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Using forces to accelerate first-principles anharmonic vibrational calculations
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High-level vibrational calculations have been used to investigate anharmonicity in a wide variety of materials
using density functional theory methods. We have developed an efficient approach for describing strongly
anharmonic systems using a vibrational self-consistent field method. By far the most computationally expensive
part of the calculations is the mapping of an accurate Born-Oppenheimer (BO) energy surface within the region
of interest. Here we present an improved method which reduces the computational cost of the mapping. In this
approach we use data from a set of energy calculations for different vibrational distortions of the materials and
the corresponding forces on the atoms. Results using both energies and forces are presented for the test cases of
the hydrogen molecule, solid hydrogen under high pressure including mapping of two-dimensional subspaces
of the BO surface, and the bcc phases of the metals Li and Zr. The use of force data speeds up the anharmonic
calculations by up to 40%.
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I. INTRODUCTION

Developing an accurate theoretical model for crystalline
solids requires going beyond the static lattice model and
including the effects of atomic vibrations. Usually this is
achieved within the harmonic [1,2] or quasiharmonic approx-
imations; the latter includes thermal expansion by making
the phonon frequencies volume dependent [3,4]. In many
materials and situations these approximations work very well.
However, they may be inaccurate if the vibrational amplitudes
are large. Large amplitudes may occur, for example, in mate-
rials that contain light elements, materials close to a structural
instability, or at high temperatures. Under such conditions
it may be necessary to include anharmonic vibrations in
the model. The mean-field vibrational self-consistent field
(VSCF) method proposed by Monserrat, Drummond, and
Needs [5] provides a sophisticated approach for computing
the anharmonic vibrational wave function and energy of
crystalline solids from first principles. This approach has been
applied successfully in several systems [6–10].

Within the Born-Oppenheimer (BO) approximation [11]
the electronic and nuclear motions can be separated, giving
two coupled Schrödinger equations. Application of the VSCF
method consists of two main tasks: mapping of the BO energy
surface (the “energy landscape”) that the nuclei move through,
and self-consistently solving the VSCF equations for the
anharmonic vibrational wave function and energy. Of these
two tasks, the former is by far the most expensive, as it
is usually accomplished by performing a large number of
single-point density functional theory (DFT) calculations and
fitting a functional form to the calculated energies. To ensure
that the fitted form of the BO surface is accurate, it is necessary
to converge the solution of the VSCF equations with respect to
the number of mapping points used. Reducing the required
number of mapping points reduces the computational cost
of mapping the BO surface. The development of a method
for increasing the accuracy of the fit for a given number of
mapping points would help in reaching this goal.

Here we propose a scheme for improving the accuracy of
the fitted functional form of the BO surface by making use of
the force data generated by the DFT calculations in addition

to the total electronic energy. Accurate forces are readily
available within plane-wave basis DFT [12]. The gradient of
the BO surface at each mapping point can be obtained from the
forces, which provides additional data that can be used in the
fitting process and therefore provides a better fit with negligible
additional cost. We have investigated the effectiveness and
cost of the VSCF method with forces (VSCF+f) and without
forces (VSCF) for several systems in which anharmonicity is
expected to play an important role: the hydrogen molecule,
solid hydrogen at 100 GPa, and the bcc phases of lithium
and zirconium, which exhibit soft modes. The effect of
including both 1-D and 2-D subspaces of the BO surface in
the calculations for solid hydrogen, corresponding to including
coupling between anharmonic phonons, is also considered.

