
PHYSICAL REVIEW MATERIALS 1, 023602 (2017)

�3(111) grain boundary of body-centered cubic Ti-Mo and Ti-V alloys:
First-principles and model calculations
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The energetics and atomic structures of �3[11̄0](111) grain boundary (GB) of body-centered cubic (bcc) Ti-Mo
and Ti-V alloys are investigated using density-functional-theory calculations and virtual crystal approximation.
The electron density in bcc structure and the atomic displacements and excess energy of the GB are correlated to
bcc-ω phase stability. Model calculations based on pairwise interplanar interactions successfully reproduce the
chemical part of GB energy. The chemical GB energy can be expressed as a sum of excess pairwise interactions
between bcc (111) layers, which are obtained from Gaussian elimination of the total energies of a number of
periodic structures. The energy associated with the relaxation near the GB is solved by numerical minimization
using the derivatives of the excess interactions. Anharmonic interlayer interactions are necessary for obtaining
accurate relaxation energy and excess GB volume from model calculations. The effect of GB on vibrational
spectrum is also investigated. Segregation energies of B and Y to a substitutional site on the GB plane are
calculated. Preliminary results suggest that Y tends to segregate, while B tends to antisegregate.
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I. INTRODUCTION

Body-centered cubic (bcc) Ti is thermodynamically stable
above 1155 K under ambient pressure. Upon cooling, it
transforms to hexagonal close-packed (hcp) Ti, which is stable
down to room temperature [1]. Pure bcc-Ti is mechanically
unstable at 0 K under ambient pressure, featured by a negative
C ′ shear modulus and imaginary phonon frequencies [2].
Therefore, it is not possible to investigate bcc grain boundary
(GB) structures using first-principles total energy calculations
at 0 K, because any disturbance caused by GB will lead to a
collapse of bcc structure.

To stabilize bcc Ti using first-principles methods, one
has to explicitly include atomic vibrations corresponding to
a temperature where bcc Ti is stable, for instance, using
molecular dynamics and assigning proper displacements and
velocities to the atoms. In recent years, several methods have
emerged for bcc Ti and other phases mechanically unstable
at 0 K [3–6]. However, applying these methods directly to
a supercell containing GBs, which is probably hundreds or
thousands of times more expensive, is still a formidable task
for today’s computational power. It is therefore desirable to
extract information from crystal structures related to a GB yet
much smaller than a GB supercell. Using such information,
the energetics and structures of a GB can be obtained from
model calculations.

Another route to approach the mechanically unstable bcc
Ti is by changing the chemical composition. By alloying Ti
with elements like V and Mo, the bcc-to-hcp transformation
temperature can be brought down to 0 K, stabilizing bcc
structure with respect to hcp and another structure, ω phase
[1]. This enables meaningful total-energy calculations of bcc
GBs. By adjusting the chemical compositions, one can obtain
a series of phase stabilities and GB properties, which helps
reveal the correlations between them.
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In this paper, we calculate bcc GB energy from a supercell
and also explore the feasibility of extracting GB properties
from smaller structures that are lighter to calculate. We
first benchmark virtual crystal approximation (VCA) [7] for
Ti-Mo and Ti-V alloys. Second, we present first-principles
calculations of GB supercells using VCA, from which GB
energies and atomic structures are obtained. Finally, analytical
models are constructed for a number of static and dynamic GB
properties of interest.

We have also calculated the segregation energies of B and
Y to a substitutional site on the GB plane. The results are
regarded as preliminary, as described in Appendix A.

II. FIRST-PRINCIPLES CALCULATIONS

A. Methodology

We have carried out 0 K frozen-ion density-functional-
theory (DFT) calculations using Quantum Espresso (QE) [8].
The ultrasoft pseudopotentials (USPP) of Ti, Mo, and V are
taken from the Garrity–Bennett–Rabe–Vanderbilt library [9],
where the exchange-correlation energy takes the general gra-
dient approximation (GGA) by Perdew, Burke, and Ernzerhof
[10]. Virtual crystal approximation (VCA) [7] is adopted and
the USPPs of Ti-Mo and Ti-V alloys are prepared by mixing the
USPPs of the pure elements. We use a wave-function energy
cutoff of 40 Ry (1 Ry = 13.6057 eV), an electron-density
cutoff energy of 480 Ry, and a first-order Methfessel–Paxton
smearing [11] with a width of 0.005 Ry. A Monkhorst–Pack
k-point mesh [12] of 24 × 24 × 24 is used for a bcc unit
cell, and 4 × 8 × 14 for the GB supercell described below.
Equilibrium bcc lattice parameter for each Ti-Mo and Ti-V
alloy is found, and the second-order elastic constants C11,
C12, and C44 are calculated by tetragonal and orthorhombic
distortions [13]. Phonon frequencies are calculated by density-
functional perturbation theory [14] using QE. The 0 K total
energies of hcp and ω phases are also calculated using the
same settings except the k mesh (22 × 22 × 14 for hcp and
14 × 14 × 19 for ω primitive cells).
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FIG. 1. Total energies differences of Ti-Mo and Ti-V alloys,
QE-VCA.

The GB supercell contains 48 atoms. The right half (x > 0)
consists of four blocks with the axes x0 = [111]/2, y0 = [1̄1̄2],
z0 = [11̄0] stacking along the x direction. The left half (x < 0)
of the GB supercell is the right half mirrored with respect
to the plane x = 0. The initial configuration is constructed
using the calculated equilibrium bcc lattice parameter and
ideal atomic positions. The x-dimension of the cell and internal
atomic coordinates are subsequently relaxed, while the y and z

dimensions remain unchanged. The result should resemble the
coherent patch of a GB between misfit dislocations, though
there is evidence that relaxing the y and z dimensions may
slightly change the GB energetics [15,16]. The convergence
criteria of atomic relaxation is when the total energy difference
between two consecutive relaxation steps is smaller than
10−4 Ry and when all components of all forces are smaller
than 10−3 Ry/Bohr (1 Bohr = 0.529177 Å).

