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Self-narrowing of size distributions of nanostructures by nucleation antibunching
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We study theoretically the size distributions of ensembles of nanostructures fed from a nanosize mother
phase or a nanocatalyst that contains a limited number of the growth species that form each nanostructure.
In such systems, the nucleation probability decreases exponentially after each nucleation event, leading to the
so-called nucleation antibunching. Specifically, this effect has been observed in individual nanowires grown
in the vapor-liquid-solid mode and greatly affects their properties. By performing numerical simulations
over large ensembles of nanostructures as well as developing two different analytical schemes (a discrete
and a continuum approach), we show that nucleation antibunching completely suppresses fluctuation-induced
broadening of the size distribution. As a result, the variance of the distribution saturates to a time-independent
value instead of growing infinitely with time. The size distribution widths and shapes primarily depend on the
two parameters describing the degree of antibunching and the nucleation delay required to initiate the growth.
The resulting sub-Poissonian distributions are highly desirable for improving size homogeneity of nanowires.
On a more general level, this unique self-narrowing effect is expected whenever the growth rate is regulated by
a nanophase which is able to nucleate an island much faster than it is refilled from a surrounding macroscopic
phase.
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I. INTRODUCTION

Size homogeneity within ensembles of nano-objects is
highly desirable for improving the fundamental properties
of nanomaterials as well as enhancing the characteristics of
functional nanostructures and nanodevices. In particular, a
high degree of size uniformity is paramount for photonic
applications of semiconductor quantum dots [1], nanowires
(NWs), and NW-based heterostructures [2]. Considerable
effort has been made in the past to narrow the size distributions
of nanostructures, using various means [3–20]. One well-
known effect which degrades the size uniformity is associated
with kinetic fluctuations and leads to the so-called Poissonian
broadening of the size distributions [15,18]. In systems with
time and size-independent instantaneous growth rates, the
size distributions are Poissonian, with the variance scaling
as the mean size and hence increasing infinitely with time
[18]. Suppression of this broadening has previously been
demonstrated, for example in the case of Stranski-Krastanow
(Ge,Si) and (In,Ga)As quantum dots. A complex interplay
between elastic stress relaxation, elastic interactions, time-
dependent wetting layer thickness, surface energy constraints,
and shape transformations may indeed result in a kinetic
narrowing of their size distributions under appropriate growth
conditions [5–14].

The recent development of semiconductor NWs grown by
the vapor-liquid-solid (VLS) method (see Ref. [15] for a de-
tailed review) has stimulated studies of their size distributions
(for both diameters and lengths) and of possible ways to reduce
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widths of these distributions. In self-catalyzed III-V NWs,
self-equilibration of the diameter distributions to a δ-like shape
has been demonstrated theoretically [16–18] and confirmed
experimentally for gallium-catalyzed GaAs NWs [16]. As
regards the length distributions (LDs), kinetic narrowing
effects have been observed either at a certain moment of time
[19] (due to different growth rates of differently sized Ge
NWs) or in ensembles of interacting GaN NWs [20] (due to
interwire exchange of re-emitted growth species). However,
fluctuation-induced broadening and nucleation randomness
persist in the general case and lead to disappointingly broad
NW LDs, in spite of many efforts.

On the other hand, VLS NWs present an interesting
example of a system whose growth behavior and physical
properties are determined by the supersaturation dynamics in
nanosized catalysts [21–27]. Recent studies have revealed the
following important features of the VLS growth of III-V NWs:

(i) During the growth of any given NW, there exists
a temporal anticorrelation between the random individual
nucleation events that mediate the formation of each mono-
layer (ML) from the catalyst nanodroplet. This is due to (1)
the small size of this droplet, in which at least one NW
constituent which strongly affects supersaturation is present
at low concentration (here, the group-V species), and (2) the
short time needed to complete a ML after nucleation, compared
with the waiting time between nucleation events. Then, the
droplet supersaturation plummets when a new ML forms,
which leads to an exponential decrease of the probability for
another nucleation to occur immediately after [21–27]. This
effect has been termed “nucleation antibunching.”

(ii) Nucleation antibunching leads to a saturation of the
variance of the probability to form n MLs during a given time
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[21,25,26] in a given NW, while the variance should scale
linearly with the mean length for a Poissonian process with a
time-independent nucleation probability [21,27].

(iii) In ensembles of NWs, if nucleation antibunching does
not operate (for instance when, once formed, MLs extend
slowly), the diffusion-induced growth of each NW results in
LDs that are much broader than in the Poissonian case [28].

(iv) A slow nucleation of the NWs (long incubation time
required to form the first ML of each NW) also leads to a
broadening of their LDs [29,30].

