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Nonlinear elasticity in rocks: A comprehensive three-dimensional description
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We study theoretically and experimentally the mechanisms of nonlinear and nonequilibrium dynamics in
geomaterials through dynamic acoustoelasticity testing. In the proposed theoretical formulation, the classical
theory of nonlinear elasticity is extended to include the effects of conditioning. This formulation is adapted to
the context of dynamic acoustoelasticity testing in which a low-frequency “pump” wave induces a strain field
in the sample and modulates the propagation of a high-frequency “probe” wave. Experiments are conducted to
validate the formulation in a long thin bar of Berea sandstone. Several configurations of the pump and probe are
examined: the pump successively consists of the first longitudinal and first torsional mode of vibration of the
sample while the probe is successively based on (pressure) P and (shear) S waves. The theoretical predictions
reproduce many features of the elastic response observed experimentally, in particular, the coupling between
nonlinear and nonequilibrium dynamics and the three-dimensional effects resulting from the tensorial nature of
elasticity.
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I. INTRODUCTION

Nonlinear mesoscopic elastic materials (NMEMs) refer to
a class of materials that can be mechanically described as an
assembly of mesoscopic-sized “hard” elements (e.g., grains
with characteristic lengths ranging from tens to hundreds of
microns) embedded in a “soft” bond system (e.g., cement
between grains, pore space, fluid) [1]. The microscopic-sized
imperfections at the interfaces between the “hard” and “soft”
subsystems are believed to be responsible for a number of
exotic properties, beyond the classical theory of nonlinear elas-
ticity [2,3], manifesting themselves in a number of situations.
The identification, quantification, and theoretical representa-
tion of these properties have been active topics of research
over the last 30 years. The fundamental mechanisms behind
these effects are not completely understood and delineated yet
though, probably due to the multiscale nature of the problem,
e.g., microscopic and mesoscopic features of the material
structure lead to noticeable effects at the macroscopic scale.
NMEMs are not simply a scientific curiosity. Understanding
their complex mechanical behavior is a growing need for many
applications, including the monitoring of building integrity in
civil engineering [4,5], nuclear safety [6,7], bone fragility (e.g.,
microfractures) [8], the mechanisms of earthquake triggering
[9], or the design of novel materials [10].

Hysteresis with discrete memory is one of these exotic
properties and has first been evidenced carefully in quasistatic
experiments on rocks using nonperiodic stress protocols
[11,12]. Hysteresis was subsequently modeled using the
Preisach-Mayergoyz formalism borrowed from the field of
electromagnetics [13,14]. Practically, when a sinusoidal elastic
wave propagates in a medium exhibiting such a property, it
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progressively evolves into a triangular wave as demonstrated
theoretically [15] and experimentally [16]. In the frequency
domain, this distortion leads to the generation of odd harmon-
ics only [13].

Slow dynamics is another exotic property typically ob-
served in many dynamic experiments. In brief, under a
continuous harmonic excitation, the elastic moduli decrease
(i.e., material softening) and eventually reach a new but un-
stable equilibrium state tuned to the dynamic strain amplitude
induced by the excitation, a process known as “conditioning.”
Conversely, if elastic energy is no longer injected into the
system, the material recovers slowly its original elastic
properties, with a rate proportional to the logarithm of time
[17,18], a process known as “relaxation.”

The effects of hysteretic nonlinearity and slow dynamics
have first been evidenced with resonance experiments [19,20].
Typically, a long thin bar with free boundary conditions, which
is representative of a one-dimensional (1D) unconstrained
system, is vibrated around one of its resonance frequencies.
In NMEMs, the resonance frequency starts decreasing as a
function of strain once the strain reaches a certain amplitude.
Depending on the strain amplitude, there exist different
regimes in which the variation of the resonance frequency with
strain is dominated by classical nonlinearity, slow dynamics,
or both [21,22]. These observations have been described
theoretically through a number of models derived from 1D
theory of elasticity [13,15,23–25]. However, as soon as the
geometry of the sample or testing conditions deviate from the
1D assumption, these models are no longer applicable [6,26].

