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Optimizing surface defects for atomic-scale electronics: Si dangling bonds
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Surface defects created and probed with scanning tunneling microscopes are a promising platform for
atomic-scale electronics and quantum information technology applications. Using first-principles calculations we
demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to
isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and
biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si
samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1–2 nm) lead to an isolated
impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from
the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new
methods for tuning the properties of defects on surfaces for electronic and quantum information applications.
Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB
defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and
simulations.
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The ability to engineer semiconducting devices at the
atomic scale is key to achieving further miniaturization
of electronics, and to using the quantum nature of point
defects for quantum information applications. One promising
atomic-scale fabrication method employs scanning tunneling
microscopy (STM) to create and manipulate defects on
semiconducting surfaces [1]. For example, dangling bonds
(DBs) have been created and successfully manipulated on
hydrogen-terminated Si(100) surfaces by desorbing individual
H atoms from the substrate [2]. Ensembles of DBs on silicon
surfaces are now widely used to create atomically precise
systems of defects [3–15], leveraging expertise with the
fabrication of silicon devices, including the ability to produce
clean and regular hydrogen-terminated surfaces.

Numerous experiments have demonstrated many attractive
properties and potential applications of DBs on H:Si(100).
These defects interact over next-nearest-neighbor distances
[3,4,6], and the charge of individual DBs can be reversibly
manipulated, with given charge states persisting for hours [5].
In addition, these DBs display negative differential resistance,
potentially providing a new component for atomic-scale elec-
tronic circuitry [12]. Theoretical work has suggested that pairs
of DBs may be used to create a charge qubit [16]. Furthermore,
DBs may be assembled into specific patterns for electronics or
quantum simulations [6,14,17,18], including one-dimensional
conducting or semiconducting wires [7,19,20]. They further
serve as a starting configuration for atomically precise dopant
placement [21–25]. Hence tuning and manipulating the prop-
erties of DBs, e.g., charge states, may lead to a promising
strategy to build a flexible atomic-scale platform of defects for
electronic and quantum information technology applications.

In this work, using the results of first-principles calculations
we propose ways to realize DB defect states on H:Si(100) with
energies within the electronic gap of bulk Si; in particular,
we show how to tune sample thickness and strain to obtain
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desired energy and charge states. While doing so, we also
address existing controversies present in the literature on the
properties of DB states on Si surfaces. We present a consistent
interpretation of previous results, and use advanced methods to
ensure our findings are robust. We first show how the thickness
of the Si sample can be manipulated to alter the electronic
properties of the neutral Si DB state, and we demonstrate
that a stable positively charged DB state is accessible only in
thin (1.2 nm) Si samples. We also present similar effects for
multiple DB systems. We then turn our attention to the effect of
biaxial strain, showing that the electronic response of defects to
strain depends significantly on the slab thickness. We propose
that by combining thickness and strain, one may engineer
the properties of neutral DB defects for use in atomic-scale
electronics.

Methods. We carried out density functional theory (DFT)
[26,27] calculations with plane-wave basis sets and norm-
conserving pseudopotentials [28,29] using the QUANTUM

ESPRESSO package [30,31]. We modeled Si DBs on an H-
terminated Si(100) slab periodically repeated in two directions
and having a finite number of layers in the third, with vacuum
separating periodic images. All neutral DB calculations were
spin polarized. Atomic geometries were optimized until forces
on the atoms were less than 0.013 eV/Å.

We used the gradient-corrected exchange-correlation func-
tional developed by Perdew, Burke, and Ernzerhof (PBE)
[32], as well as hybrid functionals [33]. In particular, we
adopted a dielectric-dependent hybrid with the fraction of
exact exchange α = 0.085 ≈ 1/εSi

∞, shown to reproduce ac-
curately the electronic properties of bulk Si [34]. We also
used the Heyd-Scuseria-Ernzerhof (HSE) functional [35,36]
to compare with previous work. In addition, for selected
configurations we performed many-body perturbation theory
(MBPT) calculations [37–39] at the G0W0 level using the
WEST software package [40–42]. Within G0W0 the exchange-
correlation energy entering DFT is replaced by an electronic
self-energy calculated using the screened Coulomb interaction
and the Green’s function. WEST uses spectral decomposition
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FIG. 1. Electronic properties of neutrally charged dangling bonds on an H-terminated Si(100) slab. (a) Variation of the VBM, CBM, and
DB energy levels with layer number included in a model Si slab, as obtained using DFT calculations at the PBE level. We estimate that for
slab thicknesses of 8 nm or greater, the DB position is about 0.3 eV below the VBM. (b) Energy levels at the � point of the slab Brillouin
zone, as obtained with DFT using gradient-corrected (PBE) and dielectric-dependent hybrid functionals, and many-body perturbation theory
calculations (GW ). Results for 4- and 16-layer slabs are displayed. As in (a), red (cyan) designates energy levels of occupied (unoccupied)
DB states. (c) Isosurface of the wave-function amplitude for an isolated DB state in an H-terminated eight-layer Si slab. (d) Isosurface of the
wave-function amplitude for a DB state hybridized with a bulk state in an H-terminated 16-layer Si slab (see SM for details).