As the lightest element, hydrogen is an excellent test
case for the VSCF+f method, as its vibrations have strong
anharmonic character, even at low temperatures. Several
ab initio studies of high-pressure phases of hydrogen, with
and without anharmonic effects, have been conducted recently
to determine the stable structure of the high-pressure phases
III and IV [13–16]. In particular, we use as test cases three
structures from previous work, labeled by their space group
and number of atoms in the primitive unit cell: Cmca-4,
Cmca-12, and C2/c-24. These are molecular phases arranged
in layers; the C2/c-24 phase is a candidate for phase III of
hydrogen [15]. Previous work has shown that anharmonicity
has a significant effect on the vibrational energy of these
structures [17,18]. The strongly anharmonic character of the
nuclear vibrations in hydrogen also implies that anharmonic
effects that cannot be described by simple 1-D mapping
of the BO surface could be significant. This provides an
opportunity to test the ability of the VSCF+f method to
reduce the computational cost of calculations including the
mapping of 2-D subspaces of the BO surface. The mapping of
2-D subspaces is expensive in general, and therefore we have
chosen the phase of solid hydrogen with the fewest atoms in
its unit cell, Cmca-4, as a test case for applying our improved
method to mappings of 2-D subspaces of the BO surface.

Lithium and zirconium both have body-centered-cubic
(bcc) phases that are unstable at 0 K, and are stabilized at
finite temperatures. This property is shared with other elements
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such as titanium and hafnium. In the case of Li, the structure
at zero temperature has recently been shown to be fcc, with
the phase transition to bcc occurring at around 70 K [19–22].
Zirconium, on the other hand, has a hexagonal-close-packed
(hcp) structure at room temperature, with the transition to bcc
occurring at around 1366 K [23]. In both materials, the bcc
phase is unstable at low temperatures due to the presence
of soft modes, which are dynamically stabilized at higher
temperatures. Soft modes inherently have strong anharmonic
character, and an accurate description of anharmonicity is
required to treat these modes and the phase transition to the bcc
structure. Several first-principles vibrational studies including
anharmonicity have been reported for Li, Zr, and other similar
elements [19,23–28]. The well-known presence of significant
anharmonic effects in the bcc phase of these materials makes
them suitable test cases for the VSCF+f method.

The rest of this work is organized as follows: In Sec. II we
outline the VSCF method and describe our implementation of
it. In Sec. III we describe the improved VSCF+f method and
the testing of it, which is the focus of the rest of this work. In
Sec. IV we compare results calculated using the VSCF+f and
standard VSCF methods. Applications to molecular and high-
pressure solid hydrogen are reported in Sec. IV A, mappings
of 2-D subspaces of the BO surface in the Cmca-4 hydrogen
phase in Sec. IV B, and the bcc phases of Li and Zr in Sec. IV C.
Finally, in Sec. V we summarize our results. All equations are
in Hartree atomic units, with h̄ = |e| = me = 4πε0 = 1.

II. THE VSCF METHOD

We work within the BO approximation in which the
electronic and nuclear motions are separated out, which leads
to the vibrational equation [5](∑

p,α

− 1

2mα

∇2
pα + Eel(R)

)
ψvib(R)

= Ĥvibψvib(R) = Evibψvib(R), (1)

where p and α label unit cells in the system and atoms within
a unit cell respectively, with mα the mass of the αth atom. R is
a collective vector of all the nuclear positions, ψvib(R) is the
vibrational wave function, and Evib is the vibrational energy
of the system. The electronic energy for a given R, Eel(R),
acts as the potential in the vibrational Hamiltonian Ĥvib, and
is generally known as the BO surface [5].

Typically, this equation is solved approximately using the
harmonic approximation by expanding Eel(R) up to quadratic
order in the displacement coordinates xpα = rpα − r0

pα . Here,
rpα and r0

pα are, respectively, the displaced and equilibrium
nuclear positions. We calculate the harmonic potential by
determining the matrix of force constants ∂2Eel(R0)

∂xpα;i ∂xp′α′ ;j
, using a

finite differences method [29], and transforming to reciprocal
space to give the dynamical matrix:

Diα;jα′ (q) = 1

Np

√
mαmα′

∑
p,p′

∂2Eel(R0)

∂xpα;i∂xp′α′;j
eiq·(Rp−Rp′ ). (2)

Rp is the position vector of the pth unit cell, Np is the number
of unit cells in the system, and i,j run over the Cartesian

directions. The eigenvectors, wqn;iα , and eigenvalues, ωnq, of
Diα;jα′ (q) can then be found, with n labeling the phonon branch
index [5].