Classical nonlinear elasticity is intrinsically three dimen-
sional and should be treated using the appropriate mathemati-
cal tools, i.e., tensors. In that sense, NMEMs are different from
fluids. One indisputable evidence is the ability to perform
noncollinear three-wave mixing in nonlinear elastic solids
but not in fluids. Noncollinear wave mixing refers to the
experiments where two waves with two different frequencies,
f1 and f2, are launched at two different angles mix to
generate waves with frequencies f1 − f2, f1 + f2, 2f1, 2f2,
etc. [27,28]. This process is governed by the third-order
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elastic constants (TOECs) of the solid. TOECs have been
first introduced by Murnaghan in 1937, as part of a general
tensorial description of the nonlinear stress-strain relationship
in elastic isotropic materials [2]. Classical nonlinear elasticity
in an isotropic solid is described by three TOECs (l, m, n in
[2] or A, B, C in [3]) in addition to the two Lamé constants
(λ, μ) used in the theory of linear elasticity. Measurement
of these constants in solids has been made possible via the
simplification of Murnaghan’s theory by Hughes and Kelly
[29]. They consider the particular case of a high-frequency
(HF) pulse of relatively small amplitude (probe) used to
probe the local change of elastic wave speed induced by
a large deformation (pump). This configuration has been
widely adopted for the measurement of TOECs [30,31] or
to investigate the effects of stress on wave speed [32–34].
Murnaghan’s theory does not predict hysteresis or slow
dynamics in the stress-strain relation. These effects can be
observed in a dynamic experiment of acoustoelasticity where
the large deformation is no longer static but dynamic [35,36].
However, in these experiments, the analysis of the dynamic
acoustoelastic (DAE) data is often supported by the 1D theory
of elasticity enhanced with nonlinear terms, thus neglecting
the three-dimensional nature of the strain field. This may
lead to wrong interpretations of the anisotropy induced by the
softening effects. Additionally, hysteresis and slow dynamics
are treated as two independent mechanisms whereas it has
been shown that they are strongly related [37]. A number of
models have been proposed where such connection between
hysteresis and slow dynamics is accounted for [24,25,38,39].
However, these models are also all derived from 1D theory of
elasticity.

More recently, Lott et al. [40,41] have proposed an
extension of Hughes and Kelly’s formulation [29] by taking
into account the softening of geomaterials under dynamic
vibration. This new formulation starts from a volume of
material that is small enough to fit within the assumption of
continuum mechanics but large enough to contain a relatively
large number of defects. In this volume, the defects have
random orientations, thus resulting in an isotropic conditioning
effect quantified by the scalar parameter α. This parameter
is then projected onto the principal strain axes, resulting in
the three-dimensional (3D) manifestations of conditioning, as
already observed experimentally [26].

In this paper, dynamic acoustoelasticity is studied in three
dimensions via an extensive set of experiments where the large
amplitude strain induced by the pump is no longer restricted
to a longitudinal motion as in previous work but extended to
a torsional motion. Likewise, the HF pulses used to probe
the elastic state of the material is no longer restricted to
(compressional) P waves but extended to (shear) S waves. The
experimental findings are compared to theoretical predictions
from the approach proposed by Lott et al. [40].

II. THEORETICAL BACKGROUND

The mechanisms responsible for slow dynamics can be
described at multiple scales. At a microscopic scale, it can be
explained by surface interactions (e.g., clapping and friction)
that exist within the interface of a defect (e.g., grain boundaries

TABLE I. List of the symbols.

Symbol Meaning

α Parameter of nonclassical nonlinear elasticity
β Third-order elastic constant
δ Fourth-order elastic constant
M Elastic modulus (Young or Shear)
ν Poisson’s ratio
l, m, n Murnaghan constants

δij Kronecker delta (identity matrix)

�ij , � Conditioned identity matrix

δivk
jvl Generalized Kronecker (3 × 3 determinant)

εij , ε Strain tensor

Cijkl Stiffness tensor
ρ Mass density
Vij Wave speed (i axis: direction, j axis: polarization)

in most rocks). At larger scales, these interactions can be
homogenized and described by thermodynamic laws [18]: a
volume of material with a sufficiently large density of defects
may be represented as a smooth spectrum of energy barriers
that need to be hopped to reach a new elastic state. The
existence of this spectrum is supported by the fact that the rate
at which the relaxation process occurs is proportional to the
logarithm of time. This thermodynamic description can be tied
to a friction-based mechanism, as suggested in [18]. The global
stiffness is proportional to the surface area of microscopic
contacts within the media through a static friction coefficient.
Under dynamic stress, the total area of microscopic contacts di-
minishes and so the material appears “weaker.” For clarity, the
symbols used in this paper are listed and described in Table I.

In this paper, we assume that the microcontacts are
randomly oriented and distributed, with a length scale much
smaller than the typical acoustic wavelength used in this study.
A random orientation and distribution of nonlinear sources
implies an isotropic effect on the elastic response. Under
this assumption, we extend the formulation of the stiffness
tensor proposed by Hughes and Kelly [29] to introduce
conditioning. The approach we follow is borrowed from theory
of damage evolution in fracture mechanics, described in detail
by Zubelewicz [42]. The tensorial product between the strain
and stress vector bases δij is the natural basis for the elastic
tensor and should now include conditioning effects as

δij = nstress
i ⊗ nstrain

j → δij (1 − α
ε∗
ij ) = �ij , (1)

where ni is the principal strain direction, 
ε∗
ij the strain

amplitude, the star symbol ∗ denotes the basis formed by the
principal strain axes, and α is a scalar quantifying conditioning.
The stiffness tensor is then expressed as

C∗
ijkl = [λ + 2(l − λ − m)Tr(ε)

+ 2(λ + m)(ε∗
i + ε∗

k ) − 2μεi](�ij�kl)

+ [μ + (λ + m − μ)Tr(ε)

+ 2μ(εi + εj + εl)](�ik�jl + �il�jk)

+ 1

2
n

∑
v

(
�ivl

jvk + �ivk
jvl

)
εv, (2)
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FIG. 1. Schematic representation of the experimental setup.

where λ and μ are the Lamé constants and l, m, and n are the
Murnaghan constants [2].

