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Generalized theory of smallest diameter of metallic nanorods
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This paper reports a generalized theory of the smallest diameter of metallic nanorods from physical vapor
deposition. The generalization incorporates the effects of nanorod separation and those of van der Waals
interactions on geometrical shadowing. The generalized theory relies on approximations to be in closed form.
Numerical solutions of governing equations with no approximations verify the accuracy of the closed-form theory.
Further, experiments of physical vapor deposition validate the theory in terms of the diameter as a function of the
separation of nanorods. In contrast, the previous theory for idealized geometrical shadowing [X. B. Niu et al.,
Phys. Rev. Lett. 110, 136102 (2013)] excludes any dependence on nanorod separation and predicts the diameter
to be about ½ to ⅓ of what the generalized theory does.
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I. INTRODUCTION

The diameter of metallic nanorods from physical vapor
deposition (PVD) is a critical quantity that defines their func-
tionalities, such as mechanical strength [1–3] and sensitivity
in surface-enhanced Raman spectroscopy [4–6]. Conventional
PVD processes typically lead to the growth of thin films [7,8].
Under glancing angle deposition (GLAD), PVD processes
result in the growth of nanorods [9,10]. As atoms arrive
on a substrate with a glancing angle that is close to 90◦,
they land at peaks and avoid valleys due to geometrical
shadowing effects. As an effect of positive feedback, the
peaks grow into nanorods due to geometrical shadowing. In
the processes of nanorod growth, multiple-layer surface steps
form and impose three-dimensional (3D) Ehrlich-Schwoebel
(ES) barriers [11,12] that are larger than the conventional ES
barriers from monolayer surface steps [13,14].

The diameter of nanorods is the smallest when the 3D
ES barriers dominate or, equivalently, when multiple-layer
surface steps bound the top of nanorods [15] under a given
geometrical shadowing condition. The geometrical shadowing
goes to complete, or ideal, as the incidence angle approaches
90◦. Under this idealized condition, all atoms will be deposited
on the top surface of nanorods with none reaching their
side surfaces, independent of nanorod separation. For such
idealized geometrical shadowing, we recently reported a
closed-form theory of the smallest diameter [15].

Going beyond the idealized shadowing condition, here we
report a generalized theory, in closed form, with nonideal
shadowing conditions and with the effects of van der Waals
(vdW) interactions. Figure 1 schematically illustrates the gen-
eralization of a nanorod growth process. The direct deposition
on the top results in a diameter of the core (orange in Fig. 1),
which is governed by our previous theory [15]. The deposition
on the sides gives the thickness of the shell (tan in Fig. 1) and
it depends on the separation of nanorods. Further, due to vdW
interactions, the atomic flux on the top is greater than on the
side of nanorods, as indicated by the denser flux lines in Fig. 1.
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Conceptually, the top surface of a nanorod advances at a rate
that is higher than the deposition rate because of the denser
flux lines; the amount of diffusion off the top surface and
down the sides is small, as shown previously [15]. Further,
under quasi-steady-state growth, the diameter of the nanorods
is dictated by (1) its vertical growth rate, which is the rate that
its top surface advances, and (2) the total amount of atoms it
receives, which depends on the nanorod separation.

In the following, we first derive the closed-form theory
of the flux on the top of nanorods to account for the vdW
interactions, then use this theory to derive a generalized theory
of nanorod diameter that is also in closed form. Following the
formulation of the generalized theory, we carry out numerical
calculations to verify the theory and PVD experiments to
validate the theory.