B. Benchmarking VCA for Ti-Mo and Ti-V alloys

VCA is a single-site approximation where the pseudopo-
tentials of pure elements are interpolated. The interpolation
scheme for USPP described in the Appendix of Ref. [7]
is adopted by QE. VCA is generally less accurate than
Green’s function-based formalisms of DFT using coherent
potential approximation (CPA) [17–19] for chemical disorder.
Therefore we have also used the exact muffin-tin orbital
(EMTO) method [20,21] with CPA to calculate total energies,
of which some details are explained in Appendix B.

For first-order transformations, the thermodynamic phase
stabilities at 0 K is represented by total energy differences.
The total energy differences of bcc, hcp, and ω Ti-Mo
and Ti-V alloys are plotted in Fig. 1. Adding Mo or V
to Ti lowers the bcc total energy with respect to the other
two phases. The composition where two phases have the
same total energy represents an equilibrium for composition-

invariant transformations and should be an extension of the
composition-invariant equilibrium temperature to 0 K [22].

The equilibrium lattice parameters and second-order elastic
constants of bcc Ti-Mo and Ti-V are calculated (Fig. 2). The
experimental data of single-crystal elastic constants are scarce,
but those of polycrystalline Young’s modulus are abundant.
Therefore, we convert C11, C12, and C44 to isotropic Young’s
modulus E by

64μ4 + 16(4C11 + 5C12)μ3 + [3(C11 + 2C12)

× (5C11 + 4C12) − 8(7C11 − 4C12)C44]μ2

−(29C11 − 20C12)(C11 + 2C12)C44μ

−3(C11 + 2C12)2(C11 − C12)C44 = 0, (1)

B = (C11 + 2C12)/3, (2)

E = 9Bμ/(3B + μ), (3)

where the equation for isotropic shear modulus μ is from
Hershey [23] and B is bulk modulus.

The 0 K thermodynamic stability of bcc phase with respect
to other phases, shown in Fig. 1, does not represent the
mechanical stability of bcc on its own. In the harmonic approx-
imation and under zero external load, a mechanically stable
crystal must have real and positive phonon frequencies for all
wave vectors and polarizations [29]. Otherwise, the crystal
cannot sustain. The bcc structure can lose its mechanical
stability by a soft shear modulus C ′ = (C11 − C12)/2 or a
soft phonon mode � at wave vector k� = (2/3)[111]. The
former is related to bcc–hcp transition and the latter to bcc-ω
transition. Figure 3 summarizes the calculated C ′ modulus
and �-phonon frequency ω�. The bcc-ω stability can also be
characterized by the energy change along its transition path,
shown in Fig. 4. In bcc, the x coordinates of the (666) layers
A, B, and C (Fig. 5) are 0, 1/3, and 2/3 times x0 = [111]/2,
respectively. Bcc transforms to (hexagonal) ω if layers B and
C collapse into one layer at 1/2 x0. The transition path can
be described by a variable δ, with which the x coordinates of
layers A, B, and C are 0, 1/3 + δ/6, 2/3 − δ/6. δ = 0 stands
for bcc and δ = 1 for (hexagonal) ω. The energies shown in
Fig. 4 are calculated from δ = 0 to δ = 1, with cell dimensions
fixed to those of equilibrium bcc for simplicity.

QE-VCA calculations as in Figs. 3 and 4 suggest that
about 20% Mo or 50% V is needed to make bcc structure
mechanically stable. Experimentally, quenched-in ω particles
cannot be detected by x-ray or neutron diffraction peaks
beyond about 10% Mo [30] or 20% V [31], which coincide
with the markings in Figs. 2(c) and 2(d). On the other hand,
ω-like diffuse scattering can still be found in Ti-18% Mo
[30] and Ti-40% V [32]. The critical concentrations found
by QE-VCA seems more consistent with the disappearance
of ω-like diffuse scattering, instead of the disappearance of
quenched-in ω particles. However, the ω-like diffuse scattering
is arguably brought about by chemical short-range order [33]
and static atomic displacement [34], which VCA or any
single-site approximation cannot account for.

Based the above comparisons between QE-VCA and
EMTO-CPA or experimental data, we find VCA works
satisfactorily well for the Ti-Mo and Ti-V systems as a
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FIG. 2. Lattice parameter and polycrystalline Young’s modulus of bcc Ti-Mo and Ti-V alloys. Experimental lattice parameters at 300 K
are compiled in Ref. [24]. Experimental Young’s modulus data at 300 K are from Refs. [25–28].

FIG. 3. C ′ shear modulus (a) and the phonon frequency (b) at wave vector k� = (2/3)[111] of bcc Ti-Mo and Ti-V alloys, QE-VCA.
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FIG. 4. Bcc-ω energy difference along the transition path (described in text) under constant volume.

single-site approximation. Discrepancies are largely con-
tributed by pure elements rather than VCA as a mixing scheme.
VCA cannot represent chemical short-range order or local
atomic displacements, which become more important close to
the mechanical instability of bcc. However, since our focus
is the geometric configurations (atomic positions) near a GB,
VCA saves the necessity of building “super-supercells” of the
GB supercell for sampling chemical configurations (atomic
species) as an extra level of complexity.

C. The GB supercell: Atomic configuration, valence electron
density, and relaxation displacements

Figure 5 shows the valence electron density distribution
in a bcc cell, suggesting the change of �-phonon frequency
is directly related to a change in the total charge density

FIG. 5. Valence charge density in a bcc cell, QE-VCA.

and its directional distribution. A stable bcc structure has
higher electron density in 〈111〉/2 bonds than 〈100〉 bonds.
As approaching the Ti side and the �-phonon instability, the
total valence electron density is progressively lower, and the
electron densities in 〈111〉/2 bonds and 〈100〉 bonds become
closer. This motivates the atomic shuffle resulting in an ω

structure, where the previous bcc 〈111〉/2 and 〈100〉 bonds
become equivalent.