Practically, conditioning is applied in the basis formed
by the principal strain axes. This basis is obtained from
an eigendecomposition of the strain field ε measured in
the geometric basis. This decomposition, ε = Pε∗P−1, is
always possible because the strain tensor is always real
and symmetric. Once conditioning has been applied to the
stiffness tensor in the basis formed by the principal strain
axes, according to Eq. (2), the following transformation is used
to express the conditioned stiffness tensor in the geometric
basis: Cijkl = PirPjsPktPluC

∗
rstu. This result is equivalent to

classical acoustoelasticity theory when the term quantifying
conditioning is equal to the identity matrix, � = I3.

III. EXPERIMENTAL ARRANGEMENT

The experimental arrangement is depicted in Fig. 1.
Experiments were conducted on a cylindrical sample of Berea
sandstone (Cleveland Quarries, Amherst, OH) with a diameter
of 25.8 mm, a length of 305.5 mm, a mass density of
2054 kg/m3, and a nominal permeability ranging between
500 and 1000 mD. The linear elastic properties of this
sample were characterized in previous work using resonant
ultrasound spectroscopy [43]. It was found that the sample
is well described by a homogeneous and isotropic material
with a Young’s modulus E = 9.9 GPa and a Poisson’s ratio
ν = 0.068. The sample was instrumented with a piezoelectric
disk (PZT-5H ceramic with a diameter of 25.54 mm and
a thickness of 6.35 mm) epoxied on one of its flat ends
and five shear piezoelectric plates (PZT-5A ceramic with
dimensions of 20 × 20 × 3 mm3) epoxied on the round surface
of the sample, near the opposite end. The piezoelectric disk
induced a longitudinal motion whereas the shear plates, in this
particular configuration and when driven in phase, induced
a torsional motion in the sample. Longitudinal and torsional
motions were recorded on the surface of the sample with an
in-plane laser vibrometer (Polytec OFV-552). The two laser
beams were shined near the end hosting the piezoelectric
disk. Depending on the orientation, the laser beams can
sense the particle velocity in the e1 (axial) or e3 (tangential)
direction [26]. Note that, at the particular sensing position
shown in Fig. 1, v3 in Cartesian coordinates is equivalent
to vφ in cylindrical coordinates, which is the coordinate
system chosen to treat the torsional motion. As part of our
experiments of dynamic acoustoelasticity, it is necessary to
know the position of maximum strain in the sample since it
will be where the HF transducers will be placed to probe the
instantaneous elastic state of the sample (i.e., where nonlinear

and slow-dynamic effects will be the strongest). Because
of the mass added by the piezoelectric disk and plates, the
position of the maximum strain is not exactly at the middle
of the sample. The position of maximum strain ε11 for the
first longitudinal mode of resonance and εφx for the first
torsional mode of resonance were measured accurately with a
3D laser vibrometer (Polytec PSV-3D-500) following the setup
described in the Supplemental Material in [26]. The relations
between the particle velocities measured with the in-plane laser
near the end of the sample and the maximum strains of interest
for the longitudinal and torsional modes were also established
as part of this measurement step. Resonance frequencies were
found near 3 kHz for the first longitudinal mode and near
1.8 kHz for the first torsional mode.

Experiments of dynamic acoustoelasticity (DAE) were
conducted according to the procedure described by Renaud
et al. [35] and Rivière et al. [36]. Relative changes in the
propagation speed of the HF probe waves, which will be
referred to as relative velocity modulation (RVM) in the rest
of this paper, are monitored under dynamic loading. One
transducer is used to send short pulses centered at 1 MHz that
are generated by an arbitrary waveform generator (National
Instrument PXI-5412). Once the pulses have been propagated
across the diameter of the sample, they are received by the
second transducer and digitized at 50 MHz (National Instru-
ment PXIe-5122). The probe system is activated while the
sample is excited at the frequency of the first resonance mode
of longitudinal or torsional vibration (LF pump). The RVM
is obtained by cross correlating the modulated transmitted
pulses with the one transmitted before the pump activation.
The pulses are sent with a repetition frequency corresponding
to 1.01 times the period of the LF pump signal. Provided
that the response of the sample has reached a steady state,
the RVM induced by one cycle of the pump can be fully
captured over 100 cycles of the pump, with a regular spacing
equal to 0.01 times the period of the LF harmonic signal.
Using this stroboscopic effect, the original time frame can be
compressed by a factor of 100 to define a new time frame in
which the dynamic response of the material will be described.
A representative example of the measured DAE data is shown
in Fig. 2(b). In the figure, 
V21/V 0