Ĥvib is then reexpressed in terms of harmonic normal or
phonon coordinates given by

unq = 1√
Np

∑
p,α,i

√
mαxpα;ie

−iq·Rpw−qn;iα. (3)

Within the harmonic approximation, this gives a set of nonin-
teracting simple harmonic oscillators of frequencies ωnq. In the
VSCF method, the principal-axes approximation [30] is used
to include anharmonic effects. Assuming that anharmonicity is
a perturbation to the harmonic approximation, and therefore a
description of the BO surface in terms of many 1-D subspaces
is a good approximation, we expand the BO surface as a series
of N -D subspaces, using a basis given by the harmonic normal
modes [5]:

Eel(u) = Eel(0) +
∑
n,q

Vnq(unq)

+ 1

2

∑
n,q

∑
n′q′
�= nq

Vnq;n′q′(unq,un′q′) + · · · . (4)

u is a collective mapping amplitude vector. The reexpression
of Eel(R) allows the mapping of the BO surface along the
directions corresponding to the harmonic phonons and builds
up an expression for Eel(R), by means that will be discussed
below. With this expression in hand, the energy can be
minimized, using a Hartree product of 1-D states |φnq(unq)〉
as a trial wave function. Solving the resulting VSCF equations
gives a set of anharmonic vibrational eigenstates, with their
associated energy eigenvalues and wave functions [5,31].
A perturbation theory can be constructed on these states,
providing a further correction to the energy, and a partition
function can be constructed, allowing the anharmonic free
energy to be calculated at any finite temperature [5].

III. IMPROVEMENTS TO THE VSCF METHOD

In order to solve the VSCF equations we require the form
of Eel(u). In previous work using this method, this is typically
obtained using DFT to calculate Eel(u) for various values of
u (i.e., various sets of atomic positions), and then fitting a
functional form to these DFT energy results [6,9,10]. To find
the form of the 1-D terms Vnq(unq), calculations are performed
at several mapping points along the direction given by the
appropriate harmonic phonon; to find the form of the 2-D
terms Vnq;n′q′(unq,un′q′), calculations must be done at points on
a grid, and so on. However, these calculations rapidly become
computationally expensive as we include more terms in the
expansion of the BO surface, and therefore an increasingly
large number of calculations is required. This restricts us to
including very few or none of the 2-D or higher-dimensional
terms for all but the smallest systems.

Even when 2-D and higher terms are neglected, the mapping
of the BO surface is by far the most computationally expensive
part of using the VSCF method. In order to obtain an accurate
fit to the BO surface, and therefore an accurate solution to the
VSCF equations, it is necessary to converge the anharmonic
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correction to the energy, 	Eanh, with respect to the number of
mapping points used per mapping direction, which introduces
further computational expense. Reducing the computational
cost of the mapping is therefore extremely desirable in order to
speed up the calculations. One way to reduce this cost would
be to try to reduce the number of mapping points required
to reach convergence, by utilizing information other than the
energy from the DFT calculations, such as the calculated forces
on the atoms.

The gradient of the BO surface at a given value of u can be
calculated from the forces on the atoms in the corresponding
atomic configuration:

∂Eel(u)

∂unq
= −

∑
pα;i

1√
Npmα

fpα;ie
iq·Rpwqn;iα, (5)

where fpα;i is the force on the atom labeled by p,α in
Cartesian direction i. Information about the forces can then
be fed into the fitting procedure, which then increases the
accuracy of the fit. In previous work, the DFT energy values
have typically been fitted using a cubic spline [5]. In this
work we investigate using cubic and quintic splines in the
fitting procedure, to see whether either generally produces
a more accurate fit. Utilizing a seventh-order (heptic) spline
was also tested, but this approach suffered from overfitting
and performed significantly worse than the cubic and quintic
splines. For this reason, heptic splines will not be discussed
further in this work.