II. THEORY AND VERIFICATION

As the first step of formulating the expression of effective
deposition flux to account for the vdW interactions, we
consider a system consisting of an incoming atom and a large
flat substrate. As shown in Fig. 2, an incoming atom on the
x-z plane has a velocity of magnitude V0 and a direction that
forms angle θ with z. Due to vdW interactions, its trajectory
deviates from the straight broken line to the curved solid line.
Although the vdW interaction between two atoms decays with
the sixth power of distance, the interaction between an atom
and a large flat surface (or semi-infinite solid) decays with
the third power of distance. For the system in Fig. 2, the
interaction energy E(z) is −C/z3 [16–18]. For copper-copper
interactions, as the prototype in this paper, a typical value of
C is 2.1 × 10−3 eV nm3 [19]. In PVD processes, the distance
between substrate and source is of the order of a fraction of
a meter. The interaction energy at such a large distance is
practically zero. As the atom approaches the surface, energy
conservation leads to the following equation of motion:

dz

dx
= −

√
2C
mz3 + V 2

0 cos2θ

V0 sin θ
, (1)

where m and V0 are the mass and the initial speed of the atom,
respectively.
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FIG. 1. Schematic of nanorod growth, showing atomic flux (green
lines) in a vertical cross section that cuts through the center of three
nanorods in the front.

In order to achieve a closed-form theory, we consider two
segments of the trajectory using approximations. In one seg-
ment, the initial kinetic energy is relatively larger in magnitude
than the vdW interaction energy. As an approximation, the
equation becomes

dx

dz
= − tan θ

(
1 − C

mz3V 2
0 cos2θ

)
. (2)

In the absence of the vdW interactions, the equation of
motion is

dx

dz
= − tan θ. (3)

The lateral distance traveled by the atom according to
Eq. (2) is smaller than that according to Eq. (3) by amount
�1, which is also shown in Fig. 2. From Eqs. (2) and (3), we
have

d�

dz
= C sin θ

mz3V 2
0 cos3θ

. (4)

As the atom arrives at a vertical distance zc,

�1 = C sin θ

2mz2
cV

2
0 cos3θ

. (5)

In the other segment of the trajectory, the vdW interaction
energy is larger than the initial kinetic energy in magnitude.
As an approximation, Eq. (1) becomes

dz

dx
= − 1

V0 sin θ

√
2C

mz3
. (6)

FIG. 2. Schematic of trajectory deviation of an incoming atom
toward a flat substrate by �, due to vdW interactions.

FIG. 3. Comparison of closed-form theory of Eq. (9) with
numerical solutions of Eq. (1), as a function of angle θ and initial
kinetic energy of the incoming atom.

As the atom travels from vertical position zc to z = 0, the
lateral distance it travels according to Eq. (6) is smaller than
that according to Eq. (3) by the amount �2, as shown in Fig. 2:

�2 = zc tan θ − 2

5
V0 sin θz

5
2
c

√
m

2C
. (7)

We choose zc to be the point when the vdW interaction
energy and the initial kinetic energy due to vertical motion
(that is, mV 2

0 cos2θ/2) are equal in magnitude. As a result of
this choice,

zc =
(

2C

mV 2
0 cos2θ

) 1
3

. (8)

The sum of �1 and �2 approximately describes how much
the trajectory of an atom is deflected:

� = �1 + �2 = 17
20zc tan θ. (9)

To verify the approximate expression of Eq. (9), we also
numerically solve Eq. (1). As shown in Fig. 3, the approximate
expression is accurate for glancing angles beyond 80◦ and for
typical kinetic energies around 0.2 eV [16,20–22]; below 80◦,
the deflection becomes unimportantly small. It is important to
note that the deflection can be as large as 100 nm, which is
comparable to typical diameters and separations of nanorods
and is therefore consequential for the growth of nanorods.

Having established the closed-form theory of deflection on
a flat substrate and verified its accuracy, we next extend the
theory to more realistic cases of nanorods in three dimensions.
To obtain a closed-form theory, we consider a tall and isolated
nanorod, as shown in Fig. 4. For this system, the vdW
interaction energy E is primarily from the interaction between
the incoming atom and the nanorod, as opposed to between
the nanorod and the substrate, and is given by

E(x,y,z) =
∫∫∫⊙ −ρC6

r6
dW, (10)

where r is the distance between the incoming atom and the
volume element dW of the nanorod, and ρ is the density of
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FIG. 4. Schematic of the trajectory deviation of an incoming atom
toward a nanorod, due to vdW interactions, from two initial locations.

the nanorod. The interaction constant C6 scales with C, and
for face-centered-cubic materials, ρC6 = 6C/π .