21 denotes the RVM of the
P wave in the “e2” direction. The time history of the strain ε11

induced by the LF pump at the point of maximum strain in the
sample is depicted in Fig. 2(a). When the LF pump is activated,
the speed of sound drops rapidly and oscillates in a near
steady-state regime (i.e., conditioning process). This regime
never actually reaches a steady state, as shown in Fig. 2(b),
but for all practical purposes a steady state can be assumed
for the 100 cycles during which the stroboscopic probe is
analyzed. When the LF pump is stopped, the equilibrium value
of 
V21/V 0

21 is recovered smoothly (i.e., relaxation process).

IV. P WAVES AS HF PROBE WAVES

Two series of DAE experiments were conducted using
P waves generated via a pair of HF compressional-wave
transducers (Olympus V303-SU) to probe the elastic state
of the sample locally. In the first series of experiments, the
dynamic LF pump consisted of the first longitudinal mode of
vibration of the sample, which is the typical DAE configuration
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FIG. 2. Time histories of the LF pump and HF probe DAE data
in the compressed stroboscopic time frame. (a) Time history of the
strain ε11 when the sample is driven at the resonance frequency of
its first longitudinal mode of vibration (LF pump). The LF pump is
activated at time t = 0.5 μs. (b) Time history of the RVM of the P

wave in the “e2” direction (HF probe).

found in the literature. In the second series of experiments, the
dynamic LF pump is changed to the first torsional mode of
vibration. Experiments were conducted for eight amplitudes
of the pump. For each configuration (i.e., pump type and
amplitude level), experiments were conducted three times to
ensure repeatability.

A. Longitudinal mode as LF pump

For a longitudinal mode, the strain field is homogeneous
over a cross section of the sample in the plane e2 − e3, which
is also the propagation plane of the HF pulses. The strain field
can be written in Cartesian coordinates as

εL =
⎛
⎝

AL 0 0
0 −νAL 0
0 0 −νAL

⎞
⎠

(e1,e2,e3)

, (3)

where AL is a constant equal to the peak amplitude of the
strain ε11 at the axial position where the strain is maximum for
the first longitudinal mode of vibration (where the HF probe is
positioned in the experiments). This tensor is already diagonal.
Therefore, the transformation matrix P is the identity matrix
I3 and the expression of the stiffness tensor is the same in the
geometric basis and in the basis formed by the principal strain
axes. The propagation speed V22 of the HF P wave in the strain
field induced by a longitudinal mode is then written as

ρ(V22)2 = CL
2222 = �2

22{λ + 2μ + 2AL[l(1 − 2ν)

− μ(1 + 3ν) − 2λν − 2mν]}. (4)

The coupling between the LF pump strain and propagation
speed of the HF probe waves through the third-order elastic
constants (e.g., Murnaghan constants) is given by Eq. (4). The
conditioning effects are contained in the term �22, which is
written as �22 = 1 − ανAL.

FIG. 3. DAE data for the configuration where the LF pump is the
first longitudinal mode of vibration of the sample and the HF probe is
a P wave. (a) RVM of the P wave in the “e2” direction as a function
of strain for the largest drive amplitude of the pump. (b) Time history
of the RVM of the P wave in the “e2” direction. (c) Time history of
the strain induced by the LF pump at the axial position of the HF
probe. Time histories are displayed in the compressed stroboscopic
time frame: to obtain the three cycles depicted in (b) and (c), 300
cycles of real data were acquired. The blue and red colors indicate
increasing and decreasing strain, respectively.

Typical results obtained in this set of experiments are shown
in Fig. 3. The RVM of the P wave is not symmetric with respect
to the axis ε11 = 0, as shown in Fig. 3(a). This asymmetry
between the tension and compression phases is due to the third-
order elastic constants. This data set also exhibits the effects
of hysteresis (the same path is not followed for increasing and
decreasing strain) and material softening (the average steady-
state value of 
V/V 0 is not zero). These results are expected
and consistent with previous work [35,36].

B. Torsional mode as LF pump

For a torsional mode, the strain field is not uniform over
a cross section of the sample in the plane e2 − e3. The strain
field can be written in polar coordinates as

εT =
⎛
⎝

0 0 0
0 0 AT r

0 AT r 0

⎞
⎠

(er ,eφ,ex )

, (5)

where AT is a constant equal to the peak amplitude of εφx/R

at the axial position where the strain is maximum for the first
torsional mode of vibration (where the HF probe is positioned).