Utilizing forces to improve the mapping of the 1-D terms
in the expansion of the BO surface in Eq. (4) is a simple
extension of the usual splining procedure, but the task becomes
more complex when trying to improve the mapping of the
higher-dimensional terms. The only higher-dimensional terms
considered here are 2-D. A functional form for the BO surface
is found by using a series of 1-D splines along one direction,
with the coordinate u1, and then using the results to fit a spline
along the second direction, with the coordinate u2. Typically
this would require knowledge of the cross derivative ∂2Eel(u)

∂u1∂u2
at each sampling point [32]. We avoid this requirement by
using a simple cubic spline to obtain the form of the function
∂Eel(u)

∂u2
|
x2

(u1). This represents the gradient along the direction
defined by u2 as a function of u1, for a fixed value of u2 = x2.
Obtaining this function allows forces to be used in the fit along
u2. To ensure the accuracy of the calculations including 2-D
terms, we converge the correction to the anharmonic vibra-
tional energy due to these terms, 	E2-D = Eanh

2-D − Eanh
1-D, with

respect to the number of mapping points used per direction.
Although including the force data in the fitting process

should reduce the number of calculations required to obtain
convergence, the accuracy of the forces themselves must be
considered. If a variational method is used to minimize the total
energy in the DFT calculations, the energy itself will be correct
to second-order errors in the charge density. However, the
error in the forces is instead linear with the error in the charge
density [12], and calculations must be converged to within
a strict tolerance to obtain accurate forces. This requirement
could potentially cancel out the reduction in computational
cost gained by reducing the number of mapping points if the
convergence tolerance is too strict, and our results include tests
to determine whether this is true or not. These tests showed

that this issue did not negatively affect the speed-up obtainable
with the VSCF+f method, with both methods breaking down
at the same level of energy convergence.

IV. RESULTS

All DFT calculations were performed using version 8.0
of the plane-wave DFT code CASTEP [33] and ultrasoft
pseudopotentials [34] generated “on the fly.” Throughout, the
ratio between the fast Fourier transform (FFT) grid used for the
electronic density and that used for the Kohn-Sham states (the
“grid scale” parameter in CASTEP) is 2.0. The local density
approximation (LDA) was used for the exchange-correlation
functional in the hydrogen calculations [35], while the PBE
functional was used for lithium and zirconium [36]. Previous
work on solid hydrogen has shown that, while the exact quanti-
tative results of DFT calculations are strongly dependent on the
choice of functional, the qualitative results are similar for most
functionals [37], and that the LDA is a reasonable choice for
the purpose of tests on solid hydrogen. The PBE functional has
been used successfully in several previous studies of lithium,
zirconium, and other similar materials [19,25]. Calculations of
the harmonic normal modes and energy were performed by de-
termining the matrix of force constants via a finite-differences
method [29], before diagonalization of the dynamical matrix.
Atomic displacements of 0.01 bohrs were used.

A. Hydrogen

As the lightest element, hydrogen is a good material in
which to test the VSCF+f method. Its vibrational motions
explore the BO surface out to large amplitudes due to its low
mass, which introduces significant anharmonic character. The
method was first applied to molecular hydrogen before moving
onto solid hydrogen at 100 GPa. All hydrogen calculations
were performed at zero temperature and only the zero-point
energy was considered.