Based on the principle of energy conservation, we have
an equation of motion similar to Eq. (1). In order to achieve
a closed-form theory, we note that the vdW interactions are
the most effective only when the atom is in close proximity
to the top surface of the nanorod, and further the strongest
interactions come from the volume elements of the nanorod
that are immediately below the atom. Therefore, instead of
using the nanorod in Fig. 1, we use only the core of the nanorod
as shown in Fig. 4. As an approximation in deriving the front
deflection �f , the interaction energy between an atom and the
nanorod is

E(x,y,z) ≈ E(0,0,z). (11)

Since the core diameter lm is typically much larger than a
nanometer, lm � z when the interactions are strong. Therefore,
Eq. (11) approximately becomes

Elm�z(0,0,z) = − C

z3

(
1 − 6πz3

l3
m

)
. (12)

The critical height zcn, at which the kinetic energy and the
vdW interaction energy are equal in magnitude, is therefore

zcn =
(

1
1
z3
c
+ 6π

l3
m

) 1
3

. (13)

Within the short distance of zcn, the top surface of the
nanorod affects the motion of the atom approximately in the
same way as a large flat surface does. Therefore, we use Eq. (9)
to correlate the deflection �f with zcn,

�f = 17

20

(
1

1
z3
c
+ 6π

l3
m

) 1
3

tan θ. (14)

In deriving the back deflection �b, we note that the vertical
force on the incoming atom dictates the deflection. As the atom
is close but not directly above the top surface area in x-y space,
the vertical force from one nanorod is the same as ½ of two
nanorods symmetrically distributed around the atom, as shown
in Fig. 5. As an approximation, the two nanorods of diameter

FIG. 5. Approximate representation of the vdW interaction be-
tween an atom and nanorod when the atom approaches the nanorod
surface.

lm are assumed to interact with the incoming atom in the same
way as one nanorod with a cross-sectional area of πl2

m/2 that
is directly below the atom. The deflection of the atom comes
primarily from the short-range interactions, corresponding to
�2 of Fig. 2 when the vdW interactions dominate over the
initial kinetic energy. Following the same steps in deriving
Eq. (7) and Eq. (14), we have

�b = 3

5

(
1

2
z3
c
+ 3π√

2l3
m

) 1
3

tan θ. (15)

Given the front and back deflections in Eq. (14) and
Eq. (15), the effective deflection when the incoming atom is
on the x-z plane � = �f − �b is therefore

� =
[

17

20

(
1

1
z3
c
+ 6π

l3
m

) 1
3

− 3

5

(
1

2
z3
c
+ 3π√

2l3
m

) 1
3
]

tan θ. (16)

Since lm � zc, we approximately have

� =
[

17

20

(
1 − 2πz3

c

l3
m

)
− 3

5

1
3
√

2

(
1 − πz3

c

2
√

2l3
m

)]
tan θzc.

(17)

When the incoming atom is off the x-z plane, we assume
that the deflection follows the same expression with lm replaced
by the thickness along the x direction. That is,

�(y) =
[

17

20

(
1 − πz3

c

4y3

)
− 3

5

1
3
√

2

(
1 − πz3

c

16
√

2y3

)]
tan θzc.

(18)

For a given top surface in Fig. 4, it receives atomic flux
from an effective area Ae:

Ae = 2
∫ xc

0
(�(y) + 2y)dx, (19)

where xc is the upper limit where the thickness y along the x

direction is equal to zc; this is to ensure that lm � zc is valid

033401-3



FENG DU, PAUL R. ELLIOTT, AND HANCHEN HUANG PHYSICAL REVIEW MATERIALS 1, 033401 (2017)

at least approximately. Assuming the minimum thickness yc is equal to zc, Eq. (19) can be integrated as

Ae = πl2
m

4

{
1 + 1

5

[(
17 − 12

3
√

2

)
zc

πlm
+

(
3

5
√

64
− 17

)
z3
c

l3
m

]
tan θ

}
≈ πl2

m

4

{
1 +

[
0.48

(
zc

lm

)
− 3.14

(
zc

lm

)3]
tan θ

}
. (20)