So far, the theoretical studies of nucleation antibunching
have been restricted to individual NWs [21,25–27]. This is
partly due to an easier comparison with experiments [21]: in an
ensemble of NWs, beyond growth dynamics, there are many
causes of growth rate variability that are difficult to control
and even to assess: different NWs may have different radii,
different droplet contact angles or be subjected to different
growth fluxes due to different local environments. This points
out that the nucleation statistics in individual NWs and the
statistical properties of a NW ensemble are clearly not the same
thing. In the first case, one can only study the time fluctuations
of the instantaneous growth rate or of the NW lengths grown
during successive time intervals whereas in the second case
one can access ensemble properties, such as the distributions
of lengths grown over a certain time. On the other hand, if the
NWs do not interact with each other, the statistical properties of
the ensemble should somehow be related to those of individual
NWs. These questions are at the core of the present work.

The combination of nucleation antibunching and of the
stochastic nature of the nucleation and growth process should
affect the LDs, but this has not been studied so far. Here, we
thus examine in detail the influence on the ensemble LDs of
three major effects: (i) nucleation antibunching, (ii) random
initial nucleation of the NWs, and (iii) fluctuation-induced
Poissonian broadening [15,18,27,30–32]. In particular, we
investigate how, in the presence of nucleation antibunching, the
dispersion of the times at which the various NWs actually start
growing affects the LDs. As a model system, we consider the
self-catalyzed VLS growth of III–V NWs or the gold-catalyzed
VLS growth under group-III-rich conditions. The elongation
rate of such objects is entirely determined by the group-V
content of the catalyst droplets [33–35]. More generally, our
considerations apply to nano-objects growing from a nanosize
mother phase or nanocatalyst in the so-called mononuclear
regime [25–27] (a single nucleation event mediates the
formation of a mesoscopic growth unit, such as a ML for NWs)
provided (1) the nucleation event and the formation of the
growth unit are much faster than the refill of the mother phase
by the external fluxes, and (2) the nucleation rate depends
exponentially on the number of atoms of a constituent that are
dissolved in the mother phase.

Our main goal is to show that the supersaturation dynamics
completely suppress the fluctuation-induced broadening of the
LDs and impart to the NW ensemble a self-regulatory behavior
with a variance which rapidly becomes time-independent. To
this end, we perform, compare, and discuss several calculations
of the LDs for ensembles of NWs. The system is described
by the rate equations that are standard in nucleation theory
[15,36]. However, the time- and size-dependent rate constants
are exponential, as in Refs. [21,25,26]. As will be detailed

in Sec. II, this results from the exponential dependence
of the nucleation probability on the nucleation barrier [15]
whereas supersaturation varies approximately linearly with
composition [21,25]. This feature is central in determining the
statistical properties of the ensemble.

The presentation is organized as follows. Section II intro-
duces our model, which divides the history of each NW into
two stages with different stochasticities: stage 1 extends from
the establishment of the growth fluxes to the random formation
of the first solid ML; stage 2 corresponds to proper NW growth,
which is dominated by nucleation antibunching. The next four
sections propose different calculations of the LDs. The first
two sections take into account the discrete character of NW
growth, which proceeds by addition of single MLs following
individual nucleation events. In Sec. III, the calculations are
entirely numerical: the growth of each NW of a large ensemble
is simulated separately (according to the model rules) and from
this we straightforwardly extract the time evolution of the LDs.
In Sec. IV, we use analytical results previously established
for single NWs with nucleation antibunching to obtain exact
analytical formulas for the LDs and their statistical properties.
In the following two sections, we develop an approach based
on a continuum growth approximation which yields the large
time asymptotic behavior of the system in a much simpler
form. Section V first derives a closed form expression of the
Green’s function of the problem. In Sec. VI, we convolute this
function with the distribution of starting times of the NWs to
obtain a simple analytical expression of the LDs.

The discrete and continuum approaches give very simi-
lar results and demonstrate that, whenever the exponential
terms are present, the short-time correlations suppress the
fluctuation-induced effects.

II. MODEL

We assume that, at time t = 0, the assembly of identical
droplets that will give rise to the NW ensemble is formed but
that no NW has started growing. Constant external fluxes are
then switched on. We split the history of each NW into two
phases, namely a NW nucleation stage (stage 1) of variable
duration, up to the formation of the first solid ML, followed by
a NW growth stage (2). We are primarily interested in the case
of “difficult” NW nucleation, i.e., the case where the average
time before forming the first ML is long compared to the
average waiting time between successive MLs at stage 2. There
are many possible reasons for such a difference (substrate and
NW materials may be different, as well as droplet contact
angle, droplet feeding processes, etc.).