A plane-wave cutoff energy of 800 eV was used for
the calculations on molecular hydrogen, with a 5 × 5 × 5
Monkhorst-Pack k-point grid [38]. As CASTEP uses periodic
boundary conditions, it is necessary to make the unit cell
large enough to prevent the molecule from interacting with
its periodic images. The frequencies of the harmonic phonon
modes were converged with respect to the size of the cubic
unit cell, resulting in a converged lattice constant of 8 Å. The
distance between the atoms was allowed to relax, using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [39] to

converge the forces on the atoms to within 0.001 eV Å
−1

,
before single-point energy calculations were conducted.

Once the harmonic calculations were completed, a range
of different numbers of mapping points per direction from
7 to 27 was used to map the BO surface of the hydrogen
molecule. The performance of the basic VSCF method was
compared to the VSCF+f method using both cubic and
quintic splines in the fitting process. This was repeated with
the energy convergence tolerance of the calculations set to
10−10,10−6,10−4, and 10−2 eV per SCF cycle, to test whether
this affected the accuracy of the forces, and therefore the
accuracy of the VSCF+f fitting relative to the normal fitting
procedure. Figure 1 shows the convergence of the anharmonic
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FIG. 1. Convergence of anharmonic correction to the energy at
0 K for H2, 	Eanh = Eanh − Ehar, with respect to the number of
mapping points used per mapping direction, for the basic VSCF
method, as well as the VSCF+f method, fitting with both cubic and
quintic splines. The inset shows the results at low numbers of mapping
points on a different energy scale.

correction to the zero-point energy, 	Eanh = Eanh − Ehar, with
respect to the number of mapping points for the three different
methods. Here the energy convergence tolerance was set to
10−6 eV per SCF cycle. It can be seen that including the forces
in the fitting process significantly improves the convergence
of 	Eanh, with the quintic spline fit performing even better
than the cubic spline. This suggests that including forces in
the fitting process can significantly improve the efficiency of
the VSCF method, and that utilizing a quintic spline allows
fitting of the BO surface even more accurately for the same
number of DFT calculations, especially for low numbers of
mapping points. An almost identical set of results was found
for energy convergence tolerances from 10−4 eV up to 10−10

eV per SCF cycle, with the VSCF+f method converging more
rapidly with the number of mapping points. For an energy
convergence tolerance of 10−2 eV per SCF cycle, both the
VSCF and VSCF+f methods failed to converge with less than
27 mapping points per direction. This shows that for a range

of energy convergence tolerances, the VSCF+f fitting method
is still able to outperform the basic VSCF method and map the
BO surface accurately at a lower computational cost. Using a
quintic spline improves the quality of the fit still further.

With the results from the hydrogen molecule in mind, we
turn our attention to the case of high-pressure solid hydrogen.
Three different structures of solid hydrogen were considered
at a pressure of 100 GPa: Cmca-4, Cmca-12, and C2/c-24,
as previously described. Figure 2 gives a view of these three
structures, showing that they are molecular in nature. These
structures have all been studied previously with DFT over
a range of pressures [13]. Again, once harmonic calculations
were completed, the convergence of the anharmonic correction
to the zero-point energy per atom with respect to the number
of mapping points was calculated for a single unit cell of
each structure. A plane-wave cutoff energy of 1000 eV and
an energy convergence tolerance of 10−6 eV per SCF cycle
was used throughout, with Monkhorst-Pack grids of size
28 × 28 × 16, 18 × 18 × 4, and 16 × 8 × 16 for the Cmca-4,
Cmca-12, and C2/c-24 structures, respectively. Figure 3
shows the convergence of 	Eanh per atom for all three
structures for the basic VSCF and the improved VSCF+f
quintic spline methods. Again, convergence was reached with
fewer numbers of mapping points per direction using the
VSCF+f method than with the VSCF method, especially
for the Cmca-12 and C2/c-24 structures. In the latter case,
including forces in the fitting reduces the computational cost
by around 40%. This further implies that the VSCF+f method
is robust and improves on the efficiency of the basic VSCF
method.