That is, the effective area is larger than the nominal surface
area by a factor f , which is also the ratio of the effective flux
Fe on the top surface over the nominal flux F :

f = Fe

F
= 1 +

[
0.48

(
zc

lm

)
− 3.14

(
zc

lm

)3]
tan θ. (21)

As given in [15], the core diameter of nanorod lm is
given by

lm =
(

10

α2
ln

n

2

v3D

f F

) 1
5

, (22)

where α is the geometrical factor and α = π/4 for circular
cross sections, v3D is the diffusion jump rate of adatoms over
multiple-layer surface steps, and n is the number of layers of
the nanorod. Typically, n = 2000 and its variation does not
strongly affect lm [15]. The two Eqs. (21) and (22) allow the
determination of lm and the factor f . We note that Eq. (22)
is valid only when the critical size of nucleation is one or,
equivalently, when the product of dimer dissociation time and
the number of times a surface site is visited by each adatom
is much larger than the time interval between two deposition
events on the surface [23]. For typical deposition conditions
of Cu nanorod growth—deposition rate of 1.0 nm/s, substrate
temperature of 300 K, surface dimension lm of 15 nm, and
dimer binding energy of 0.45 eV [24]—the product is 6.7 ×
10−1 s and the time interval is 1.7 × 10−4 s. Since 6.7 × 10−1

is much larger than 1.7 × 10−4, Eq. (22) is valid under typical
conditions of metallic nanorod growth.

As a verification, we have numerically solved the equation
of motion with the energy expression of Eq. (10). Based on the
relative insensitivity to the kinetic energy as shown in Fig. 3,
we choose one kinetic energy of 0.2 eV in the following to
verify the closed-form theory of Eq. (21). As Fig. 6(a) shows,
the closed-form theory is accurate for all incidence angles
as long as the diameter is sufficiently large, i.e., larger than
15 nm. Even for the smaller diameter of 10 nm, the closed-
form theory is still accurate as long as the incidence angle is
below 88◦.

Having verified the closed-form theory in Eq. (21) for the
nanorod configuration in Fig. 4, we now extend the verification
to a core-shell nanorod. Because the vdW interactions are most
effective only at short distances, we expect the theory to be
valid. To verify, we have numerically solved the equation of
motion of an atom moving toward a core-shell nanorod at
different shell angle β, as shown in Fig. 6(b). The numerical
results show that this approximation is indeed valid provided
that β is below 60◦; this condition is satisfied according to our
experimental characterizations [15]. So, the interaction with
the shell of the nanorod is ignored in the following numerical
calculations.

Next, we choose a diameter of 15 nm and verify the
theory as a function of the separation of periodic nanorods
in hexagonal packing, for various incidence angles. In the

numerical solution, we include only the interactions with
nanorods within a cutoff distance of 15 nm, for the numerical
value of factor f is unchanged even if the cutoff distance is
doubled to 30 nm. As Fig. 7(a) shows, the theory is accurate
once the separation is sufficiently large. Even for the case
of 89◦, the difference between the closed-form theory and
numerical solutions is within 10%. We note that in reality the
separation will be at least as large as the diameter of nanorods,
which is about three times that of the core diameter lm, as
the generalized theory shows later in this paper. This means
that the separation of nanorods in reality does fall into the
range where the theory is accurate. While nanorods can be

FIG. 6. Comparison of closed-form theory of Eq. (21) with
numerical solutions of the equation of motion (a) as a function of
angle θ for various diameters of a cylindrical nanorod and (b) as a
function of angle β of a core-shell nanorod as shown in the inset, for
various incidence angles; lm = 15 nm.
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FIG. 7. Comparison of closed-form theory of Eq. (21) with
numerical solutions of the equation of motion (a) as a function of
separations of hexagonally arranged periodic nanorods for various
incidence angles, with lm = 15 nm and (b) as a function of the
inclination angle γ of hexagonally arranged periodic nanorods for
various incidence angles, with Ls = 80 nm and lm = 15 nm.

vertical, as shown in Fig. 1, they often are inclined with an
angle γ relative to the substrate normal, as shown in Fig. 8. For
inclined nanorods that are in hexagonal packing on a substrate,
the numerical solutions verify that the closed-form theory is
accurate also; see Fig. 7(b).