The cell in Fig. 5 is the building block of a �3[11̄0](111)
GB supercell shown in Fig. 6. Upon relaxing the atomic
coordinates in a GB supercell, Atoms ±1 and ±4 are displaced
away from the GB (and so are Atoms ±8 and ±11 by inversion
symmetry), while Atoms ±2 and ±5 (also Atoms ±7 and ±10)
tend to fill the vacancy on the GB plane. Such displacements,

FIG. 6. Atomic positions and valence charge density of the
relaxed GB supercells on the plane z = 0. The layer z = z0/2 is
the same but offset by x0/2. The x dimension of the two supercells
are not equal after relaxation but are scaled for clarity.
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FIG. 7. Layer displacements u in bcc equilibrium interlayer spacing d0. Values pointing to the curves are atomic fractions of Mo or V. The
displacement of layer 12 is V GB because the x-dimension of the GB supercell is relaxed.

plotted in Fig. 7, results in a partially ω-like structure near
the GB plane. The extent of the ω-like relaxation depends on
the stiffness of bcc against ω-like distortion: a composition
with higher bcc stability is more resistant to the disturbance
near the GB and has a thinner layer of ω-like structure. It can
also be described from an electronic density point of view:
when the average electron density is low, the atoms favor a
denser configuration and move toward the ω structure. When
approaching the critical composition of bcc instability, the
ω-like layer gets thicker to an extent that all atoms in the
supercell are affected. Below the critical composition, the bcc
GB structure will collapse to a fully ω phase structure after
full relaxation.

D. GB energy, excess volume, and their correlations
to bcc-ω phase stability

The GB energy EGB and excess volume V GB are listed
in Table I. The V GB is defined as the volume expansion per
GB area, having a unit of length. To remove the effect of the
composition dependence of lattice parameter, EGB and V GB

are also expressed, respectively, in energy per atomic GB area
and equilibrium interlayer spacing d0 = (

√
6/3)a0, where a0

is the equilibrium bcc lattice parameter. Scheiber et al. [35]
showed that a large number of GB structures of bcc Mo have

TABLE I. GB energy and excess volume.

EGB, Ry/atomic area EGB, J/m2 V GB, d0 V GB, Bohr

Mo 0.144 1.81 0.304 0.525
Ti0.2Mo0.8 0.194 2.45 0.317 0.546
Ti0.4Mo0.6 0.148 1.84 0.094 0.162
Ti0.6Mo0.4 0.095 1.17 −0.066 −0.115
V 0.094 1.32 −0.058 −0.094
Ti0.2V0.8 0.073 1.00 −0.080 −0.132
Ti0.4V0.6 0.051 0.68 −0.149 −0.251

EGB of 1.5 ∼ 2.5 J/m2 and V GB of 0.2 ∼ 0.6 Bohr, while a few
GBs have distinctly lower EGB, about 0.6 J/m2, and almost
zero V GB. In terms of EGB and V GB, the majority group is
termed “general” GB while the minority named “singular”
GB [36]. The �3[11̄0](111) GB investigated in this work is
a general GB, while the bcc twin boundary �3[11̄0](112)
(EGB = 0.54 J/m2 and V GB = −0.02 Bohr for bcc Mo [35])
is singular.

Since the valence electron density and near GB
displacements vary with bcc-ω phase stabilities, we
plot the GB energy before and after relaxation, and the excess
GB volume, against the bcc-ω phase stability (Fig. 8). The
GB energies of Ti-Mo and Ti-V alloys before relaxation are
two separate linear functions of bcc-ω energy difference, but
after relaxation they fall into approximately one curve. The
excess GB volume after relaxation of both series of alloys can
be described very well by a linear function of bcc-ω energy
difference. It is not clear though if such correlations apply to
other elements or finite temperature.

III. MODEL CALCULATIONS

We now turn to an investigation of the GB structure and
energetics using model pairwise interlayer interactions, which
can be determined using smaller supercells. In metals, the
interaction energies between ions screened by core electrons
are pairwise, while the energy of valence electron distribution
can be described as a functional of local density and density
gradient [37]. Therefore, pairwise interlayer interaction as a
model should work well provided the valence electron density
distribution does not change much. The pairwise interlayer
model we use for GB is essentially the same as the methods ap-
proximating stacking fault energy with structural energies [38].

The total GB energy is the sum of two components: the
chemical component EGB

chem, which is the GB energy with atoms
on ideal bcc positions, and the relaxation component EGB

rlx ,
which is the change in GB energy as a result of relaxation.
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FIG. 8. The correlations of (a) GB energy EGB before and after relaxation and (b) excess GB volume V GB to bcc-ω phase stability.

A. Interlayer interactions and the chemical
component of GB energy

The stacking sequence of bcc (666) planes can be expressed
by . . . ABC . . . with a period of 3 (Fig. 5). The equilibrium
interlayer spacing d0 = |(1/6)[111]bcc| = (

√
3/6)a0, where a0

is the equilibrium bcc lattice parameter. Due to symmetry,
the interlayer interactions are grouped into (1) interactions of
like layers: φaa ≡ φAA = φBB = φCC; and (2) interactions of
unlike layers: φab ≡ φAB = φBC = φCA = φAC = φCB = φBA.
In the ABC sequence (bcc), the energy per layer is

E0 = φab(d0) + φab(2d0) + φaa(3d0) + φab(4d0)

+φab(5d0) + φaa(6d0) + · · ·

=
+∞∑
k=1

φab[(3k − 2)d0] + φab[(3k − 1)d0] + φaa[3kd0].

(4)

However, near a GB the stacking sequence is disturbed
(Fig. 6). We define the excess interaction due to a “wrong”
pair compared to ABC:

�n ≡
{
φab(nd0) − φaa(nd0), if n = 3k

φaa(nd0) − φab(nd0), if n = 3k − 2 or 3k − 1
.

(5)

By analyzing the change in pair correlation near a GB, the
excess energy upon introducing a GB is

EGB
chem = (�2 + 2�3 + �4) + 2(�5 + 2�6 + �7)

+3(�8 + 2�9 + �10) + · · ·

=
+∞∑
k=1

k(�3k−1 + 2�3k + �3k+1), (6)

which can be named the “chemical” component GB energy,
because it does not involve relaxation and is determined by
atomic species.