B. Two-dimensional subspaces

A natural next test of the VSCF+f method is to apply it to
mapping 2-D subspaces of the BO surface. This poses a more
significant challenge than the 1-D terms considered up to now,
as interpolating data in two dimensions is required.

Mapping the BO surface in two dimensions is expensive and
can only feasibly be done for small systems. Here, we focus
on the Cmca-4 structure of solid hydrogen discussed previ-
ously, which possesses twelve potential mapping directions,
corresponding to the twelve harmonic phonon modes, labeled

FIG. 2. Views of the structures of solid hydrogen considered at 100 GPa. Both of the Cmca structures are shown looking along the x

axis, while the C2/c-24 structure is shown looking along the y axis. As these are layered structures, atoms in inequivalent layers are denoted
by different colors. Green, purple, translucent green, and translucent purple denote the first, second, third, and fourth inequivalent layers,
respectively.
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FIG. 3. Convergence of the anharmonic correction to the energy
at 0 K, 	Eanh, of the Cmca-4, Cmca-12, and C2/c-24 phases of solid
hydrogen at 100 GPa, with respect to the number of mapping points
used per mapping direction. The convergence of the basic VSCF
method as well as the VSCF+f method of fitting with a quintic spline
are shown. The inset shows the results at low numbers of mapping
points on a different energy scale.

with numbers from 1 to 12. Three of these modes are acoustic,
and thus have zero frequency. To minimize the computational
cost further, we consider only two of the many 2-D subspaces
in this system: those corresponding to the directions described

by the harmonic modes 4 and 5, and 4 and 7. The harmonic
frequencies of modes 4, 5, and 7 are 69.4, 74.0, and 114 meV,
respectively, and the displacement patterns corresponding
to each of these mapping directions can be found in the
Supplemental Material [43]. These subspaces were chosen
by conducting a preliminary mapping of all 2-D subspaces
with a low number of mapping points, and taking only those
with significant corrections to the 1-D description of the BO
surface. The subspaces where the mapping entered parts of
energy minima corresponding to structures significantly lower
in energy than the Cmca-4 structure were also neglected.
The two subspaces presented here were then chosen as being
representative of those remaining. The same cutoff energy
and Monkhorst-Pack grid was used as in the calculations of
Sec. IV A, but an energy convergence tolerance of 10−10 eV
was used to ensure accurate forces.

Figure 4 shows the results of tests including the mapping
of 2-D subspaces in the Cmca-4 solid hydrogen structure.
The two rows of figures correspond to the two subspaces
mapped. The left-hand column shows the BO surface mapped
in the relevant subspace, and the right-hand column shows the
convergence of the correction to the energy due to 2-D terms
	E2-D with respect to the number of mapping points used
per mapping direction. All energies were again calculated at
zero temperature. The convergence graphs show that utilizing
forces in the mapping of the BO surface in two dimensions
improves the results relative to the converged final value,
especially for small numbers of mapping points, although
the improvement is not as pronounced as in the 1-D case.
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FIG. 4. Results of anharmonic vibrational calculations for the Cmca-4 structure of solid hydrogen including selected 2-D subspaces of
the BO surface. The left-hand column shows BO surfaces mapped in the labeled subspace, where “puc” stands for “per unit cell,” while the
right-hand column shows the convergence of the correction to the vibrational energy due to the relevant 2-D term with respect to the number
of mapping points used. (a) Subspace corresponding to directions 4 and 5. (b) Subspace corresponding to directions 4 and 7.
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This could be due to the small size of the energy scales
in question; the energies shown are all smaller than 1 meV
per atom, which is around the finest energy scale that such
anharmonic calculations can reasonably be assumed to be
accurate to. The small size of the corrections due to 2-D terms
compared to those seen for 1-D terms shows that the neglect
of such higher-order terms in the BO surface expansion of
Eq. (4) is justified. The ability of the VSCF+f method to
show improvement even at such small energy scales again
demonstrates its capabilities, even in cases including mapping
of 2-D subspaces of the BO surface.