Having derived and verified the closed-form theory of
factor f , we next derive a generalized theory of nanorod
diameter Lm which adds the shell element onto the nanorod
core lm. For periodically arranged nanorods, each nanorod
effectively receives the atomic flux of a substrate area As . This
effective area depends on the separation Ls and how atomic
flux arrives. For hexagonally patterned nanorods, which result
from glancing angle incidence from the entire 2π range of the
azimuthal angle, As and Ls are related according to [25]

As = (
√

3/2)L2
s . (23)

The rate of deposition in this area, FAs , has to match the
growth rate at the top of nanorod f F over the cross-section

FIG. 8. Schematic of inclined nanorods.

area of the nanorod (π/4)L2
m in order to maintain a quasi-

steady-state shape of the nanorod. That is,

F

(√
3

2

)
L2

s = f F

(
π

4

)
L2

m or

Lm =
√

2
√

3

πf
Ls. (24)

For inclined nanorods (Fig. 8), which result from glancing
angle incidence with a fixed azimuthal angle, the thermo-
dynamically preferred top surface, such as {111} for face-
centered-cubic metals, is parallel to the substrate [15]. When
two nanorods are aligned along the direction of deposition flux,
the right nanorod effectively shadows the left. When the two
are misaligned, the shadowing is less effective. Our theory
corresponds to the most effective shadowing and thereby
the smallest diameter. Under the aligned condition, the left
nanorod receives atomic flux from an effective area As =
Ls0Lm. The rate of deposition in this area, N = FLs0Lm,
has to match the growth rate at the top of nanorod f F along
the vertical direction, or f F/ cos γ along the axial direction
of the nanorod. Since Ls0 = Ls/ cos γ , we have

FLs0Lm = f F

cos γ

π

4
L2

m or

Lm =
(

4

πf

)
Ls. (25)

According to Eqs. (24) and (25), Lm linearly scales with
Ls . The scaling factor is

√
f when the incidence flux comes

from all possible azimuthal angles, and it is f when the
incidence flux comes from one particular azimuthal angle. The
numerical factor of order 1 is slightly larger than one because
nanorods of circular cross section with Lm = Ls cannot fill
all the space. These results are applicable when a quasisteady
state is possible—that is, the nanorods will grow taller with
the same diameter and shape. For sufficiently small van der
Waals interactions, such a quasisteady state is impossible and
Eqs. (24) and (25) are no longer valid; our lattice Monte
Carlo simulations have verified this impossibility. With the
effects of van der Waals interaction, the quasisteady condition
is possible when the separation Ls is constant. Due to
shadowing and fluctuations of deposition flux over space,
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some nanorods lose out, so Ls can change during growth.
Consequently, the quasisteady state Lm changes with Ls during
growth.

III. EXPERIMENTAL VALIDATION

To validate the closed-form theory, we deposit Cu nanorods
using physical vapor deposition. The substrates are Si {100}
wafers (Nova Wafers) where the substrate normal is angled
at 87, 88, and 89◦ relative to the deposition flux. A nominal
deposition amount for Cu (99.99% Kurt J. Lesker) of 500 nm
is used at a rate of 1.0 nm/s, which is determined by a quartz
crystal microbalance. Before Cu is deposited, SiO2 (99.99%
KJ Lesker) is deposited on the wafers to a nominal amount of 5
nm at 0.1 nm/s to act as heterogeneous nucleation sites. These
depositions are performed in a custom electron-beam physical
vapor deposition system with a source to substrate distance
of 35 cm. The depositions occur at a vacuum level of 2 ×
10−6 ± 1 × 10−6 torr, beginning at 295 K with no substrate
temperature control. The substrate temperature increases to
315 K during deposition. Figure 9 shows scanning electron
microscopy (SEM, Hitachi S-4800) images of well-separated
Cu nanorods deposited at 87, 88, and 89◦.