The strain field corresponding to the torsional mode is
plotted in polar and Cartesian coordinates in Fig. 4. Across the
diameter of the sample (r varying from −R to R), half of the
propagation is affected by a positive strain amplitude whereas
the other half is affected by a negative strain amplitude.
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FIG. 4. Normalized strain field for a torsional motion in polar
(left) and Cartesian (right) coordinates.

The strain field can be expressed on its principal axes as

ε∗
T =

⎛
⎝

0 0 0
0 −AT r 0
0 0 AT r

⎞
⎠. (6)

Finally, the propagation speed V22 of the HF P wave in the
strain field induced by a torsional mode is written as

ρ(V22)2 = CT
2222 = �2

11(λ + 2μ). (7)

In this theoretical description, �11 is equal to one and there
is no dependence of the wave speed on the third-order elastic
constants. In other words, the propagation speed of the P wave
should not be affected by the strain field of a torsional mode.
More generally, a probe wave is insensitive to the strain field
if both its polarization and propagation direction are aligned
with the principal strain axes with zero strain amplitudes. Here,
the principal strain axes with nonzero amplitudes are linear
combinations of the two basis vectors e1 and e3, as suggested
by the transform matrix PT . On the other hand, the polarization
and direction of propagation of the HF probe wave are on the
“e2” axis. This phenomenon has already been observed in
experiments by Gallot et al. [44].

Results from the DAE experiments are shown in Fig. 5.
There are obvious differences between the results obtained in
this configuration and those obtained with a longitudinal mode.
First, the the RVM of the P wave in the “e2” direction is now
symmetric with respect to the zero-strain axis, which agrees
with the theoretical prediction on the absence of coupling
between the propagation speed of the P wave in the “e2”
direction and the third-order elastic constants. This result is
important as it highlights the necessity of treating dynamic
acoustoelasticity with the 3D theory of elasticity, as opposed
to a superposition of 1D descriptions. In this configuration,
we can also observe that the magnitude of the hysteresis has
been considerably reduced, despite the fact that the strain
amplitude of the torsional mode is more than twice as large
as the strain amplitude of the longitudinal mode. However,
we still observe a large curvature of the RVM. This curvature
most likely originates from the second-order term of classical
nonlinearity δ in the 1D description of elasticity discussed
earlier, which is not included in the 3D model of elasticity
formulated in this paper. More importantly, we still observe
elastic softening, which was not expected from the theoretical
prediction (i.e., �11 = 1). A first possible reason for the
discrepancies between theory and experiments could be the
departure from the plane-wave assumption in the experiments.
The theoretical description is based on the propagation of

FIG. 5. DAE data for the configuration where the LF pump is the
first torsional mode of vibration of the sample and the HF probe is a
P wave. (a) RVM of the P wave in the “e2” direction as a function
of strain for the largest drive amplitude of the pump. (b) Time history
of the RVM of the P wave in the “e2” direction. (c) Time history of
the strain induced by the LF pump at the axial position of the HF
probe. Time histories are displayed in the compressed stroboscopic
time frame: to obtain the three cycles depicted in (b) and (c), 300
cycles of real data were acquired. The blue and red colors indicate
increasing and decreasing strain, respectively.

plane waves, which ignores the scattering induced by the HF
transducers and cylindrical shape of the sample. This scattering
results in volume effects on the wave-speed measurements. A
two-dimensional simulation of a P wave traveling across the
sample illustrates these effects in Fig. 6. These results show
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FIG. 6. Two-dimensional simulation of a P wave propagating
from an immersed transducer through the cylindrical sample. Two
instants are depicted: soon after the wave penetrates the sample
(t = 5 μs) and soon before the wave reaches the receiving transducer
(t = 15 μs). The slowness surface of the P wave in the strain field of
a torsional mode and a schematic representation of the probed region
are also depicted to understand the experimental observations.
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FIG. 7. Magnitude of the FFT of the RVM of the P wave in the
“e2” direction as a function of frequency. (a) The LF pump is the first
longitudinal mode of vibration so that f0 ≈ 3 kHz. (b) The pump is
the first torsional mode of vibration so that f0 ≈ 1.8 kHz.

that the direction of propagation is not purely collinear with
the “e2” axis and is consequently affected by the nonuniform
strain field away from this axis. Another possible reason
could be the assumption of a scalar parameter α in the
theoretical description whereas this parameter is probably
tensorial, as suggested by Remillieux et al. [26] in a series
of resonance experiments. The anisotropy of microcracking
in Berea sandstones was also formally evidenced elsewhere
[45].