We find the �n terms by considering some other stacking
sequences:

. . . AB . . . (period 2),

. . . ABAC . . . (period 4),

. . . ABCAB . . . (period 5),

. . .

By comparing pair correlations to the ABC structure, the
energy difference between a structure S per period and bcc can
be written as a sum of �n terms:

�S ≡ ES − NSE0 =
∑

n

pS(n)�n, (7)

where NS is the number of layers per period of structure S.
The coefficients pS(n) are listed in Table II.

To find N terms �2, . . . ,�N+1 we need N structures
whose coefficient vectors {s(2), . . . ,s(N + 1)} are linearly
independent. An example of linear dependency is the structure
ABCACB, because �ABCACB = −�AB + �ABABAC. The N

terms �2, . . . ,�N+1 form the solution of a set of linear
equations. For example, if N = 5, we use all the five linearly
independent structures listed in Table II, then

⎡
⎢⎢⎢⎣

2 2 2 0 0
2 4 4 0 2
2 3 0 5 5
4 6 4 0 0
2 4 3 2 7

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�2

�3

�4

�5

�6

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�AB

�ABC

�ABCAB

�ABABAC

�ABCACBC

⎤
⎥⎥⎥⎦ (8)

Combining Table II and Eq. (6) for EGB
chem, we can also find

by Gaussian elimination a series of expansions to an arbitrary
accuracy in principle:

EGB
chem = 0.5�ABAC − �4 + 2�5 + 3�6 + · · ·

EGB
chem = −0.5�AB + 0.5�ABABAC

+2�5 + 4�6 + 2�7 + · · ·
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TABLE II. Coefficients pS(n).

�
��n
S

AB ABAC ABCAB ABABAC ABCACBC

1 0 0 0 0 0

2 2 2 2 4 2

3 2 4 3 6 4

4 2 4 0 4 3

5 0 0 5 0 2

6 0 2 5 0 7

7
p(n + 6)
= p(n)

0 2
p(n + 6)
= p(n)

7

8 4 2 0

9 4 5 5

10 2 5 3

11 0 0 3

12 0 3 5

13
p(n + 12)
= p(n)

2 0

14 0 7

15 0 7

16
p(n + 15)
= p(n)

2

17 3

18 4

19 2

20 0

21 0

. . .
p(n + 21)
= p(n)

EGB
chem = −0.1�AB + 0.4�ABAC + 0.4�ABCAB

−0.1�ABABAC + 1.2�6 + 1.2�7 + 1.2�8 + · · ·
EGB

chem = − 1
16�AB + 1

16�ABAC + 1
4�ABCAB

− 1
16�ABABAC + 3

8�ABCACBC − 1 1
8�7

+2 5
8�8 + 3 1

8�9 + · · · (9)

With reference to the direct supercell calculations with 12
layers between two GBs (Sec. II C), the expansion Eq. (9)
converges quite well (Fig. 9). For alloys with a lower bcc
stability, the convergence is slower, but in principle any
accuracy can be obtained provided a sufficient number of
linearly independent stacking sequences.

B. Relaxation and excess GB volume

Figure 7 shows that near GB there are significant displace-
ments of atomic layers from their ideal bcc positions. In this
section we attempt to solve the relaxation of the atomic layers
near the GB.

In Sec. III A we have identified the mismatched layers near
the GB and their energies. The fact there exists relaxation
implies that there is also “residual forces” between the
mismatched layers if they stay on their ideal bcc positions.
We Taylor expand �n with respect to the displacement u from
the ideal distance nd0:

�n(u) = �n + �′
nu + 1

2�′′
nu

2(+ 1
6�′′′

n u3 + 1
24�′′′′

n u4), (10)

FIG. 9. Chemical GB energy approximated using a number of
stacking sequences.

where

�′
n ≡

{
d(φab−φaa )

dx

∣∣
x=nd0

, n = 3k

d(φaa−φab)
dx

∣∣
x=nd0

, n = 3k − 2 or 3k − 1
,

and higher-order derivatives �′′
n, �′′′

n , �′′′′
n are defined similarly.

�′
n = −fn is the negative residual force (�′

n > 0 for tension;
<0 for compression) and �′′

n is the excess force constant
between two mismatched layers nd0 apart. We repeat the
calculations of Eq. (8) with varied interlayer spacing and fit
Eq. (10) to the �n(u) terms. We expand �3(u), �4(u), . . . up to
the second order but �2(u) to the fourth order, because of the
large displacements of layers (N − 1) and (1) due to a strong
repulsion. Figure 10 shows the expansions for Mo.

Far from the GB, the structure restores the undisturbed bcc
(666) planes, and the displacements can be solved based on

FIG. 10. �n and Taylor expansions about nd0 for Mo. Second-
order expansion for all in gray and fourth-order in blue for �2 only.
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FIG. 11. bcc L[111] phonon frequencies calculated by density-functional perturbation theory (open circles) and their Fourier transforms
(solid lines) with the coefficients in Table IV.

TABLE III. �n and their derivatives.