In this case, at stage 1, the group-V concentration in the
droplets should quickly reach its maximum value cmax, at
which, in the absence of solid growth, the desorption from
the droplet (which depends only on concentration and temper-
ature) balances exactly the intake of group V, determined by the
vapor flux. For most droplets, NW nucleation will take a much
longer time. We can then write the probability per unit time
for forming the first ML of any NW as p0 = π R2

bJ (�μmax),
with Rb the droplet base radius (assumed to remain constant
at stage 1 and to be the same for all NWs), J the nucleation
rate, and �μmax the difference of chemical potential between
liquid and solid at cmax. With such a time-independent p0, the
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fraction of droplets that have not given rise to a NW at time t

is f0(t) = exp(−p0t).
As regards stage 2, we assume, as in Refs. [21] and [25],

that the number N (t) of group-V minority atoms in the droplet
is significantly affected by each nucleation event and that
its variations affect significantly the nucleation probability
(NP) of a new ML, to be distinguished from the NW
nucleation probability pertaining to stage 1. The NP is now
p = π R2J (�μ), where R is the NW radius and nucleation
rate J is possibly defined by parameters different from those
of stage 1. Most importantly, �μ varies with time due to the
variations of N . Namely, in terms of number of equivalent
MLs in the droplet, n = N/δ (with δ the number of group-V
atoms in a ML), n decreases instantaneously by a unit after
each nucleation, whereas the droplet refilling is assumed to
proceed at a constant rate v (which must equal the stationary
average growth rate attained in the later stage of growth).

The Zeldovich nucleation rate depends exponentially on the
nucleation barrier [15,21] and hence, in a range of group-V
concentration where it is legitimate to linearize the variations
of the chemical potential and to neglect desorption from the
droplet, the Zeldovich NP can be written as in Ref. [21]:

p = πR2J (�μ̄) exp

[
c̄
∂�μ

∂c̄
i∗(�μ̄)

(N − N̄ )

N̄

]
. (1)

Here, the overlined quantities are the values in an arbitrary
reference state of chemical potential �μ̄ (measured in thermal
units), group-V concentration c̄ and number N̄ of group-V
atoms in the droplet, and i∗ is the corresponding number of
III-V pairs in the critical nucleus [the introduction of which
allows one to rewrite Eq. (3) of Ref. [21] without specifying
the shape of the nucleus]. The NP thus varies exponentially
with the number n of equivalent MLs in the droplet (defined
above):

p(N ) = p(N̄ ) exp[ε (n − n̄)], (2)

with

ε = c̄
∂�μ

∂c̄
i∗(�μ̄)

1

n̄
. (3)

This exponential dependence is the cause of the strong
antibunching effect [21,25]. Indeed, the ratio of the NPs
immediately after and before nucleation (which decreases the
number of equivalent MLs in the droplet by 1), a constant of our
model, is equal to γ = e−ε. The larger ε, the more sensitive the
NP to the number of atoms in the droplet and hence the more
sub-Poissonian the process, with the limits ε = 0 (γ = 1) and
ε = +∞ (γ = 0) corresponding respectively to the Poisson
and deterministic cases [25].

Let us introduce �L, the average elementary volume per
atom in the liquid phase (0.02 nm3 for liquid gallium), �S ,
the volume of a III-V pair in the solid phase (0.0452 nm3

for GaAs), h, the height of a ML (0.326 nm for GaAs NWs
growing along a (111) axis), and f (β) = π (1 − cos β)(2 +
cos β)/[3 (1 + cos β) sin β], the geometrical function relating
the volume V of a spherical cap to the cube of its base
radius R through the contact angle of the droplet β. Then,
δ = πR2h/�S and c̄ = �Lδn̄/V . The antibunching parameter

can thus be written as

ε = π�L

f (β)�s

c̄
∂�μ

∂c̄
i∗(�μ̄)

h

c̄R
. (4)

Although this antibunching parameter may take substantial
values in very narrow NWs or for a catalyst with extremely
low group-V solubility, it may remain much smaller than 1
even in truly nanosized wires; for example, it equals only
0.15 for a NW with R = 50 nm and β = 135◦ if we assume
c̄(∂�μ/∂c̄) = 1, c̄ = 0.03, and i∗(�μ̄) = 9. This justifies the
use of the strong inequality ε � 1 in some of our analytical
calculations (Secs. V and VI).

To summarize, the two main parameters of our model are ε,
defining the degree of antibunching, and α = p0/v, measuring
the NW nucleation delay at stage 1 relative to the upper layers,
as in Ref. [30].

The calculations carried out in Secs. III and IV, which
cover the entire history of the NWs, require the introduction
of another parameter. According to our description of stage
1, the NP ps at the beginning of stage 2 (just after forming
the first ML) is the same for all NWs, although this first ML
forms at different times ts for each NW (the distribution of
these times is simply given by df0/dt). In principle, the value
of ps could be calculated by considering the variations with
concentration of the nucleation and desorption rates, but this
would require introducing several other parameters. Moreover,
the stage 2 dynamics can be fully computed by tracking the NP,
rather than concentration [25]. We thus take ps as an extra free
parameter. Note however that ps is likely to be larger than the
stationary stage 2 NP v, since a difficult NW nucleation implies
that cmax is larger than the stationary stage 2 concentration.

III. NUMERICAL SIMULATIONS

We first carry out numerical simulations over large ensem-
bles of NWs (typically 2×105). We then show in Sec. IV that
the results of these simulations may be reproduced perfectly
via analytical calculations, based on our previous study dealing
with single NWs [25].