C. Harmonic content

Data analysis can also be conducted in the frequency
domain to extract additional information about the nonlinearity
of the material (e.g., quantifying the parameters of classical
nonlinearity and hysteresis). The use of a compressed stro-
boscopic time frame provides a constant time step (in the
new compressed time frame) and thus allows such analysis
by simply taking the fast Fourier transforms (FFTs) of the
RVM waveforms. Figures 7(a) and 7(b) show the spectral
content of the RVM of the P wave in the “e2” direction at
the highest excitation levels of the longitudinal and torsional
modes, respectively. The variations of the amplitudes of the
fundamental frequency and harmonics of the RVM as a func-
tion of the excitation level is shown in Fig. 8 for the two mode
types as well. To understand and analyze these results, it is
beneficial to make a connection with the 1D theory of nonlinear
elasticity used typically to describe DAE experiments. In this
description, the relevant modulus of elasticity M is strain
dependent and written as M = M0(1 + βε + δε2 + H.O.T.),
where M0 is the linear elastic modulus, β is the coefficient
of first-order nonlinearity, which can be expressed in terms
of in terms of second- and third-order elastic constants, and δ

is the coefficient of second-order nonlinearity, which can be
expressed in terms of second-, third-, and fourth-order elastic
constants in the direction of propagation. In the context of an
experiment where an elastic pulse propagates in a nonlinear

FIG. 8. Amplitudes of the fundamental frequency (f0), second
(2f0), fourth (4f0), sixth (6f0) harmonics as a function of the strain
amplitude. The LF pump consists of the (a) longitudinal mode of
vibration and (b) torsional mode of vibration. Amplitudes are shown
in log scale, relative to their respective amplitude at the lowest strain
value.

elastic material, the parameter of classical nonlinearity β

can be quantified by monitoring the amplitude growth of
the second harmonic of this pulse [46]. Since the RVM is
a perturbed quantity, the parameter β affects its fundamental
frequency (and not its second harmonic). More generally, if
a parameter of nonlinearity affects the amplitude of the nth
harmonic of an elastic pulse, it will affect the amplitude of the
(n − 1)th harmonic of the RVM.

Figure 7 shows that by switching the LF pump from
a longitudinal mode to a torsional mode of vibration, the
amplitude of the fundamental frequency f0 vanishes. This
means that the effect of β is inhibited. This result is in perfect
agreement with the results shown in Figs. 3(a) and 5(a) where
the RVM of the P wave as a function of strain evolves from
being asymmetric with respect to the zero-strain axis (effect
of β) and having a curvature (effect of δ) to only having a
curvature. In the case of a torsional mode, only even harmonics
(2f0, 4f0, etc) can be observed on the spectrum [see Fig. 7(b)].
It can be demonstrated theoretically that these harmonics are
mainly generated either from the term of classical nonlinearity
δ or from hysteresis. A brief look at Fig. 7(a) can give us a first
hint about which of the two is dominating. In this figure, the
amplitudes of the fundamental frequency and second harmonic
are not sensibly different. This result cannot be explained
by classical nonlinearity. Indeed, it was demonstrated that
when the clapping mechanism of a contact is modeled with
a strong stiffness asymmetry (i.e., different stiffnesses are
involved when opening or closing the crack), the harmonic
amplitude rapidly decreases with the harmonic order [47].
More recently, Zhao et al. [48] proposed a more refined model
to study simultaneously the effects of clapping and friction in
solids with microcracking. They showed that the parameter of
nonlinearity β is mostly caused by the clapping mechanism
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and stiffness asymmetry whereas it is rather insensitive to the
frictional mechanism. Based on these facts, the generation
of even harmonics observed in our DAE experiment is most
likely dominated by the hysteresis and softening mechanisms.
Figures 8(a) and 8(b) show the evolution of the first six
harmonics of the RVM as a function of strain amplitude for
the longitudinal and torsional modes, respectively. Quadratic
and cubic dependencies associated to the terms of classical
nonlinearity β and δ, respectively, are also represented for
comparison purposes. For a longitudinal pump, the amplitude
of the fundamental frequency f0 grows with the square of
the strain amplitude (second power law) and follows almost
perfectly the theoretical prediction obtained using the term
of classical nonlinearity β. The amplitude of the second
harmonic, however, does not follow the cubic dependence
expected from the term of classical nonlinearity δ. In other
words, the term δ is not fully responsible for the curvature of
the RVM observed in Fig. 3(a), as hinted previously. When
the LF pump consists of a torsional mode, the amplitude of
the fundamental frequency is almost independent of the strain
amplitude. This is expected since there is no coupling with
third-order elastic constants in this setup. The amplitudes of
the second, third, and fourth harmonics grow twice as fast
as when a longitudinal mode is used as the LF pump. The
asymmetry of the strain field induced by a torsional mode [see
Fig. 4(b)] is responsible for the faster growth. In a torsional
mode, the principal strain axes change their direction across
the diameter of the sample (in Cartesian coordinates, strain
experiences a sign change). It may be seen as two independent
sources of nonlinearity acting on the spectrum of the RVM,
thus artificially increasing the harmonic generation. Those
frequencies (2f0, 4f0, and 6f0) may be identified as the
signatures of nonclassical nonlinear elasticity.

