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Crystal growth in fluid flow: Nonlinear response effects
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We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-
dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always
suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity
of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth,
due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly
temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium
kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow
on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
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Crystallization, a paradigmatic first-order phase transfor-
mation, is of utmost importance in materials science and
engineering. Many materials, for example, most polymeric and
metallic materials of daily life, are produced from the liquid
state as their parent phase, in the presence of strong flow (e.g.,
in extrusion or casting processes). Since crystal growth governs
the evolution of the microstructure, detailed knowledge of how
crystallization is affected by the processing conditions offers
an effective way to design and control material properties in
applications [1–5]. Flow effects have been studied extensively
for metallic melts, and they are in particular also relevant
for soft materials, where typical flow rates are of the order of
typical structural relaxation times. Yet, an understanding of the
microscopic principles of flow-induced changes to nucleation
and crystal growth still presents a challenge to statistical
physics.

Crystallization from the melt consists of two stages: nu-
cleation of an initial crystalline seed, and subsequent growth.
Despite its simplifications, classical nucleation theory (CNT)
continues to be a useful reference for nucleation [6]. The
effect of flow on nucleation as studied in simulation [7–11]
can reasonably well be understood by accounting for the
flow-induced changes in the near-equilibrium thermodynamic
quantities of CNT [12–15].

Crystal growth on the other hand needs to be discussed
as a nonequilibrium process that is strongly influenced by
external driving forces [16]. Once an initial crystal has formed,
in a sheared liquid crystal growth and flow-induced erosion
compete and lead to a nonequilibrium coexistence that depends
on temperature and flow rate [17]. It has already been em-
phasized that a near-equilibrium thermodynamic description
of flow-modified growth kinetics is not viable [17–19]. It is
therefore much less clear, how crystal growth changes under
strong fluid flow, and which are the governing microscopic
processes.

Here we present molecular-dynamics (MD) simulations
of crystal growth in a homogeneously sheared fluid, over a
wide range of temperatures and shear rates. We argue that
the nonlinear response of the fluid to the shearing force is
a relevant microscopic dynamical process that determines
a set of qualitatively different growth regimes. Strikingly,

we find that the growth velocity of the crystal in a deeply
undercooled fluid is a nonmonotonic function of the shear
rate. After an initial strongly temperature-dependent increase,
a regime of intermediate shear rates appears where the crystal
grows with a velocity that is nearly temperature independent.
It is rationalized as the result of strong shear thinning of
the undercooled fluid. This nonlinear-response effect has so
far, to our knowledge, been neglected in the modeling of
solidification processes. It is achieved once shear-induced
“surface erosion” and structural relaxation of the viscoelastic
melt compete. This regime of flow rates is of particular
relevance for soft materials, but can in principle also be reached
for sufficiently undercooled metallic melts.

We performed molecular-dynamics (MD) simulations of
a binary mixture that crystallizes into a B2 structure (CsCl
lattice). To provide a specific reference point, we use
an embedded-atom model of the intermetallic compound
Al50Ni50 [20], a material that is used in many applications, e.g.,
for turbines in aeroplanes or power stations. Al50Ni50 melts
congruently, so that crystal growth can be studied without any
constitutional effects. The model has also been extensively
studied in previous MD simulations, investigating its liquid
dynamics [21], glass-forming ability [22], quiescent crystal
growth [22–24], and disorder trapping [25]. Using N = 27040
particles in a box of average dimensions Lx : Ly : Lz = 1 : 1 :
6.4 and Lx ≈ 38 Å (employing periodic boundary conditions
in all Cartesian directions), seeded with an initial crystal that
is surrounded by liquid regions, we study crystal growth along
the normal of the (100) face (along the z direction). The
system is first prepared in its B2 state and relaxed to the target
temperature. Next, particles in the central third of the box
(Lz/3 ≈ 81 Å) are fixed, and the surrounding system is molten
at T = 3000 K before it is brought to the desired temperature
again.