The growth of each NW of the ensemble is simulated
independently, as specified by our model (Sec. II). All NWs
are geometrically uniform in that they have the same radius
and droplet contact angle, but of course they acquire different
lengths at a given time. The external fluxes are established at
time t = 0. During stage 1, the probability per unit time of
forming the first ML in a given NW is taken as constant (as
discussed in Sec. II) and the instant when this occurs is drawn
accordingly. This probability is written p0 = αυ, with υ the
stationary growth rate at stage 2, i.e., the probability of forming
a new ML (NP) that compensates exactly the external fluxes.
However, at stage 2, the NP varies with time, according to the
following rules. In the intervals between nucleation events,
the NP increases exponentially with time according to Eqs. (1)
and (2), simply because the number of group-V atoms in the
droplet increases linearly due to refill by the external fluxes.
When a nucleation occurs (which is determined randomly
according to the increasing instantaneous NP), it is followed
instantaneously by the formation of a full ML; according to
the same equations, this instantaneously decreases the NP to a
fraction γ = e−ε of its prenucleation value. As mentioned in
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FIG. 1. Nanowire LDs after different growth times τ (given in
units of the stationary waiting time v−1 between MLs at stage 2) for the
Poisson process (ε = 0, γ = 1, dots) and for weakly (ε = 0.1, γ =
0.9048, dashes) and moderately (ε = 0.3, γ = 0.7408, full lines)
sub-Poissonian processes. Fixed parameters: α = 0.1, ps = 2v. The
lines give the results of the numerical growth simulations (note that
the function is only defined for integer values of the ML number) and
symbols those of the analytical calculations of Sec. IV. Inset shows
details of the distributions for small ML numbers.

Sec. II, we must also specify the NP ps at the very beginning
of stage 2 (i.e., the probability of forming a second ML). In
each calculation, we assume that all NWs of the ensemble are
characterized by the same parameters ε, α, v, and ps . For the
first three parameters, this follows from assuming a uniform
geometry for all NWs and droplets; for ps , this follows from
the quick attainment of fixed concentration cmax in nearly all
droplets at stage 1.

Figures 1–3 show the evolution with time of the LDs for
various degrees of nucleation antibuching at stage 2 (Fig. 1),
increasingly difficult NW nucleation (Fig. 2), and various
values of the NP at beginning of stage 2 (Fig. 3).

In all cases, even for modest degrees of nucleation anti-
bunching, the LD quickly converges to a given shape with
a finite standard deviation, after which the LD simply gets
translated uniformly with time. Hence, the ensemble LDs
behave very similarly to the LDs of segments grown during
consecutive equal times in a single NW, that we measured
and calculated previously [21,25]. In particular, the standard
deviations of both types of LDs saturate quickly as the average
segment length (single NW) or NW length (NW ensemble)
increases, and the saturation value decreases as the process
becomes more sub-Poissonian (Fig. 4). Only in the pure
Poissonian case (dotted curves in Fig. 1 and curve labeled
ε = 0 in Fig. 4) does the width of the distribution increase
indefinitely with time.

However, and as expected, for fixed stage 2 conditions
(given ε), the shape of the distribution depends critically on
the conditions at stage 1: the more difficult the nucleation of
the first ML (the smaller α), the broader the distribution of
NW nucleation times and hence the broader the tail of the

FIG. 2. Same as Fig. 1 for various values of the parameter α

measuring the difficulty of forming the first NW ML from a droplet
resting on the substrate: α = 0.5 (dots), α = 0.2 (dashes), α = 0.05
(full lines). Fixed parameters: ε = 0.3, ps = 2v. For sake of clarity,
the analytical results are not shown.

LD on the short length side (Fig. 2). On the other hand, the
value of the NP ps at the beginning of stage 2 has only a small
effect: for lower NPs, the LD is simply retarded but its profile
is hardly modified (Fig. 3).

The variations of the standard deviation of the LD with
time (Fig. 4) synthetize these conclusions. Figure 4 also shows
that the joint effect of delayed NW nucleation and nucleation
antibunching at stage 2 may produce a nonmonotonic variation
of the standard deviation.

IV. EXACT ANALYTICAL CALCULATIONS

Remarkably, the numerical results of Sec. III may be
recovered analytically by using the results of our previous

FIG. 3. Same as Figs. 1 and 2 for various values of the nucleation
probability at the beginning of stage 2: ps = v (dashes), ps = 3v (full
lines), ps = 10v (dots). Fixed parameters: ε = 0.3, α = 0.1.
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FIG. 4. Variation of the standard deviation of the length distribu-
tion with normalized growth time for various degrees of nucleation
antibunching ε, at fixed α = 0.1 and ps = 2v (curves labeled with
ε values) and for decreasing NW nucleation probability α, at fixed
ε = 0.3 and ps = 2v (curves labeled with α values). Lines: numerical
growth simulations; symbols: analytical calculations of Sec. IV.

study devoted to single NWs [25]. There, we calculated the
density of probability π (t |ps) for a second nucleation to occur
after time t , conditional to the fact that a first nucleation
occurred when the NP was equal to ps (for given average
growth rate v and antibunching degree γ or ε). From this
quantity, we derived analytically the probability πn(T |ps) that
exactly n nucleations occur during a time interval of length T,
conditional to the fact that the NP was ps at the beginning of
this interval, namely

πn(T |ps) =
n∑

m=0

gn−m

(γ ; γ )m
exp[−γ mE(T )ps/(εv)] , (5)

where (γ ; γ )m = (1 − γ )(1 − γ 2) . . . (1 − γ m) is a q-
Pochhammer symbol [for m � 1, with (γ ; γ )0 = 1], gm =
(−1)mγ m(m−1)/2/(γ ; γ )m and E(T ) = eεvT − 1.