C. Lithium and zirconium

Finally, we consider two systems in a very different regime
from molecular or solid hydrogen: the metals lithium and
zirconium, in their bcc phases. The main anharmonic con-
tributions to the vibrational energy in these systems arise from
soft modes, which necessarily have some quartic character.
Here, we focus our attention on mapping the BO surface along
the direction defined by these soft modes, and on how utilizing
the VSCF+f procedure can improve this mapping. In addition
to calculations at zero temperature, the effect of anharmonicity
on the free energy at finite temperature is also considered, as
the bcc phase only becomes stable experimentally at 70 K in Li
and 1366 K in Zr. Thermal expansion effects are not included
in these calculations.

For the calculations in lithium and zirconium, we used
the recently introduced nondiagonal supercells method to
reduce the computational cost of sampling the vibrational
Brillouin zone [40]. Typically, diagonal supercells are used
to sample the vibrational BZ, with an N × N × N sampling
grid requiring an N × N × N supercell containing N3 unit
cells. The nondiagonal supercells method allows such an
N × N × N sampling to be done using a series of nondiagonal
supercells each containing a maximum of N unit cells,
significantly reducing the computational cost. However, as
the aim of this work is to consider methods for improved
fitting of the BO surface, rather than to conduct high-accuracy
calculations on these well-studied materials, we did not
attempt to completely converge our results with respect to
the sampling of the vibrational BZ. Even with the nondiagonal
supercell method the computational cost increases rapidly with
increasing sampling grid size. Instead, we used an 8 × 8 × 8
sampling of the vibrational BZ as a compromise between
accuracy and speed.

As lithium and zirconium are metallic, it is necessary to
use partial band occupancies to eliminate discontinuities in
the energy during the SCF minimization. This is done by
artificially giving the Kohn-Sham quasiparticles a finite tem-
perature to smear out their energy levels. In these calculations,
a smearing width of 0.2 eV, corresponding to 2320 K, is used.
The calculated DFT energies do depend on the size of this
smearing, but the effect on the overall shape of the BO surface
is small, meaning the results of the vibrational calculations
are largely unaffected by the choice of smearing width. The
Monkhorst-Pack grids in all supercells used had a spacing of

0.025 Å
−1

, corresponding to a 16 × 16 × 16 grid in the unit
cell. An energy cutoff of 1500 eV was used in all calculations.
To obtain these parameter values, the harmonic vibrational

energy was converged to within 1 meV with respect to the
Monkhorst-Pack grid size and energy cutoff. This constitutes
a somewhat stronger convergence criterion than that used in
other work [41], as it is important to ensure the harmonic
results are accurate before using them as a basis for further
calculations.

Our results for Li show that any differences in the anhar-
monic vibrational energy arising from the three different fitting
methods are negligible, down to scales of 0.1 meV. Because
of this we do not present the results for Li here, although
we do discuss them. The negligible difference between fitting
methods arises from the fact that, apart from along the direction
defined by the soft modes present, the vibrational properties of
Li are described well by the harmonic approximation, despite
its low mass [42]. This means that a very good fit to the BO
surface along most modes can be found with small numbers
of mapping points (as in the standard finite-displacement
method for calculating harmonic frequencies), and so all three
methods agree very well. Even in the case of the soft modes,
which must necessarily contain some anharmonic character,
the double-well structure is not very pronounced, with the
overall BO surface appearing essentially quadratic. To see this
double-well structure, where the two minima are very close
to the central maximum, a finer than usual mapping of the
BO surface proved necessary. Our calculations show these
double wells are quite shallow, meaning that even at zero
temperature the BO surface looks essentially harmonic. Our
results imply that the bcc structure of Li is dynamically stable
at zero temperature, although experimental results show that
the bcc phase becomes stable above 70 K. This disagreement
could potentially be caused by incomplete convergence with
respect to sampling of the vibrational BZ, or higher order terms
in the expansion of the BO surface of Eq. (4), as well as by
the errors inherent in DFT. A different exchange-correlation
functional might give results closer to experiment.
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FIG. 5. Convergence with respect to the number of mapping
points used per mapping direction of contribution of 1-D terms
corresponding to the mapping directions defined by soft modes to the
total anharmonic vibrational energy of the bcc phase of zirconium at
0 K. The convergence of the basic VSCF method as well as that of
the VSCF+f method using both a cubic spline and a quintic spline
are shown.
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FIG. 6. The shape of the BO surface as mapped along one of the
soft modes of zirconium; “puc” stands for “per unit cell.”