Simple shear flow parallel to the interface is imposed by
assigning a fixed center-of-mass velocity to small fluid layers
(width 12 Å) at the z boundaries of the simulation box, while
keeping a layer of 10 Å fixed in the crystalline center. After
an initial transient (of about 100 ps), a homogeneous linear
velocity profile develops in the liquid, as shown in Fig. 1.
The shear rate, γ̇ , is extracted from the averaged velocity,
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FIG. 1. Snapshots of the simulation of crystal growth along the z

direction, in a fluid sheared in the y-z plane, for two different times.
Units are fixed by the microscopic relaxation time τ0 and the lattice
constant Lc (τ0 = 0.2 ps and Lc = 2.897 Å for Al-Ni [20]). Blue and
green lines indicate the positions of Ni and Al atoms, respectively,
over a small time window. Red lines indicate the average velocity of
the atoms along the z direction, highlighting the development of a
homogeneous linear shear profile in the fluid region.

γ̇ = ∂zvy . Data are analyzed in small time windows during
which the shear rate does not change appreciably. To release
latent heat as the crystal grows, we employ a profile-unbiased
thermostat [26] in slabs (of width 4 Å) parallel to the
interface [27]. A barostat along the growth direction keeps
pz = 0 and compensates for the volume expansion during the
crystallization process.

The time-dependent crystal-liquid interface position zI is
obtained from both the local fluid velocity, as the point where
|vy(zI )| < 0.05 Å/ps, and from the crystalline order-parameter
field, �(z), as the point where �(zI ) > 0.01. Here, �(z)
measures four-fold symmetry in the plane perpendicular to
the growth direction:

�(z) =
〈∑

i

δ(zi − z)
1

M(M − 1)

∑
j �=k

cos(8θijk)

〉
, (1)

where the sums over j and k extend over the nearest-neighbor
atoms of particle i (defined as those M atoms whose relative
distance is less than that of the first minimum in the liquid-state
pair distribution function), and θijk is the angle in the x-y
plane between the distance vectors �rij and �rik . The interface
positions obtained by both methods differ by about 5 Å,
indicating a hydrodynamic slip length, but give consistent
growth velocities.

The temperature- and shear-rate dependent growth velocity
vI (T ; γ̇ ) of the crystal is shown in Fig. 2 as a function of
shear rate γ̇ . Here and in the following, we use the time scale
of atomic vibrations, τ0 ≈ 0.2 ps to define a dimensionless
shear rate,1 the (bare) Péclet number Pe0 = γ̇ τ0. We briefly
remark on the behavior close to the equilibrium melting

1The time scales of single-particle vibrations, τ0, and that of
collective structural relaxation, τ , have been determined from the
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FIG. 2. Crystal-fluid interface velocity vI as a function of shear
rate Pe0 = γ̇ τ0 for different temperatures T as labeled. Labels (i) to
(iv) indicate for T = 900 K the different growth regimes discussed
in the text. Dashed lines are estimates from Eq. (2) for T � 1100 K.

temperature (Tm ≈ 1540 K in our model). Here, shear flow
always suppresses crystal growth, and the growth velocities
vI closely follow a quadratic dependence on γ̇ . The zeros of
the vI -versus-γ̇ curves identify a nonequilibrium crystal-fluid
coexistence [at a shear rate γ̇coex(T )] that has been discussed
earlier [17–19]. Crystal growth velocities close to Tm are
usually expressed in terms of thermodynamic free-energy
barriers, and it is tempting to relate the quadratic decrease of
vI to a shifted effective chemical-potential difference between
the liquid and the crystal (and hence to a process-dependent
effective undercooling [28]). However, the shear-induced
change in the strained crystal’s free energy is much too small
to quantitatively explain the simulation data [18].