The conditional probability πn(τ |ps) is a powerful tool
for calculating the time evolution of our ensembles of NWs.
Indeed, the ensemble LD is simply given by the convolution
of this probability with the distribution of times of formation
of the first ML. Hence, the fraction of NWs which are n-ML
long at time T (i.e., the LD) is

fn(T ) =
∫ T

0
p0 e−p0t πn−1(T − t |ps) dt for n � 1, (6)

f0(T ) = e−p0T . (7)

Note that here we count the first ML, if any; for instance,
1-ML long NWs have acquired a first ML at the end of phase
1 and none in phase 2.

The LD can be expressed in terms of the incomplete
gamma function γ (s,x) (not to be confused with antibunching

parameter γ ) as

fn(τ ) = θρ−θ

n−1∑
m=0

gn−1−m

(γ ; γ )m
exp[α(m − τ ) + ρe−mε]

× [γ (θ,ρeε(τ−m)) − γ (θ,ρe−εm)] (8)

for n � 1, with θ = ε−1α = ε−1p0/v, ρ = ε−1ps/v, and τ =
vT the normalized growth time.

These formulas are exact for any values of parameters ε �=
0, α, ps and time τ and are computationally efficient unless ε

is very small. The LDs so calculated agree extremely well with
those obtained from our numerical simulations, as illustrated
in Figs. 1 and 4 (hollow symbols). This confirms that for
our identical and noninteracting NWs, the statistics of the
ensemble may be calculated from those of the single NW.

The average length (in MLs) of the NW ensemble at time
T is

〈n(T )〉 =
∞∑

n=0

nπn(T ) =
∫ T

0
p0e

−p0t

∞∑
n=1

nπn−1(T − t |ps)dt

= 1 + e−p0T +
∫ T

0
p0e

−p0t

∞∑
n=0

nπn(T − t |ps)dt.

(9)

Using a generating function method as in Ref. [25] we find,
after some calculations,

〈n(τ )〉 = (γ ; γ )∞
∞∑

m=0

1

(γ ; γ )m
{1 − e−ατ−θρ−θ exp[α(m−τ )

+ ρe−mε][γ (θ,ρeε(τ−m))−γ (θ,ρe−εm)]} + 1−e−ατ .

(10)

Similarly, we can calculate the variance of the LD:

σ 2(τ ) = 2(γ ; γ )∞
∞∑

m=0

m − L(γ )

(γ ; γ )m
{1 − e−ατ − θρ−θ

× exp[α(m − τ ) + ρe−mε] [γ (θ,ρeε(τ−m))

− γ (θ,ρe−εm)]}+3〈n(T )〉−〈n(T )〉2 − 2(1− e−ατ ),

(11)

where L(γ ) = ∑∞
p=1 γ p/(1 − γ p) is the Lambert series with

unit coefficients.

V. GREEN’S FUNCTION OF CONTINUUM
GROWTH EQUATION

The exact analytical solutions obtained in the previous
section present the LDs as infinite series. We now develop
a simplified approach based on a continuum growth equation
of the Fokker-Planck type that will allow us to obtain much
simpler analytic LDs for large enough NW lengths, and
compare them to the exact results. The discrete set of the
rate equations for the LDs can be written as [28,30]

dfn

dt
= pn−1(t)fn−1(t) − pn(t)fn(t) (12)
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for all n � 1, with pn the probability per unit time for a n-
ML-long NW to form a new ML. Equation (12) means simply
that the fraction of NWs having length n MLs at time t , fn(t),
increases when one ML is added to NWs with length n − 1 and
decreases when one ML is added to NWs having this length
n. Without group-V desorption, considering material balance
for large enough number of NW MLs n yields

N̄ + χIπR2t = πR2h

�S

n + N. (13)

The left-hand side is the sum of the initial number of
the group-V atoms dissolved in the droplet (which is taken
identical to their reference number during growth for studying
the Green’s function) and the number of the group-V atoms
arrived at the droplet from the vapor flux I by time t , with χ a
geometrical coefficient [37].