Ry �2 �3 �4 �5 �6

Mo 0.3784 −0.0125 0.0994 0.0379 −0.0096
Ti0.2Mo0.8 0.3570 0.0034 0.0826 0.0346 −0.0058
Ti0.4Mo0.6 0.2990 0.0145 0.0511 0.0160 −0.0052
Ti0.6Mo0.4 0.2380 0.0276 0.0197 0.0010 −0.0063
V 0.1554 0.0169 0.0350 0.0046 −0.0057
Ti0.2V0.8 0.1453 0.0195 0.0241 −0.0031 −0.0048
Ti0.4V0.6 0.1448 0.0175 0.0152 −0.0084 −0.0035

Ry/Bohr �′
2 �′

3 �′
4 �′

5 �′
6

Mo −1.0919 0.0830 −0.0245 0.0173 −0.0035
Ti0.2Mo0.8 −0.9989 0.0802 −0.0190 0.0251 −0.0086
Ti0.4Mo0.6 −0.8063 0.1004 −0.0469 0.0072 −0.0024
Ti0.6Mo0.4 −0.5661 0.0820 −0.0520 −0.0068 0.0040
V −0.4763 0.0877 −0.0502 0.0067 −0.0016
Ti0.2V0.8 −0.4053 0.0731 −0.0475 0.0023 0.0002
Ti0.4V0.6 −0.3613 0.0699 −0.0455 −0.0018 0.0017

Ry/Bohr2 �′′
2 �′′

3 �′′
4 �′′

5 �′′
6

Mo 2.3993 −0.1708 0.0309 0.0003 −0.0039
Ti0.2Mo0.8 1.9193 −0.0195 −0.0184 −0.0091 −0.0047
Ti0.4Mo0.6 1.5729 −0.1170 0.0376 0.0253 −0.0073
Ti0.6Mo0.4 1.2981 −0.1237 0.0378 0.0201 −0.0050
V 1.0515 −0.1531 0.0855 0.0341 −0.0069
Ti0.2V0.8 1.0875 −0.1439 0.0527 0.0168 0.0007
Ti0.4V0.6 0.9940 −0.0969 0.0318 0.0109 −0.0016

Ry/Bohr3 �′′′
2 Ry/Bohr4 �′′′′

2

Mo −4.097 Mo 4.053
Ti0.2Mo0.8 −2.293 Ti0.2Mo0.8 0.9697
Ti0.4Mo0.6 −2.066 Ti0.4Mo0.6 1.27
Ti0.6Mo0.4 −2.877 Ti0.6Mo0.4 3.942

V −1.466 V 0.7697
Ti0.2V0.8 −2.763 Ti0.2V0.8 4.195
Ti0.4V0.6 −2.743 Ti0.4V0.6 4.394
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TABLE IV. Interlayer force constants of bcc (111) planes by Fourier transforming the L[111] phonon dispersion, Ry/Bohr2.

γ1 γ2 γ3 γ4 γ5

Mo 0.0503 0.1046 0.0595 0.0443 –
Ti0.2Mo0.8 0.1025 0.0668 0.1255 0.0120 0.0096
Ti0.4Mo0.6 0.0699 0.0226 0.1045 −0.0015 0.0175
Ti0.6Mo0.4 0.0351 −0.0235 0.0850 0.0292 0.0126
V 0.0427 0.0137 0.0740 −0.0088 0.0123
Ti0.2V0.8 0.0320 −0.0132 0.0625 0.0060 0.0161
Ti0.4V0.6 0.0243 −0.0387 0.0628 0.0218 0.0153

the knowledge of phonon dispersion along longitudinal [111]
branch of the equilibrium bcc structure. The interlayer force
constants {γp} can be obtained by Fourier transforming the
phonon dispersion [39,40]:

mω2(k) =
N∑

p=1

γp

(
1 − cos

pπk

kmax

)
. (11)

For the ABC stacking sequence, γ1 = φ′′
ab|d0 , γ2 = φ′′

ab|2d0 ,
γ3 = φ′′

aa|3d0 , γ4 = φ′′
ab|4d0 , . . . , and kmax = (2π/a0)

√
3 =

π/d0. In practice the Fourier series is truncated to N terms
if γN+1 and above is negligible and the obtained {γp} do not
change much with increasing N . We find N = 4 acceptable
for Mo and 5 for the other cases. The force constants are
listed in Table IV, and Fig. 11 plots the phonon dispersions
from direct calculations and using Eq. (11) with Table IV. We
notice a significant decrease in γ1 and γ2 as the composition
approaches Ti.

Given the excess bond energy, residual forces, excess force
constants due to layer mismatch from Table III and the bcc
force constants from Table IV, we are ready to tackle the GB
relaxation problem.

The interlayer problem with GB is equivalent to the
problem of a one-dimensional chain of Np oscillators, but
with an impurity (the GB) which changes the bond energy and
stiffness and brings about residual forces within a number of
nearest neighbors. We assume the Born–von Kármán periodic
boundary condition but allow the period of the chain to change.
The energy caused by relaxation is

EGB
rlx =

Np∑
i=1

Ng∑
s=1

⎡
⎣δis�

′(s)
i

⎛
⎝ s∑

p=1

bi+p−1

⎞
⎠

+1

2

(
γ

(s)
i + δis�

′′(s)
i

)⎛⎝ s∑
p=1

bi+p−1

⎞
⎠

2
⎤
⎥⎦

+1

6
�

′′′(2)
Np−1

(
bNp−1 + bNp

)3

+ 1

24
�

′′′′(2)
Np−1

(
bNp−1 + bNp

)4
. (12)

We define ui as the displacement of layer i, and bi as
ui+1 − ui , i.e., the change in the distance between layers
(i + 1) and i. The distance between layers (i + s) and i is then∑s

p=1 bi+p−1. From here on all the subscripts for u and b are
modulo Np, for example, uNp+1 = u1, u−1 = uNp−1. The δis

marks whether there is a mismatch: δis = 1 if the layers i and

i + s are mismatched compared to the bcc stacking sequence,
and 0 otherwise. Up to the sixth neighbor, the mismatched
layers near the GB are:

s (index of nearest neighbor) i for δis = 1 in Eq. (12)

2 Np − 1
3 Np − 2, Np − 1
4 Np − 2
5 Np − 4, Np − 1
6 Np − 5, Np − 4, Np − 2, Np − 1
. . . . . .

among which only the interaction between layers (Np − 1)
and (1) are treated up to the fourth order.

We minimize EGB
rlx with respect to {bi}Np

i=1. If the cubic and
quartic terms are neglected, the minimization can be done
by matrix algebra. With cubic or higher-order terms, it is
convenient to minimize EGB

rlx numerically. The minimization

can be done with the constraint
∑Np

i=1 bi = 0, which means
the total length of the chain does not change, or without the
constraint in which case the change in the period is given by∑Np

i=1 bi = uNp
= V GB.