V. S WAVES AS HF PROBE WAVES

In this section, the elastic state of the sample is probed via a
pair of HF shear-wave transducers (Olympus V154-RM). As in
the previous section, the HF probe is placed at the axial position
of maximum strain for the LF pump of interest, namely, a
longitudinal or a torsional mode of vibration. Strong coupling
between the HF transducers and the sample is required for an
efficient shear-wave transmission. This is achieved by using
clamps, whose effect on the response of the sample is naturally
mitigated by the fact that the HF transducers are mounted at a
node of vibration of the sample (i.e., zero displacement). The
elastic state of the sample is probed at different polarizations of
the HF probes, for the highest level at which the LF pump can
be operated. The convention used to describe the polarization
of the probe is shown in Fig. 9. The angle θ parametrizes the
polarization of the probe. In the case of a longitudinal mode,
the probe is used from θ = 0◦ to 90◦ in steps of 10◦. In the
case of a torsional mode, the probe is used from θ = 0◦ to 180◦
in steps of 10◦. In both cases, results at other angles can be
inferred by symmetry. For each polarization angle, the stiffness
tensor experienced by the HF S wave is expressed in the local
basis of the HF probe, i.e., (e′

1,e
′
2,e

′
3) in Fig. 9. Transformation

from (e1,e2,e3) to (e′
1,e

′
2,e

′
3) is simply achieved by a rotation

around the “e2” axis, which can be formulated by the rotation
matrix.

FIG. 9. Schematic representation of the polarization angle of the
HF S-wave probe.

A. Longitudinal motion

The propagation speed V21′ , of the HF S wave in the strain
field induced by a longitudinal mode can be written in the local
basis of the HF probe as

ρ(V21′ )2 = CL
21′21′ (θ )

= �11�22 cos2(θ )[μ + (λ + 3μ

+m − 2λν − 2mν)AL + �33ALnν/2]

+�22�33 sin2(θ )[μ + (λ + m − μ − 2λν

− 4μν − 2mν)AL − �11ALn/2], (8)

where � is expressed in the basis formed by the principal
strain axes and has the following components: �11 = 1 − αε,
�22 = 1 − ανε, and �33 = 1 − ανε.

Typical results obtained in this set of experiments are
shown in Fig. 10. As previously, the RVM waveform shown in
Fig. 10(a) can be plotted as a function of the LF pump strain
when near steady-state conditions have been reached (e.g.,
around time t1) to visualize the nonlinear effects experienced
by the HF probe. This step is repeated for all polarizations
of the HF probe, with results for three polarizations shown
in Figs. 10(b)–10(d). As in the case of the HF P -wave probe,
strong hysteresis and asymmetry with respect to the zero-strain
axis is observed. When the polarization angle increases from
θ = 0◦ to 90◦, the magnitude of the conditioning decreases and
that of the curvature increases. These data sets can be further
reduced to visualize the magnitude of the conditioning as a
function of polarization angle, as shown by the polar plot in
Fig. 10(e). Conditioning is extracted for all polarization angles
at times t1 and t2. Smallest (resp. largest) conditioning effects
are observed at θ = 90◦ (resp. θ = 0◦) when the polarization
direction of the probe is aligned with the principal strain
axis with smallest strain amplitude νAL (resp. largest strain
amplitude AL). This effect from the Poisson’s ratio was already
observed by Lott et al. [40]. During the slow relaxation (e.g.,
at time t2), the induced anisotropy remains. Eventually, as the
material recovers back to its original elastic properties, this
nonlinear strain field signature collapses to one point. The
theoretical formulation can be used to reproduce, at least par-
tially, the experimental findings. The predicted conditioning
as a function of polarization angle is shown in Fig. 10(f).
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FIG. 10. DAE data for the configuration where the LF pump
is the first longitudinal mode of vibration of the sample and the
HF probe is an S wave. (a) Time history of the RVM of the S

wave in the “e2” direction. (b)–(d) RVM of the S wave in the “e2”
direction as a function of strain for the largest drive amplitude of the
pump at polarization angles of the probe of θ = 0◦, 40◦, and 90◦.
(e) Polar plot (function of the polarization angle of the probe) of the
measured average value of the RVM (conditioning) around times t1
and t2. (f) Polar plot of the predicted instantaneous value of the RVM
(conditioning) at the largest strain amplitude AL.

For the predictions, the following parameters were used:
λ = 0.73 GPa and μ = 4.64 GPa measured on this sample
using resonant ultrasound spectroscopy [43], l = −1600 GPa,
m = −3400 GPa, and n = −450 GPa measured by Winkler
and Liu [31] on Berea sandstone using static acoustoelasticity,
and α = 1600. The theoretical model captures well the features
observed in experiments, except near the angle θ = 0◦. One
possible reason for the discrepancy could be the change in
the contact area between the shear-wave transducer and the
sample as the polarization angle varies from 0 to 90◦. At
θ = 0◦, the shear wave is launched from a line contact whereas
at θ = 90◦ it is launched from a point contact. Such issue
could be easily resolved by using a sample with a rectangular
cross section. However, in this case, the strain field for a
torsional mode would be more complex than the one depicted
in Fig. 4(b).