Using Eq. (13) in Eq. (2), noting that the deposition rate
is v = χ I �S/h, and choosing the reference state such that
πR2J (�μ̄) = v, the NP can be put as

pn(t) = p(vt − n) = veε(vt−n). (14)

In terms of the dimensionless time, τ = vt , Eq. (12) can be
simplified to

e−ετ dfn

dτ
= e−ε(n−1)fn−1 − e−εnfn = − ∂

∂n
(e−εnfn)

+ 1

2

∂2

∂n2
(e−εnfn) − . . . , (15)

where we will keep only the two leading terms in the Taylor
expansion (at the right-hand side) for n 	 1 when ε � 1.
In this case, the discrete rate equations are reduced to one
Fokker-Planck equation:

e−ετ ∂f (n,τ )

∂τ
= − ∂

∂n
[e−εnf (n,τ )] + 1

2

∂2

∂n2
[e−εnf (n,τ )].

(16)

Here, very unusually, the kinetic rate constant decreases
exponentially with size n, due to nucleation antibunching,
while it increases as a power of n in standard mean-field growth
theories [31].

We now use the asymptotic method of Refs. [31,32] to
find the Green’s function of Eq. (16) corresponding to a δ-like
initial condition. We introduce the modified variables

ρ = eεn − 1

ε
; z = eετ − 1

ε
(17)

and function g(ρ,z) defined by

e−εnf (n,τ ) = g(ρ,z). (18)

In these variables and at ε � 1, the Fokker-Planck equation
takes the form

∂g(ρ,z)

∂z
= −∂g(ρ,z)

∂ρ
+ 1

2
(1 + ερ)

∂2g(ρ,z)

∂ρ2
. (19)

In Ref. [32], we showed that the ρ-dependent factor of the
second derivative term of this equation can be changed to its
mean value at ρ = z with a high accuracy for narrow enough
distributions (i.e., whose width is much smaller than the mean
size z). In our case, this property is satisfied for ε � 1. Then,

Eq. (19) has the asymptotic Gaussian solution for Green’s
function

G(ρ,z) = 1√
2πσ

exp

[
− (ρ − z)2

2σ 2

]
, (20)

where the z-dependent variance is given by

σ 2 = z + εz2

2
. (21)

This solution gives the δ-like LD at time t = 0, where σ =
0. Therefore, the Green’s function determines the LD in the
idealized case with all NWs nucleating at the same time. Using
exp(εn) = 1 + ερ in Eq. (18), the Green’s function of Eq. (16)
is thus obtained in the form

F (ρ,z) = 1 + ερ√
2πσ

exp

[
− (ρ − z)2

2σ 2

]
, (22)

where the exponential dependencies of ρ and z on n and τ are
specified by Eq. (17).

This solution is quite interesting since it combines the
Poissonian and sub-Poissonian LDs. Indeed, at ε = 0 we
simply have ρ = n and z = τ , which yields the Poissonian
Green’s function

F (n,τ ) = 1√
2πτ

exp

[
− (n − τ )2

2τ

]
(23)

with mean length 〈n〉 = τ and variance σ 2 = τ .
On the other hand, whenever ε > 0, the leading asymptotic

term of the variance in Eq. (21) for large enough z is σ 2(z) =
εz2/2 and the Green’s function becomes a function of ρ/z =
exp[ε(n − τ )]:

F (n − τ ) =
√

ε

π
eε(n−τ ) exp

[
−1

ε
(eε(n−τ ) − 1)

2
]
. (24)

The width of this LD is determined by the condition
|exp[ε(n − τ )] − 1| ∼= √

ε (defining where the Gaussian ex-
ponential is divided by factor e). The value of

√
ε remains

much smaller than unity for small enough ε. If we then use
the linear approximation exp[ε(n − τ )] − 1 ∼= ε(n − τ ) in the
exponential of Eq. (24), the |n − τ | values of interest are less
than 1/

√
ε. The exp[ε(n − τ )] term is less than exp(

√
ε) ∼= 1.

Therefore, for small ε and large n, the Green’s function given
by Eq. (16) is well approximated by the following Gaussian:

F (n − τ ) =
√

ε

π
exp[−ε(n − τ )2]. (25)

Clearly, the mean length of this LD remains τ but the
variance is time independent and equals 1/(2ε) rather than
growing infinitely as in the Poissonian case. In other words, the
Green’s function depends on n and τ only via the combination
n − τ and hence the shape of the LD is time invariant, as
in Ref. [26]. Figure 5 shows how the asymptotic Green’s
functions given by Eq. (24) narrow up for larger ε, at a fixed
time of 200.

VI. ANALYTIC LENGTH DISTRIBUTIONS
IN THE CONTINUUM APPROACH

The Green’s function obtained in Sec. V allows one to find
the time evolution of the LDs for a given nucleation rate of
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τ=
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Number of NW monolayers
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ε=0.03
ε=0.05
ε=0.1
ε=0.2
Poissonian

FIG. 5. Narrowing of Green’s functions at a fixed τ of 200 with
increasing values of ε, compared to the Poissonian LD. The dashed
line shows the Gaussian approximation given by Eq. (25), for ε = 0.2.