For deeper undercooling, in particular, the situation is
far more complex: the growth rate displays a nonmonotonic
dependence on the shear rate at any fixed temperature,
with a maximum at a nonzero intermediate rate, and an
inflection point around γ̇coex. Between the maximum and
the coexistence point, the temperature dependence of the
growth rate is remarkably weak, i.e., the interface velocity
is described well by a temperature-independent master curve
vI (γ̇ ) in an intermediate shear-rate regime. This is unex-
pected from the point of view of thermodynamics (where
Boltzmann factors imply a temperature dependence when
keeping other parameters fixed), or from the strong slowing
down of the transport kinetics in the fluid that occurs upon
cooling.

To understand the mechanisms responsible for the non-
monotonic dependence of the growth velocity on the shear
rate, let us divide the vI -versus-γ̇ curves into four regimes,
as labeled in Fig. 2: (i) for slow shear, the suppression of
growth due to shear that is observed close to Tm, changes
to an enhancement below some temperature (T ≈ 1000 K

intermediate scattering functions in the quiescent fluid, at wave
vectors corresponding to typical interparticle distances.
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FIG. 3. Interface velocity vI as a function of temperature T , for
constant shear rates given by bare Péclet numbers Pe0 = γ̇ τ0 = 0
(squares), 0.02 (circles), and 0.05 (diamonds).

in the figure). (ii) At intermediate shear rates, vI decreases
towards zero with increasing γ̇ . The curves for T � 1200 K
approach a T -independent master curve for 0.03 � Pe0 � 0.1
(0.15 ps−1 � γ̇ � 0.5 ps−1). The interplay between (i) and
(ii) causes the maximum in the growth velocity for a finite
shear rate, visible at the lowest temperatures shown in Fig. 2(a).
(iii) The coexistence regime around vI (γ̇coex) = 0 becomes
broader in the sense that the depedence of the growth velocity
on shear rate becomes weak, i.e., near-stationarity of the
interface is achieved for a wider range of shear rates. (iv)
At larger shear rates, the crystal shrinks again.

For the explanation of regime (i) of Fig. 2, recall that
the undercooled liquid dynamics is characterized by slow
structural relaxation: density fluctuations decay on a time scale
τ � τ0. With decreasing temperature, τ increases much more
rapidly than expected from the high-temperature Arrhenius
behavior. Hence the mobility of atoms in the liquid drops
sharply, and the crystal-growth mechanism in the quiescent
liquid changes from thermodynamically limited around Tm to
kinetically limited at T � Tm. As shown in Fig. 3, the resulting
growth velocity vI (T ; γ̇ =0) exhibits a maximum as a function
of temperature (around T = 1200 K in our simulation)
[22,29].

Structural relaxation speeds up in the sheared fluid when the
(dressed) Péclet number Pe = γ̇ τ is of the order of the strain
required to break typical nearest-neighbor cages, γc ≈ 10%.
This is a well-known nonlinear-response effect in metallic
melts [30] and most viscoelastic fluids [31] that gives rise to
shear thinning—a pronounced decrease in the fluid’s shear
viscosity with increasing shear rate, as shown in Fig. 4 for our
system. All data shown in Fig. 2 for T � 1100 K correspond
to Pe � γc. As a result, particle mobility in the fluid is
enhanced by the flow, and the growth velocity vI increases
with increasing γ̇ initially for those T where the equilibrium
growth is limited kinetically.