To measure the size and separation of nanorods, SEM
images are taken of nanorods from a normal view and from
a side view. For each measurement, a pair of nanorods is
selected from normal view images by drawing lines along the
deposition direction and spacing them to the diameter of a
blocking nanorod in front. Two nanorods are close to perfectly
aligned when the lines fall on or outside the edges of the second
nanorod. Figure 10(a) shows SEM images of the measure-
ments, and compares them to the values used in the theory in
Fig. 10(b). The nanorod closer to the deposition source (right)
blocks much of the deposition from landing on the side of the
second (left) with deposition landing primarily on the top.

The spacing between the nanorods is determined by
measuring the distance from one nanorod tip to the second,
parallel to the substrate LsT . This is conducted with the image
processing tool ImageJ in postprocessing. From this length, the
nanorod spacing parallel to the nanorod axis Ls is determined
by Ls = LsT cos γ . The tip is chosen as the measurement
location as it better represents the growth conditions at the
end of the deposition and is a clearly defined and visible point
in images. Attempts to measure Ls0 directly results in greater
error due to the center line of nanorods at the substrate being
difficult to determine from SEM images. As the tip locations
in normal images are assumed to be the same height off the

FIG. 9. SEM images of Cu nanorods of 500 nm nominal
deposition taken normal to the substrate. The angle of deposition
is (a) 87◦, (b) 88◦, and (c) 89◦. The scale bar is 250 nm.

FIG. 10. SEM images of nanorods taken (a) normal to the
substrate and (b) from the side, illustrating the measurements LsT ,
Lm and their relation to Ls , Ls0, γ . The scale bar is 100 nm.

substrate, variations in this height can lead to a small difference
between the measured LsT and the value of Ls0. The resulting
error in Ls is determined to be ±15 nm based on the standard
deviation of the heights of nanorods. The diameter Lm is

FIG. 11. Comparison of experimental data with closed-form
theory for (a) nanorod diameter vs separation and for (b) factor f

for three deposition angles.
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measured at approximately ¼ of the length from the tip of
the nanorod with an error of ±4 nm.

Figure 11(a) shows experimental data of nanorod diameter
vs separation under different deposition angles. Based on the
theory developed in Ref. [15], the diameter of the nanorod
core in Fig. 1 can be determined by including the modification
of effective flux given in Eq. (21), which is about 10.8 nm
for 87◦ deposition, 10.9 nm for 88◦ deposition, and 11.5 nm
for 89◦ deposition. The factor f has a value of about 2.1
for 87◦ deposition, 3.0 for 88◦ deposition, and 4.7 for 89◦
deposition. According to Eq. (25), the diameter of nanorods is
related to the separation by 0.60Ls for 87◦ deposition, 0.42Ls

for 88◦ deposition, and 0.27Ls for 89◦ deposition. As shown
in Fig. 11(a), the experimental results validate the theory of
Eq. (25) in terms of linear dependence and slope. Going one
step further, we determine the average slope—and thereby
the factor f —using the experimental data in Fig. 11(a) and
compare it with the theoretical prediction for various incidence
angles. As shown in Fig. 11(b), the experimental result and the
closed-form theory agree in terms of f . This agreement further
confirms the validity of the closed-form theories of the factor
f and the diameter Lm.

IV. CONCLUSION

In conclusion, we have reported a generalized theory of
nanorod diameter. The generalized theory incorporates non-
idealized geometrical shadowing below 90◦ and incorporates
the effects of vdW interactions. To obtain an analytical or
closed-form theory, we have made approximations to capture
the most important mechanisms. Numerical solutions serve
to verify the theory and confirm the reasonableness of the
approximations. Further experimental validations serve to
show that the closed-form theory can predict the diameter of
nanorods in experiments. In contrast to the previous theory for
idealized geometrical shadowing [15], the generalized theory
predicts nanorod diameters that are a factor of 2 or larger.
The theoretical formulations are generic for all metals, and
the verification and validation are for copper as one prototype
material.
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