NWs at n = 0 (end of stage 1). The latter is simply the product
of the normalized density of droplets which have not yet given
rise to a NW, f0(t), by the NP p0(t) of the very first NW ML,
which in general depends on time. In a closed system where
all droplets are formed initially (before exposure to the growth
fluxes), f0 obeys the equation

df0

dt
= −p0(t)f0(t). (26)

If there is no significant NW nucleation delay, as considered
in Ref. [28], the LDs should be well described by the Green’s
function itself. In the opposite case, where the NW nucleation
stage takes a long time [29,38], we can use a time-independent
p0, as argued in Sec. II and assumed in Secs. III and IV.
As already mentioned, we then have f0(t) = exp(−p0t). In
terms of the normalized time τ = vt , the NW nucleation rate
becomes

j (τ ) = α e−ατ , (27)

with α = p0/v.
We reiterate that here the value of α should be smaller or

even much smaller than unity, which means that nucleation of
the very first NW ML from a droplet resting on the substrate
surface is difficult compared to the upper layers. This feature
leads to a pronounced asymmetry of the LDs toward a longer
left tail representing shorter NWs, as indeed observed in
experiments [29,30].

For any time-dependent NW nucleation rate, the NW LD
f (n,τ ) should be obtained by convolution of the Green’s
function with this nucleation rate [30,36], similarly to the
discrete case studied in Secs. III and IV:

f (n,τ ) =
∫ ∞

0
dxF (n,τ − x)j (x). (28)

It is easy to convolute the asymptotic Gaussian Green’s
function given by Eq. (25) with the exponentially decreasing
nucleation rate given by Eq. (27). The resulting asymptotic LD

0 50 100 150 200
0.00

0.01

0.02

0.03

0.04

0.05

α=0.07

τ=200τ=100τ=50

f(n
,τ

)

Number of NW monolayers 

τ=20

FIG. 6. Comparison between the time evolution of the NW LDs
with nucleation-induced broadening in the presence (solid lines, ε =
0.1) and absence (dotted lines, ε = 0) of nucleation antibunching, for
the same α = 0.07.

is the two-parametric function

f (n − τ ) = α

2
eα(n−τ )+α2/(4ε)erfc

[√
ε(n − τ ) + α

2
√

ε

]
.

(29)

Here,

erfc (y) = 2√
π

∫ ∞

y

dte−t2
(30)

is the complementary error function. This LD depends only
on the difference n − τ and hence has a time-independent
variance.

Without nucleation antibunching (at ε → 0), convolution
of the Poissonian Green’s function given by Eq. (23) with
the same exponential NW nucleation rate yields the result of
Ref. [30], namely

f (n,τ ) = α

2
eα(n−τ )+α2τ/2erfc

[
n − τ + ατ√

2τ

]
. (31)

This LD can be obtained simply by changing the time-
independent variance 1/(2ε) in the LD with antibunching to
its Poissonian value τ , i.e., by setting ε = 1/(2τ ) in Eq. (29).
The LD given by Eq. (31) is also two-parametric; however,
it depends differently on the two variables n and τ , with the
variance increasing infinitely with τ . This important difference
is demonstrated in Fig. 6. Both LDs at α = 0.07 are broadened
by the nucleation delay. However, the LD with nucleation
antibunching at ε = 0.1 quickly acquires a time-independent
shape with a longer left tail (toward small lengths), while the
LD at ε = 0 continues spreading with time and asymptotically
tends to a symmetrical Poissonian shape with the variance τ .

We have thus obtained an analytic asymptotic LD which
should work well in situations with moderate nucleation
antibunching (ε � 1) and a significant delay of the NW
nucleation (α � 1). At α → 1, this LD converges to the
Gaussian Green’s function given by Eq. (25). According to
Eq. (29), upon completion of the NW nucleation step, the LD
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FIG. 7. Shapes of the universal LD at fixed ε = 0.1 and different
α ranging from 0.01 to 0.2. Lines: continuum approximation
[Eq. (32)]. Symbols: exact solution [Eq. (8)], for ps = v; for sake
of clarity, only one data point out of three is shown.

becomes a universal function of x = n − τ ,

f (x) = α

2
eαx+α2/(4ε)erfc

[√
εx + α

2
√

ε

]
. (32)

This distribution does not change shape in the subsequent
growth stage and is translated uniformly with time. Suppres-
sion of kinetic fluctuations is due to nucleation antibunching
in individual NWs. The universal LD depends on the two
parameters, ε and α, describing the effects of antibunching
and nucleation delay, respectively. Figure 7 shows how the
universal LD at a fixed ε of 0.1 is broadened for smaller α,
corresponding to longer NW nucleation delays. Figure 8 shows
the narrowing of the LDs due to increasing the antibunching
parameter ε, at a given α = 0.07. This effect is stronger for
smaller ε, while for larger ε the LDs converge to a shape that is
simply determined by the duration of the NW nucleation step
(stage 1).

FIG. 8. Shapes of the universal LD at a fixed α = 0.07 and
different ε ranging from 0.01 to 0.2. Lines: continuum approximation
[Eq. (32)] Symbols: exact solution for ps = v, using Eq. (8) for
ε � 0.1 and numerical simulation for ε � 0.07; for sake of clarity,
only one data point out of three is shown.