Regime (ii) is essentially T -independent; this is clearly
seen in Fig. 3, where the curve for Pe0 = 0.05 approaches a
constant for low temperatures. As opposed to regime (i), vI (γ̇ )
now decreases with increasing shear rate, which indicates that
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FIG. 4. Bulk fluid viscosity η(γ̇ ) as a function of shear rate,
Pe0 = γ̇ τ0. Symbols mark the points where for each temperature,
γ̇ = γ̇coex, i.e., the points where vI = 0. A horizontal dashed line
indicates the equilibrium melting-point viscosity ηm.

a qualitatively different process limits the growth. Hydro-
dynamic momentum transport across the interface region is
governed by the rate r+ ∼ η/L2ρ, where ρ is the fluid mass
density and L the interface width (L ≈ 10 Å in our simulations
for all state points). Note that at Tm, one gets r+ ≈ 1/τ0, the
natural scale for the rate of momentum transport in the crystal.
Assuming that the rate r+ limits the attachment of atoms to
the interface and hence the growth, and that it balances the
detachment rate at the nonequilibrium coexistence point, we
get

vI (γ̇ ) ∼ v0 · (η(γ̇ ) − η(γ̇coex)) τ0/L
2ρ, (2)

where v0 is a velocity scale set by the thermodynamic features
of the system (v0 = O(1 m/s) in our simulation). In Eq. (2),
we have accounted for the fact that the viscosity η(γ̇ ) depends
sensitively on the shear rate in the shear-thinning regime (ii).
At the same time, structural relaxation in the fluid becomes
nearly T -independent, since it is dominated by shear and
thus 1/γ̇ is the only relevant time scale. The fluid then flows
plastically, i.e., at the expense of a nearly constant yield stress
σy . As a result, also the shear viscosity η(γ̇ ) entering Eq. (2)
is nearly temperature-independent. Expression (2) is shown
for the lowest three temperatures in Fig. 2 (dashed lines),
evaluated using the viscosity of the bulk fluid (see below).
It gives a reasonable qualitative account for vI (γ̇ ) in the
range 0.04 � Pe0 � 0.1. For comparison, a thermodynamic
argument based on an effective free-energy barrier would not
account for the weak T dependence we observe. Equation
(2) naturally explains that in regime (ii), the growth velocity
decreases with increasing shear rate: for true yield-stress flow,
η(γ̇ ) ∼ σy/γ̇ , and thus vI ∼ 1/γ̇ up to a constant and weakly
dependent on temperature.

Equation (2) implies that the fluid viscosity determines the
nonequilibrium coexistence between the sheared liquid and
the crystal, region (iii). To corroborate this argument, we show
in Fig. 4 the shear-rate dependent viscosity of the bulk liquid,
as determined from separate MD simulations (in a system of

030401-3



RAPID COMMUNICATIONS

H. L. PENG, D. M. HERLACH, AND TH. VOIGTMANN PHYSICAL REVIEW MATERIALS 1, 030401(R) (2017)

FIG. 5. Nonequilibrium crystallization diagram for the sheared
Al50Ni50 fluid and B2 crystal in the temperature–shear-rate plane.
Colors indicate the growth velocity as labeled. The red line is a
quadratic fit for the coexistence line. The dashed line indicates the
cross-over from linear response to shear (left) to the regime of
nonlinear-response flow (right).

N = 5000 particles following the SLLOD equations of motion
[26]). Despite the fact that the bulk-liquid viscosity drops by
more than an order of magnitude over the range of shear rates
we investigate, the viscosity at the coexistence point (marked
by symbols in Fig. 4) only varies by about 20% around the
equilibrium melting-point viscosity ηm. Thus

η(γ̇coex) ≈ ηm. (3)

This implies that in regime (iii), the dependence of vI (γ̇ ) on the
flow rate is weak, as indeed observed in Fig. 2 for T � 1100 K.
It indicates a rate-controlled nonequilibrium coexistence that
is attributed to the non-Newtonian fluid behavior, and that is
different from a thermodynamical balance.

A coexistence point is intuitively expected since shear-
induced erosion of particles from the interface eventually
becomes strong enough to suppress any attachment. In agree-
ment with earlier simulations [17] and a recent model [32], a
nonequilibrium phase diagram is obtained in the T -γ̇ plane,
shown in Fig. 5. A quadratic fit (red line in Fig. 5), gives a good
description of Tcoex(γ̇ 2), extrapolating to Tcoex(0) ≈ 1531 K in
reasonable agreement with the value of Tm reported for the
model before [23]. The surface-erosion picture is consistent
with a weak γ̇ dependence of vI close to γ̇coex: as long
as shear-induced changes in the thermodynamic forces are
negligible, any fast enough shear rate will be sufficient to
erode fluctuations in the interface.