techniques [40,43–46] and methods based on density func-
tional perturbation theory [47] to optimize calculations for
large systems [40].

Details of geometries, calculation parameters, convergence
tests, and identification of DB states, can be found in the
Supplemental Material (SM) [48].

Results. Multiple computational results have been reported
in the literature for the singly occupied, neutral DB (DB0) state,
relative to the valence-band maximum (VBM) of Si: −0.3 eV
[49], 0.013 eV [6], 0.2 eV [50], 0.35 eV [16,51], 0.36 eV [7],
and 0.42 eV [52] (other calculations [5,11,53] only addressed
doped systems and/or charged DBs) [54]. These results differ
quantitatively and qualitatively: indeed, a defect state located
in energy above the VBM is expected to be well isolated
electronically, whereas one below may instead hybridize with
other electronic states in the material and hence may not be
amenable to manipulation.

In order to rationalize the various literature values for the
DB0, we calculated its electronic properties for many model
slabs, differing by the number of layers and supercell lattice
constant. We found that the choice of lattice constants in the
plane perpendicular to the surface primarily influenced the
degree of dispersion of the DB state (see SM for details).
We observed instead a much more pronounced dependence
of the nature of the DB state on the thickness of the slab, as
shown in Fig. 1(a). Its energy relative to the vacuum energy
of the supercell model is roughly constant. However, the
positions of the VBM and conduction-band minimum (CBM)
vary significantly with the number of layers in the slab. In
general, quantum confinement leads to a larger band gap whose
convergence toward the bulk value is very slow as a function
of the slab layer number [55,56]. A similar dependence
on thickness was recently found for a bare Si(100)-p(2×2)
surface [57].

Figure 1(a) shows that for a slab eight layers thick (≈
1.2 nm) the DB energy is 0.09 eV above the VBM energy,

while for a 16-layer slab (≈2.3 nm) its energy is 0.05–0.19 eV
below the VBM energy. The DB0 state is well isolated for eight
or fewer layer slabs, while it is mixed with bulk Si states for
16 or more layers, as shown in Figs 1(c) and 1(d). To verify
these findings are robust with respect to the level of theory
used, we carried out additional calculations using dielectric-
dependent hybrid functionals and MBPT. Figure 1(b) shows
that the position of the occupied DB state relative to the VBM
is nearly the same at all levels of theory. Hybrid and GW

calculations significantly correct the band-gap energy found at
the PBE level, but leave the DB state positions relative to the
VBM and CBM unchanged.

Hence we conclude that for Si samples 1.2 nm or thinner,
the neutral singly occupied DB state falls within the bulk gap,
while for samples 2.3 nm or thicker, it is hybridized with bulk
states and resides below the VBM. We expect the DB0 state to
have a much shorter coherence time for thickness >2.3 nm,
impacting its behavior in quantum information applications.
However, in other applications, its hybridization with bulk
states of thick slabs may be beneficial by facilitating long-
range interactions between point defects.

We note that these DB properties are different from those
of Si DBs at a Si/SiO2 interface, for which the energy of the
neutral defect is found by electron paramagnetic resonance to
reside in the gap of bulk Si [58]. This difference is presumably
due to the significantly different environment surrounding DBs
in the two systems [52]. We also stress that the behavior above
is not due to a change in the net magnetization density (which
is not significant as a function of layer thickness), but rather is
due to changes in the energy level of the singly occupied DB,
which is an isolated defect state for thin slabs but a resonant
defect state for thick slabs.