For large enough τ , the function f defined in Eq. (32) has
the following properties:

∫ ∞

−∞
dx f (x) = 1, (33)

∫ ∞

−∞
dx x f (x) = − 1

α
,

∫ ∞

−∞
dx x2f (x) = 2

α2
+ 1

2ε
. (34)

The first expression ensures the correct normalization of
the asymptotic LDs to unity. Using Eqs. (33) and (34) and
performing an integration by parts, we obtain the analytic
mean size 〈n〉 and variance σ 2 = 〈(n − 〈n〉)2〉 = 〈n2〉 − 〈n〉2

of this LD:

〈n〉 = τ − 1

α
, σ 2 = 1

2ε
+ 1

α2
. (35)

Without nucleation antibunching, the mean size and vari-
ance are given by

〈n〉 = τ − 1

α
, σ 2 = τ + 1

α2
. (36)

Therefore, as we saw earlier in the discrete calculations
(Secs. III and IV) and for the Green’s functions (Sec. V),
the mean size is not influenced by antibunching whereas the
variance is bounded with nucleation antibunching and grows
infinitely without it. The variance given by Eq. (35) is the sum
of two finite numbers, one describing the effect of antibunching
and the other the nucleation delay. This explains the limited
narrowing effect seen in Fig. 8 for large ε values, because the
variance at 1/(2ε) � 1/α2 nearly equals 1/α2. In other words,
nucleation antibunching completely suppresses the Poissonian
fluctuation-induced broadening but does not correct the initial
nucleation width of the NW LDs.

VII. COMPARISON OF THE TWO APPROACHES

Figure 9 shows a comparison between the LDs obtained
from discrete Eq. (8) and continuum Eq. (29) and demonstrates

FIG. 9. Discrete (symbols) and continuum (lines) LDs obtained
from Eqs. (8) and (29), respectively, for two different growth times
and three different values of α (0.05, 0.1, and 0.2), at fixed ε = 0.1
and for ps = v in Eq. (8). For sake of clarity, only one data point out
of two is shown.
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their excellent quantitative correlation. The LD shapes are
almost identical; however, the continuum LDs are slightly
shifted toward smaller lengths. This is explained by the fact
that in the continuum approximation, the NWs are assumed to
emerge with zero length while actually they nucleate with a
minimum length of 1 ML. We note that our continuum theory
treats only the nucleation rate at zero length and tall enough
nanowires with lengths n 	 1, neglecting a transition region
(NWs of length one in our case) [15,30]. Because of that,
continuum LDs are insensitive to the parameter ps introduced
in Sec. II. As seen in Fig. 3, different ps values do not change
much the LD profiles but affect their expectations, i.e., the
positions of the LD peaks. Recall that good fits are also
obtained for the universal LD shapes, as shown in Figs. 7
and 8.

The variances of the LDs obtained numerically as the long
time asymptotics to the exact Eq. (11) and from Eq. (35) are
extremely close. We find that the former is independent of
our parameter ps and that, whatever the values of ε and α,
the difference between the two is very close to 1/24. This is
strongly reminiscent of the corresponding factor 1/12 found
in Ref. [25] when studying analytically the LDs of very long
consecutive segments grown for equal times in individual NWs
[note also that the corresponding approximate variance, given
by Eq. (56) of Ref. [25], is precisely double that given by
Eq. (35) for infinite α], and we suspect that this could be
demonstrated by using similar methods.

VIII. CONCLUSIONS

In conclusion, we have demonstrated by three different
methods that nucleation antibunching in individual NWs,
described by the antibunching parameter ε, completely sup-
presses the Poissonian broadening of LDs within ensembles
of NWs. The initial nucleation randomness, described by
the parameter α, affects the LDs forever, which is why the

asymptotic variances and the LD shapes depend on the two
parameters ε and α. However small these parameters may
be, the LDs finally acquire time-independent shapes rather
than spread infinitely with growth time. Numerical simulations
over large ensembles of NWs and two different analytical
approaches based on discrete and continuum rate equations
yield very similar results. Recent experimental results confirm
qualitatively our predictions by showing sub-Poissonian LDs
of Ga-catalyzed GaAs NWs with a mean length of 4300 nm
[39]. However, quantitative comparison with these data re-
quires some care. In our analysis, we used a time-independent
antibunching parameter throughout the entire growth process,
while the GaAs NWs of Ref. [39] grow also in diameter, which
affects the ε value. In addition, we assumed a time-independent
NP for forming the first NW ML. This corresponds to the VLS
regimes with long incubation times for NW growth (small α).
Intermediate growth modes require further studies.

In our presentation, we used the language of VLS NWs
growing in the mononuclear regime. We believe, however, that
our results may have a broader range of application in systems
whose NPs are given by the Zeldovich nucleation rate with
a depletion effect that determines the degree of antibunching
[40–42]. This central feature requires (i) a nanosized catalyst
or other individual “growth regulator” and (ii) mononuclear
growth. Overall, the sub-Poissonian size distributions pre-
sented here open up an interesting pathway for improving
size homogeneity within ensembles of nanostructures.
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