variable,
7.58 × 10−11,1.05 × 1022}; and (d) squares {0.017,18.0, variable,
variable}, downward triangles {0.021,16.0, variable, variable}, cir-
cles {0.0205,18.0, variable, variable}, and diamonds {0.021,18.0,
variable, variable}.

FIG. 7. Scaling behavior of r1/2 with σ at various flux
rates. For each symbol type the parameters are given as
follows {γ (unitless), D (m2 s−1), F (m−3 s−1), F (unitless)}:
circles {18.0,7.58 × 10−11, 8.0 × 1021, −0.42}, squares
{18.0, 7.58 × 10−11, 1.0 × 1022,−0.47}, upward triangles
{18.0,7.58 × 10−11, 1.0 × 1022,−0.47} and {18.0,7.58 × 10−11,

1.2 × 1022,−0.49}, and downward triangles {18.0,7.58 ×
10−11, 1.4 × 1022,−0.50}.
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complexity of the relationships governing the critical nucleus
size and the resulting density of clusters of size i∗ make
analytical expressions for the scaling behavior untenable
without unreasonable approximations. The exponents v, w,
x, and y are found to be essentially constant (within ±0.02)
over the full range of explored parameter space. As shown
in Fig. 7, the exponent z, on the other hand, is not constant,
but instead varies in a regular way between −0.4 and −0.6,
depending on F and γ . The range of conditions over which
these relationships apply encompasses a large parameter space
of chemical properties and experimental conditions and should
therefore apply to a wide range of organic crystalline materials,
solvents, and growth conditions. Taken together, the scaling
relationships in Eq. (12) define a set of design rules that can
guide the selection of experimental conditions to tailor film
morphologies for particular applications.

V. CONCLUSION

The performance of devices based on solution-processed
molecular films is directly linked to their nanoscale polycrys-
talline structure, itself a function of the chemical characteris-
tics and processing conditions employed in film preparation.
We have presented an integrated model treating nucleation

kinetics from quasi-2D supersaturated solvents, taking into
account the supersaturation driving rate, the concentration de-
pendence of the nucleation free-energy barrier, and diffusion-
governed competition for monomers between nucleation and
growth. Based on a small number of experimentally accessible
inputs, the model produces quantitative predictions for the
mean crystal density and predicts other morphological param-
eters such as the intercrystalline spacing statistics. The model
is tested by comparison to nucleation and growth experiments
on tetracene films deposited from squalane, with monomer
concentration driven by a flux of tetracene vapor impinging
on the solvent layer. Excellent agreement is demonstrated
for the monomer concentration driving rate-dependent crystal
density, intercrystalline spacing statistics, induction time, and
nucleation rate. Finally, the model leads to a set of predictive
design rules for solution-processed films useful for guiding
the selection of experimental conditions to produce targeted
nanoscale morphologies.
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