While understanding the properties of the neutral DB is
important for potential quantum information applications,
charge transition energy levels (CTLs) are the quantities
of interest for scanning tunneling spectroscopy observations

021602-2



RAPID COMMUNICATIONS

OPTIMIZING SURFACE DEFECTS FOR ATOMIC-SCALE . . . PHYSICAL REVIEW MATERIALS 1, 021602(R) (2017)

FIG. 2. Calculated adiabatic charge transition levels of a DB
on an H-terminated Si(100) surface, as a function of the sample
thickness, using the dielectric-dependent hybrid functional. EVBM

and ECBM indicate the energies of the valence-band minimum and
the conduction-band maximum, respectively. Uncorrected results
omit the finite-size scaling corrections obtained with the method of
Ref. [53].

[5,7–12], and applications for electronics [5,12] or charge
qubits [16]. We obtained CTLs by computing total energies
of different charge states in their respective optimized ge-
ometries (thus calculating adiabatic transitions), taking into
account corrections for the Coulomb interaction of periodic
images, and alignment of the electrostatic potential between
configurations [59]. For surfaces, correction methods used in
bulk systems are not applicable due to the large variation in
dielectric constant between the bulk and vacuum. We followed
the prescription suggested in Ref. [53]. Briefly, a sawtooth
electric field is used to compute the z-dependent dielectric
constant, from which a periodic electrostatic model of the
charged defect is constructed. The electrostatic energy is then
calculated using finite-size scaling by extrapolating the energy
of the model computed for cells of increasing sizes. As we
were interested specifically in the properties of thin Si slabs,
we kept the slab height constant during extrapolation.

Calculations at the PBE level of theory were performed
to check for convergence, and consistent results were found,
within ±0.1 eV, when varying vacuum length of the supercell
by a factor of 2 and horizontal supercell area by a factor of
2.7. Figure 2 shows our results using the dielectric-dependent
hybrid functional. Qualitatively, the PBE results are similar
to those in Fig. 2, with a 0.2 eV decrease in the (+/0) CTL
relative to the VBM (see SM).

Figure 2 shows that for thick samples (>2.3 nm), only the
(0/−) CTL falls within the bulk Si band gap. This result is
consistent with the experimental observation showing long
lifetimes of both the DB0 and DB− charge states, when
the DB is appropriately charged by an STM tip which is
then removed [5]. No long-lived DB+ state was detected
experimentally, even though a p-type Si sample was used
[5]. Interestingly, Fig. 2 also shows that very thin samples
may exhibit long-lived DB+ states without requiring any other
perturbations, making all three charge states easily accessible.
Such a system may provide a flexible platform for quantum
information technology applications.

Arrangements of multiple DBs lead to additional pos-
sibilities for atomic-scale electronics. We considered two
prototypical multiple-DB systems, and we found that they
exhibit the same properties as a single DB, as a function of

FIG. 3. Electronic properties of multiple-DB systems. (a) Band
structure of a neutral DB pair. (b) Model of the DB pair system. Si
DBs are highlighted. (c) Band structure of the antiferromagnetic DB
wire. Cyan circles in (a) and (c) show the overlap of states with the
Si atoms containing the DBs. (d) Model of the DB wire. Si DBs
are highlighted. The neutral, singly occupied DBs have alternating
spin-up and spin-down configurations.

thickness. Figure 3(a) shows the band structure of a neutral
DB pair [4,6,16]. Its geometry [Fig. 3(b)] is an example of
that proposed for charge qubits [4,16]. For a four-layer slab
all DB states are well separated, while for a 16-layer slab
the occupied DB states become resonant with the valence
band. The presence of this resonance may lead to stronger
interactions between bulk and DB states; the overall larger
gap for a four-layer system should also improve addressability
of the DB pair using midinfrared lasers [60].

Figure 3(c) shows the band structure of the antiferromag-
netic DB wire in Fig. 3(d) [7,19,20,61–65]. For a neutral DB
wire on a four-layer slab, both the occupied and unoccupied
one-dimensional (1D) bands lie within the gap, and thus the
wire may conduct either electron or hole states under suitable
bias. In contrast, for a 16-layer slab, only the unoccupied
1D band lies within the gap, while the occupied 1D band
is resonant with the bulk Si states. Thus, for 16 layers, hole
conduction would be expected to occur through both bulk and
wire states when a suitable bias is applied, removing the 1D
nature of the conductivity.