We calculated the equilibrium relaxation GB energy
(Fig. 12), normalized excess GB volume V GB/d0 (Fig. 13),

FIG. 12. Relaxation GB energy, model calculations versus ab
initio results. Gray dots correspond to second-order expansion of
�2 and blue dots correspond to fourth-order approximation of �2.
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FIG. 13. Excess GB volume, model calculations versus ab initio
results. Gray circles correspond to second-order expansion of �2 and
blue squares correspond to fourth-order approximation of �2.

and equilibrium displacements (Fig. 14) using parabolic or
quartic approximation of �2. Obviously, the parabolic approx-
imation of �2 yields too-high energy and stiffness when the
distance between layers (Np − 1) and (1) are large, therefore
significantly underestimates the relaxation displacements. The
local harmonic approximation accounts for about 60% of the
relaxation energy. Using a quartic fitting to �2 (while keeping
the zeroth to the second derivatives) improves the prediction
of relaxation displacements and is able to account for about
70% of the relaxation energy, but still much underestimates
the near-GB displacements.

It is expected that the relaxation can be better modeled
if more anharmonic terms are added, for example, the third-
order force constants in bcc. The necessity of anharmonic

pairwise terms or even going beyond pairwise approximation
is especially obvious regarding the excess GB volume, which
is not well reproduced using the current model calculations.

Surprisingly, the excess GB volume from direct supercell
calculations is well correlated to the total energy difference
between ω and bcc [Fig. 8(b)]. Recall that the stacking
sequence of ω is the same as bcc except that every two of
three layers merge. Therefore, the correlation between excess
GB volume and E(ω)−E(bcc) may imply that the higher-
order force constants in the ABC stacking sequence plays
a more important role than the excess interactions between
mismatched layers. It is not clear yet whether E(ω)−E(bcc) is
a good indicator for V GB for other chemistry or even at finite
temperature.

Another source of discrepancy lies in the method of
calculating �n and their derivatives: we stretched various
stacking sequences uniformly, which implies a uniform aver-
age interstitial electronic density. This may not be applicable
to the region near GB, where the gradient of electronic density
is strong. However, to account for the aforementioned factors,
much more calculations are required, and the advantage of
calculating small cells may be lost.

C. Harmonic vibration near the equilibrium positions

After equilibrium positions are found, now we consider har-
monic vibrations about the equilibrium positions. Writing the
time-dependent part of displacement as u(t) = ud

i exp(iωt),
the vibrational displacement follows

−miω
2ud

i =
∑

s

[(
γ

(s)
i + δis�

(s)′′
i

)(
ud

i+s − ud
i

)
−(

γ
(s)
i−s + δis�

(s)′′
i−s

)(
ud

i − ud
i−s

)]
, (13)

which is an eigenproblem:

Dud = ω2ud , (14)

FIG. 14. Atomic displacements from model calculations, �2 quartic.
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FIG. 15. (a) Difference in the eigenstate frequencies between the supercell with GB and the supercell without GB (pure bcc) of Mo. Both
have 12 layers per period. There are some modes softened (�ω < 0), also a strongly stiffened oscillator, the local mode. (b) The eigenvector,
i.e., the vibrational displacement pattern, associated with the local mode, which is obviously not a plane wave.

with the Np eigenvalues being the vibrational frequencies
squared ω2

λ and their corresponding eigenvectors being the
displacement pattern in real space, ud

i, λ.
In harmonic approximation, the force constants are inde-

pendent of atomic displacements. However, this is not the
case if a higher-order Taylor expression is used for �2. In
the following, we present the results using the �′′

2 at the ideal
position (local harmonic approximation), to the results using
the �′′

2 at the equilibrium position.
Compared to the pure ABC stacking sequence, the eigen-

values of an impurity chain includes a local mode [Fig. 15(a)],
which means it is an isolated eigenstate out of the spectrum
of frequencies of a pure ABC sequence. This is because some
bonds near the GB are much stiffened. There are also softened
bonds near the GB which give rise to frequency shifts to the
lower side. Many eigenvectors for the impurity chain are not
lattice waves which has a unique wave vector, but wave packets
with a spectrum of wave vectors, for example, the eigenvector
corresponding to the local mode [Fig. 15(b)].

If we take every eigenstate as a phonon, even if it is not a
plane wave in real space, we can write out the vibrational free
energy of the system,

Fvib(T ) =
∑

λ

{
h̄ωλ

2
+ kBT log

[
1 − exp

(
− h̄ωλ

kBT

)]}
. (15)

The excess vibrational free energy of the GB per atomic
area is the difference between the free energy of a chain
with GB and that of a purely bcc chain, which is shown in
Fig. 16. Comparing the two calculations using �′′

2(2d0) and
�′′

2(2d0 + 2u
eq
1 ), the former stiffness is much higher, giving

rise to a much higher local phonon mode and a negative excess
vibrational entropy, which may be physically unrealistic. In
contrast, the excess vibrational free energy using the latter
stiffness decreases with increasing temperature, which is
expected for most kinds of defects. We need to emphasize
that (1) the �Fvib(T ) calculated here assumes the GB only

disturbs the L[111] phonon branch of bcc but not the other
branches, and (2) the volume dependence of force constants,
which may have a negative contribution to �Fvib(T ), is not
considered.

IV. DISCUSSION

A. Relaxation displacements within bcc

The pattern of the relaxation displacements within bcc
depends on the phonon properties solely, which can be found
by the following method based on Ref. [41].