The results for zirconium tell a different story to those
of lithium. Figure 5 shows the variation with the number
of mapping points of the sum of the lowest eigenvalues
calculated for each of the 1-D terms resulting from mapping
the BO surface along a soft mode. The differences between the
values obtained by the different fitting methods for the sum
of the lowest eigenvalues of all the 1-D terms (which would
represent the zero-point energy if the bcc structure of Zr were
dynamically stable at 0 K) are small, as in Li. However, there
are much more significant differences in the contribution of
the soft modes to the anharmonic energy, as seen in Fig. 5.
Although the effect is much less pronounced than that seen for
hydrogen in Fig. 3, it is clear that, for low numbers of mapping
points, including force data improves the fit to the BO surface.
It is also evident that the quintic spline gives a better fit than
the cubic spline when the forces are used. This demonstrates
that the VSCF+f method can improve on the basic VSCF
method in this type of system, as well as the hydrogen systems
explored previously.

The soft modes in Zr are more numerous, and mapping the
BO surface along the directions defined by them gives much
more pronounced double-well structures than in Li, meaning
that the structure is not dynamically stable at zero temperature.
An example of the pronounced double-well structure of the BO
surface mapped along one of the soft modes in Zr is shown in
Fig. 6. Our results can be used to calculate the temperature at
which the bcc phase is stabilized dynamically, by calculating
the internal energy at a range of temperatures and finding
where it becomes positive. The results are shown in Fig. 7
for a range of mapping points and the three fitting methods
used. At these higher temperatures, it can be seen that the
differences between the three fitting methods, visible at zero
temperature in Fig. 5, are much less significant; the differences
are mostly washed out by the overall vibrational energy
increasing. Our calculations predict that the bcc structure of Zr
should become dynamically stable above about 520 K, which
is significantly lower than the observed transition temperature
of 1366 K. This disagreement could again potentially be
caused by the incomplete convergence with respect to the
vibrational BZ sampling, higher-order terms in the BO surface
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FIG. 7. Convergence of the temperature at which the bcc phase of
zirconium becomes dynamically stable with respect to the number of
mapping points used per mapping direction. Results using the basic
VSCF method and the VSCF+f method using both a cubic spline
and a quintic spline are shown. The VSCF+f cubic spline results are
hidden behind the VSCF+f quintic spline results.

expansion, thermal expansion effects, or errors inherent in DFT
itself.

V. CONCLUSIONS AND FUTURE WORK

In summary, we have shown that the efficiency of the
vibrational self-consistent field method proposed in Ref. [5]
can be significantly improved by using both energy and force
data from DFT calculations when mapping the BO energy
surface. Tests of this method on molecular and high-pressure
solid hydrogen, including the contribution of 2-D subspaces
of the BO surface to the energy, as well as on lithium and
zirconium in the bcc structure, show that the VSCF+f method
agrees well with the basic VSCF method, but significantly
reduces the computational cost involved.

Our results show that the VSCF+f method allows us
to perform accurate calculations of anharmonic corrections
to the harmonic phonon model for a significantly reduced
computational cost compared to the basic VSCF method. The
next step will be to apply the VSCF+f method to new systems
in which large anharmonicities are of interest.

Data used for this paper are available [44].
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