B. Torsional motion

The propagation speed V21′ of the HF S wave in the strain
field induced by a torsional mode can be written in the local
basis of the HF probe as

ρ(V21′ )2 = CT
21′21′ (θ )

= �11 cos(θ ) sin(θ )(�22μ − �33μ

+ 2�22μAT r + 2�33μAT r + �22�33AT rn)

+μ�11(�22 + �33 + 2�22AT r − 2�33AT r)/2.

(9)

In this expression, �11 is still equal to one but �22 = �33 =
1 − αAT r . In order to model the asymmetry of the strain field,
Eq. (9) is evaluated at the radial positions with the largest strain,
i.e., at r = −R and R, where εφx ≈ ±4 microstrain for this

FIG. 11. DAE data for the configuration where the LF pump
is the first longitudinal mode of vibration of the sample and the
HF probe is an S wave. (a) Time history of the RVM of the S

wave in the “e2” direction. (b)–(d) RVM of the S wave in the “e2”
direction as a function of strain for the largest drive amplitude of the
pump at polarization angles of the probe of θ = 0◦, 40◦, and 90◦.
(e) Polar plot (function of the polarization angle of the probe) of
the measured average value of the RVM (conditioning) around times
t1 and t2. (f) Polar plot of the predicted instantaneous value of the
RVM (conditioning) at the largest strain amplitudes AT , at the radial
positions r = −R and R.

experiment. Under these considerations, the new expression
of the propagation speed becomes ρV 2

21′ = CT
21′21′ (θ ) = μ�22,

which is independent of θ .
Data from this experiment can be analyzed in the same

fashion as previously, for the case of the longitudinal mode.
Raw and processed data are shown in Fig. 11. Similarly to the
results obtained with a HF P -wave probe (see Sec. IV B), the
variation of the RVM as a function of strain [see Figs. 11(b)–
11(d)] does not exhibit any slope or strong asymmetry with
respect to the zero-strain axis, meaning that the effects of
the third-order elastic constants on the propagation of the
HF S wave are inhibited by the strain field of a torsional
mode. In the present case, strong hysteresis and conditioning
are observed at all polarizations of the probe. In the case
of P waves, no coupling between the P -wave propagation
and material softening was expected from the theoretical
model. Such coupling is now enforced in the case of S

waves by the terms �22 and �33. Figure 11(e) clearly
indicates that the probe wave is most affected by conditioning
at θ = 45◦ and −45◦, which is aligned with two of the
principal strain axes. This is well captured in the theoretical
predictions shown in Fig. 11(f). For these predictions, the
same second-order and third-order elastic constants were used
but the parameter α had to be reduced to 700 to match the
magnitude of conditioning observed in experiments. The ratio
of α predicted for a longitudinal mode (α = 1600) and that
predicted for a torsional mode (α = 700) is approximately
the same as the ratio observed experimentally using nonlinear
resonant ultrasound spectroscopy by Remillieux et al. [26].
Furthermore, it should be noted that the theoretical model
does not include viscoelasticity. Therefore, in this model, the
material is conditioned and relaxed instantaneously by the

023603-8



NONLINEAR ELASTICITY IN ROCKS: A . . . PHYSICAL REVIEW MATERIALS 1, 023603 (2017)

applied strain amplitude. For this reason, the shape observed
experimentally in Fig. 11(e) can only be reproduced by
superposing predictions of the instantaneous conditioning as a
function of polarization angle at the radial positions r = −R

and R. Including viscoelasticity in the theoretical model as
well as other relevant physics is currently undertaken by the
authors.

VI. CONCLUSION

A tensorial model of conditioning was proposed and
partially validated in this paper. The original formulation of
Hughes and Kelly [29] was extended to introduce conditioning
effects, through a scalar parameter α that is projected onto
the principal strain axes. This model was derived in a very
general form and therefore can be applied to arbitrary wave
polarizations and strain fields. It captures many features ob-
served in experiments of dynamic acoustoelasticity including

(1) inhibition of the effect of third-order elastic constants
when a high-frequency P wave propagates in the strain
field of a torsional mode (for the particular experimental
configuration described in this paper), (2) polarization angles
for which the propagation direction of a high-frequency S

wave is most affected by the strain fields of longitudinal and
torsional modes. By comparing experimental findings with
theoretical predictions, it was also suggested that the model
could be greatly improved through the use of a tensorial α

(the parameter α would then be different for longitudinal and
torsional modes) and the use of viscoelasticity theory.
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