FIG. 16. GB excess vibrational free energy of Mo using harmonic
approximation near ideal position, �′′

2(2d0), and near equilibrium
position, �′′

2(2d0 + 2u
eq
1 ) for the interaction between layers (N−1)

and (1).
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Suppose the force constants are known by invoking
Eq. (11). Using trigonometric equations, cos pθ can be always
expressed as an pth-order polynomial of cos θ . Therefore,
Eq. (11) can be rewritten as

mω2(k) =
N∑

p=0

apcosp(πk/kmax), (16)

where the coefficients ap are functions of the force con-
stants γs . For example, if N = 5, then a0 = γ1 + 2γ2 + γ3 +
γ5, a1 = −γ1 + 3γ3 − 5γ5, a2 = −2γ2 + 8γ4, a3 = −4γ3 +
20γ5, a4 = −8γ4, and a5 = −16γ5. Relaxation implies a static
solution, i.e., ω = 0, and the problem is finding the N roots of
the N th-order polynomial on the right-hand side of Eq. (16),
which are

k = 0,{kR + ikI }N−1, (17)

where kR and kI are real. The only real root is 0, because there
is no zero or imaginary phonon frequency on the dispersion
curve except the origin. The other roots are complex. A static
lattice wave with the complex wave vector k = kR + ikI is

u(x) = cexp(ikx) = cexp(−kI x)exp(ikRx), (18)

which is a lattice wave with wave vector kR (or a period of
2π/kR) with an exponentially decaying or growing amplitude
u0 exp(−kI x). The general displacement is a linear combina-
tion of the waves in Eq. (18) plus a linear term for k = 0:

u(x) = c0 + c1x +
N∑

r=2

cr exp
(−k

(r)
I x

)
exp

(
ik

(r)
R x

)
. (19)

The coefficients are to be determined by boundary condi-
tions. Given u(x), it is also possible to obtain the relaxation
GB energy within bcc analytically.

However, we do not carry out such calculations in this
work because (1) it does not account for all the relaxation GB
energy, and (2) we have four or five force constants, making
the analysis quite complicated without gaining much physical
significance.

B. Effect of finite GB spacing

Usually two GBs with an inversion center are put in a
supercell, and the convergence with respect to GB spacing
is examined. This is more convenient to carry out using
pairwise interlayer interactions compared to direct supercell
calculations.

For the chemical GB energy, if we examine the pair
correlations between finite and infinite GB spacing, it is easy
to find out the leading truncation error due to a finite GB
spacing (Table V). The DFT results using different GB spacing
values are shown in Fig. 17. Compared to Fig. 9, we can see

FIG. 17. Convergence of the chemical part of GB energy with
respect to GB spacing (DFT results).

the EGB
chem from Np = 3 is comparable to EGB

chem approximated
using Eq. (9), because the leading truncation errors of both
approximations are on the order of �5. The computational cost
of the method in Sec. III A may be comparable or even larger
to that of directly enlarging GB spacing. However, a great
advantage of the former method is the ability of separating �n

terms and getting their derivatives.
For the relaxation, we find the relaxation energy and excess

GB volume by numerical minimization. The results for Mo
and Ti0.4V0.6, representing the two extremes of bcc stability,
are presented in Fig. 18. From the model calculations we can
see using a supercell with GB spacing equal to 12 layers is
already good enough, where the truncation error is less than the
discrepancy between model calculations and first-principles
results. The GB vibrational free energy also converges with
increasing supercell size.

V. CONCLUSIONS

(1) Virtual crystal approximation (VCA) works reasonably
well for Ti-Mo and Ti-V alloys as a single-site approximation.
Calculated 0 K thermodynamic phase stabilities, bcc lattice
parameters, and elastic constants are well compared to exper-
imental data and EMTO-CPA calculations. It can reflect the
bcc-stabilizing effect of Mo and V on Ti. Using VCA, a series
of alloys can be generated with various bcc stabilities. When

TABLE V. Leading truncation error in the chemical component of GB energy using supercells.

Stacking sequence GB spacing, number of layers (Np) Leading truncation error in EGB
chem

. . . ABCACB . . . (period 6) 3 2�5 + 4�6 + 2�7 + · · ·

. . . ABCABCACBACB . . . (period 12) 6 2�8 + 4�9 + 2�10 + · · ·
(period 18) 9 2�11 + 4�12 + 2�13 + · · ·
(period 24) 12 2�14 + 4�15 + 2�16 + · · ·
. . . . . . . . .

023602-12



�3(111) GRAIN BOUNDARY OF BODY-CENTERED . . . PHYSICAL REVIEW MATERIALS 1, 023602 (2017)

FIG. 18. Convergence of (a) relaxation GB energy, (b) excess GB
volume, and (c) GB excess vibrational free energy with respect to GB
spacing, by model calculations.

bcc instability is approached, there is a depletion of average
interstitial valence electron density, and the electron density
in (1/2)[111]bcc bonds and that in [100]bcc bonds tend to be
similar.

(2) The energetics and atomic structures of �3[11̄0](111)
GB of bcc Ti-Mo and Ti-V alloys are obtained using first-
principles total energy calculations of supercells at 0 K. The
GB creates an ω-like atomic shuffle whose magnitude decays
with increasing distance from GB. Approaching bcc instability,
the GB relaxation extends increasingly deeper into the bulk.
After relaxation, the GB energy and the excess GB volume
correlate with bcc-ω phase stability.

(3) The energy of any stacking sequences of bcc (666)
planes can be analyzed using pairwise interlayer interactions.
The chemical GB energy can be expressed as a sum of excess
interlayer interactions caused by a mismatch with reference
to the bcc stacking sequence. The excess interactions can be
solved to an arbitrary number of terms using the total energies
of periodic structures with various stacking sequences. The
chemical GB energy converges well with increasing number
of periodic structures considered to the results from supercell
calculations.

(4) The energy associated with the relaxation near the GB
is solved by numerical minimization using the derivatives of
the excess interactions with respect to interplanar distance.
It is necessary to include anharmonic contributions for the
interactions of layers, which undergo large relaxation dis-
placements. Current models can account for about 70% of the
relaxation energy of GB. The excess GB volume is sensitive to
the method approximating interlayer potentials. Higher-order
force constants of bcc and effects of nonhomogeneous electron
density are possibly responsible for the discrepancies.