Only in regime (iv), effective thermodynamic forces again
dominate the crystallization process; they always lead to shear-
induced melting of the crystal. To the strongly sheared liquid,
an increased effective temperature Teff(γ̇ ) � T can be assigned
[33], leading to a reduced effective undercooling that controls
the growth velocity. Indeed, our data in regime (iv) closely
follows a single η-dependent curve, where the viscosity is a
proxy for the fluid’s effective temperature.

In conclusion, the growth velocity of a crystal is a
nonmonotonic function of the shear rate at fixed temperature.

Flow initially enhances crystal growth at sufficiently strong
undercooling, due to the enhanced particle mobility in the
fluid. In the presence of stronger flow, the hydrodynamics
of surface erosion causes a decrease in the growth velocity
as a function of shear rate that is insensitive to temperature.
This nonmonotonic dependence is rationalized as the result
of the pronounced nonlinear-response behavior of the non-
Newtonian undercooled fluid.

The strain supported by nearest-neighbor cages marks
the cross-over from the regime of small shear rates to
the nonlinear-response dominated regime. This cross-over
is reached once the dressed Péclet number (formed with
the structural-relaxation time rather than the timescale of
atomic vibrations) reaches Pe ≈ 0.1. The line corresponding
to Pe = 0.1 is shown in Fig. 5 (dashed line).

The mechanism we propose is very generic since it rests
solely on the fact that the liquid becomes shear thinning. This
is the case for most undercooled (viscoelastic) fluids, including
colloidal suspensions, soft materials, as well as metallic
melts. Our results point out that nonlinear-response effects
in the undercooled fluid likely should be taken into account
in effective coarse-grained models of rapid solidification
[34–36]. It is difficult to assess the actual shear rates in
experiments on metallic melts. Still, an enhancement of crystal
growth by (convective) flow has been reported in experiments
combining high-speed imaging, electromagnetic levitation
and microgravity conditions [28,37,38] to determine crystal
growth velocities of alloys in the presence of convective flow
on a mesoscopic scale. For the change in microscopic growth
kinetics that occurs at Pe ≈ 0.1, the relevant shear rate is
a local velocity gradient in front of the interface, extending
over about five to ten atomic layers in our model. Local fluid
flow velocities can be in excess of tens of m/s, indicating that
the nonlinear regime to right of the crossover curve in Fig. 5
might be reached in melts that can be undercooled sufficiently
far.

The temperature-independent growth regime in particular
is a signature of plastic yield-stress flow. It suggests the use of
controlled-flow conditions in applications where the speed of
crystallization needs to be adjusted separately from thermal
control. We expect this mechanism to apply also to more
complex systems and geometries, for example, in the presence
of concentration gradients [39]. In fact, Al50Ni50 is already
an example where the quiescent growth mechanism is an
intricate combination of attachment and intra-layer delayed
reorganization [24]. Although we observe disorder trapping
at the highest growth velocities, similar to the quiescent case
at strong undercooling [25,40], such details appear to leave
the qualitative appearance of the different growth regimes
as a function of shear rate unchanged. Our findings will be
essential to further explore unusual growth kinetics observed
in metallic materials, e.g., in Al-rich Al-Ni alloys where the
growth velocity decreases with increasing driving force and in
the presence of forced convection [41].

We acknowledge funding from Deutsche Forschungsge-
meinschaft (DFG) through grant He 1601/26. We thank Peter
Harrowell, Jürgen Horbach, and Jianrong Gao for discussions
and valuable comments, and Jürgen Brillo for a careful reading
of the manuscript.
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