A recent theoretical study raised the intriguing possibility
of using strain to isolate surface states of a bare Si(100)
surface, showing that the VBM is lowered in energy when
biaxial tensile strain is applied in the horizontal directions
[66]. However, this result is not consistent with those of
theoretical and experimental investigations of bulk Si under
biaxial tensile strain, showing that the VBM energy increases
and the bulk band gap decreases [67,68]. Our results indicate
that for standard (thick) silicon surfaces, strain will not isolate
surface states, in contrast to the conclusions of Ref. [66].
Instead, only for thin Si slabs can strain be used to isolate
surface states, a result of the remarkably different response to
strain for thin slabs compared to bulk systems. Figure 4(a)
shows this difference in response: the VBM position as a
function of strain shows a qualitatively different trend for
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FIG. 4. Variation of electronic properties as a function of biaxial
strain applied to the Si slab. (a) Variation of the VBM (circles) and
CBM (squares) positions vs strain. For all values of strain, the band
gap for 34-layer slabs is within 0.1 eV of the bulk band gap. (b)
Variation of VBM and CBM positions, and the energies of DB states,
for a 10-layer system.

thick (�4 nm) slabs, where it increases with strain, and thin
(10-layer, 1.5 nm) slabs, where it decreases with strain to a
thickness-dependent minimum. As a result, for thick slabs the
fundamental gap remains close to that of the bulk, but for thin
slabs tensile strain leads to an increase of the gap relative to
that of the bulk. An unstrained 10-layer slab has a fundamental
gap 0.4 eV larger than that of bulk Si. In contrast, under 3%
biaxial tensile strain its fundamental gap is 0.8 eV larger than
that of the bulk.

Thus, while in thick slabs biaxial tensile strain would not
be expected to aid in isolating DB states, in very thin slabs,
the opposite is true, as shown in Fig. 4(b). A state which is not
well isolated in a 1.5 nm unstrained slab becomes isolated for
strains of 1% or more. For direct comparison with Ref. [66],
results in Fig. 4 used the HSE hybrid functional; calculations
with PBE showed the same trend as a function of strain (see
SM). Note that Ref. [66] used a 10-layer slab model, effectively
reporting results applicable only to thin slabs.

In summary, we have proposed how to engineer the
properties of DBs on hydrogenated Si surfaces by varying
sample thickness and applied stress. We have shown that
the single particle energy and wave function of DBs on
H:Si(100)-(2×1) may be more readily isolated from those of
bulk states in thin samples (<1.2 nm) than in bulklike slabs.
Specifically, in thin samples, the neutral DB state is well above
the VBM, and three charge states may be stabilized. In thick
(>2.3 nm) samples, the neutral DB state is instead hybridized
with bulk states, and the positively charged DB is not stable;
for bulk samples the neutral DB state is about 0.3 eV below
the VBM. We verified that our results are robust with respect
to the level of first-principles theory used, including semilocal
and hybrid functionals and many-body perturbation theory.

Dangling bond pairs and wires showed the same response to
sample thickness. Notably, thin samples allow hole conduction
along isolated DB wires, whereas in thick samples conduction
would also occur through the bulk. Additionally, we found that
in thin samples biaxial tensile strain will further isolate the DB
energy from that of the VBM. However, strain is not helpful
in isolating states in thick Si samples.

We emphasize the importance of carrying out accurate
calculations, numerically converged and at a high level of

theory, in order to determine the properties of isolated DBs.
Although numerous experimental STM studies have been
performed, both tip-induced band bending and nonequilibrium
charging did not allow for a clear extrapolation of results to
isolated DB configurations [5–12]. Furthermore, recent work
has shown that nearby dopants can affect the behavior of
DBs [10], which further complicates the interpretation of
experimental findings. Our study of electronic properties as
a function of film thickness was able to reconcile apparent
discrepancies found in published results, which were reported
for different numbers of layers in the slabs and sometimes
interpreted as representative of bulk samples (we estimate that
60 layers are necessary for calculations to be representative of
thick, bulklike samples).

A question remains on the experimental realization of the
thin films proposed here as promising platforms. Si films as
thin as 3 nm have been reported [69]; strained Si-on-insulator
samples less than 10 nm thick have also been fabricated [70].
While the 1–2-nm slabs considered here may require new
techniques, their experimental realization appears possible in
the near future. Finally, we expect the results found here for
DBs may be valid for several other defects when placed in thin
Si slabs. This includes many defects used in quantum informa-
tion applications, such as isolated phosphorous [71,72], boron
[73], bismuth [74,75], or selenium [76,77] dopants, as well as
patterned surface systems [6,14,17,18]. Indeed, the electronic
properties of the DBs change as a function of thickness due to
the change of the VBM and CBM themselves, not because of
a substantial shift of the defect level. Hence the combination
of strain and thickness proposed here to isolate DB defects
and stabilize multiple charge states should be generalizable to
other types of defects.
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