(5) The phonon spectrum of a supercell with a GB has
a local mode whose frequency is higher than the maximal
frequency of a pure bcc crystal, caused by the stiffened
interlayer interactions near the GB. There are also softened
interactions, which give rise to a shift of vibrational frequency
to the lower side. The excess vibrational free energy of the
GB is calculated under harmonic approximation. Using the
force constants near the equilibrium positions, rather than
the ideal positions, gives a negative temperature dependence
of the excess GB vibrational free energy, as expected.
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APPENDIX A: SEGREGATION ENERGIES OF B AND Y
TO A SUBSTITUTIONAL SITE ON THE GB

For the GB segregation energies of B and Y, the energies of
GB cells with the host atom “0” substituted by the segregant.
Also needed is the energies of B or Y in a bcc supercell without
GB. This is carried out using a bcc supercell of the same size as
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FIG. 19. Energies related to GB segregation and the definition of
segregation energy and its chemical and strain-induced components.

the GB supercell, in order to avoid to the largest extent artifacts
due to different solute concentration and image interactions.

The relevant energetics is summarized in Fig. 19. Eseg is
the energy difference between the final and start states of
segregation. Negative Eseg means segregation is favored, while
positive Eseg implies antisegregation. Eseg can be divided into
a chemical component and a strain-induced one.

The segregation energies for B and Y in four of the GBs are
listed in Table VI. The results show that Y tends to segregate
to the substitutional site on GB, while B tends to antisegregate
to the site.

The reliability of GB-segregation energy has been ex-
amined in relation to the solubility of the segregant in the
host crystal by Lejček et al. [42,43]. Their conclusion is
the calculated segregation energy is reliable if the solute
concentration in the supercell is smaller than its solubility
in the host bulk. Otherwise, the supercell calculation repre-
sents a nonequilibrium state and the so-obtained segregation
energy cannot be used in equilibrium calculations. The solute
concentration in the supercell is 1/48 ≈ 2.1%. The maximum
solubilities of B in bcc Ti, Mo, and V are about 1% [44],
0.8% [45], and 1 ∼ 2% [46], respectively, while those of Y
in bcc Ti, Mo, and V are about 1% [47], 0.1% [48], and

TABLE VI. Segregation energies of B and Y to the bcc
�3[11̄0](111) GBs of Ti-Mo and Ti-V (negative = segregation).

B Y

Eseg, eV Chemical Strain Total Chemical Strain Total

Ti0.6Mo0.4 0.14 0.01 0.15 −0.36 <−0.16 <−0.51
Mo 0.86 −0.22 0.63 −0.02 −0.07 −0.08
Ti0.4V0.6 0.02 0.10 0.12 0.05 −0.06 −0.01
V 0.10 −0.17 −0.06 −0.32 −0.25 −0.57

∼0 [49], respectively. Therefore it requires further investiga-
tions to determine whether the calculated segregation energies
of B and Y can be used for equilibrium calculations.

Our calculations do not exclude the possibility of B
segregating to an interstitial site. In addition, the results with
the alloyed host atoms can be viewed as preliminary, because
(1) near the bcc instability of the host, the segregant atom
causes excessive relaxation near the GB, and (2) VCA does
not account for local chemical correlations.

APPENDIX B: DETAILS OF EMTO CALCULATIONS

For the EMTO calculations in this work, we adopt the
full charge density (FCD) formalism [13,20,21], where we
first calculate the electronic structure using the local density
approximation by Perdew and Wang [50], then use such
electron density to calculate the total energy using the GGA
by Perdew, Burke, and Ernzerhof [10]. All the self-consistent
EMTO-CPA calculations are performed using an orbital
momentum cutoff lmax = 3 for partial waves.

The onsite screening contribution to the electrostatic poten-
tial vi

scr of alloying element i, and the energy Ei
scr of a random

alloy are included in the electronic structure and total-energy
calculations in order to account for the effects of charge
transfer between alloying elements, within the single-site
approximation [51–54]:

vi
scr = −e2αi

scr
qi

S
, (B1)

Ei
scr = 1

2
βi

scr

∑
i

ciqiv
i
scr, (B2)

where ci is the concentration of element i, and qi is the net
charge in the atomic sphere of element i, S is the Wigner–Seitz
radius, αi

scr and βi
scr are two parameters. In this work, αi

scr and
βi

scr in single-site EMTO-CPA calculations are determined
from the locally self-consistent Green’s function method
[55–57] calculations for 384-atom disordered supercells. The
screening parameter βi

scr is a fitting parameter about unity
which simply renormalizes the electrostatic energy of single-
site CPA to that of the corresponding supercell. βi

scr is not
exactly unity due to the multipole–multipole interactions in
the supercell where local symmetry is reduced. However,
calibration calculations show that the deviation of βi

scr from
unity has a negligible effect on the total energies calculated in
this work. Therefore, we set βi

scr to 1 for all the cases in this
work. αi

scr is calculated by

αi
scr = −S(〈vi〉 − v̄)

e2〈qi〉 , (B3)

where 〈qi〉 and 〈vi〉 are the qi and vi averaged over the
supercell, and v̄ = ∑

i ci〈vi〉 is the total average Madelung
potential. v̄ has a small nonzero value even in highly symmetric
cubic crystal due to multipole moments of the electron density.
For binary alloys, the αi

scr parameters of the two elements are
equal [58].

The calculated αscr of Ti-Mo and Ti-V alloys depend on
alloy composition and crystal structure. In bcc Ti-Mo, αscr

ranges from 0.81 to 1.0. In ω Ti-Mo, the αscr of site 1 (with 14
nearest neighbors) varies from 0.77 to 1.0, while that of sites 2
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and 3 (equivalent, both with 11 nearest neighbors) varies from
0.97 to 1.0. The αscr of bcc Ti-V ranges from 0.50 to 0.56. In ω

Ti-V, the difference in αscr between inequivalent sites is small.
It is expected that Ti-Mo exhibits a larger magnitude and a

stronger composition dependence of αscr than Ti-V, because
Mo contributes more d electrons than V.

The screening parameters along the bcc-ω transformation
path are determined by linear interpolation.
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