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Nanoplatelets as material system between strong confinement and weak confinement
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Recently, the fabrication of CdSe nanoplatelets became an important research topic. Nanoplatelets are often
described as having a similar electronic structure as two-dimensional quantum wells and are promoted as colloidal
quantum wells with monolayer precision width. In this paper we show that nanoplatelets are not ideal quantum
wells, but cover depending on the size: the strong confinement regime, an intermediate regime, and a Coulomb
dominated regime. Thus, nanoplatelets are an ideal platform to study the physics in these regimes. Therefore, the
exciton states of the nanoplatelets are numerically calculated by solving the full four-dimensional Schrödinger
equation. We compare the results with approximate solutions from semiconductor quantum well and quantum
dot theory. The paper can also act as review of these concepts for the colloidal nanoparticle community.
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I. INTRODUCTION

In quantum dots the wave function of the electron and
hole that form the optically created exciton are confined in all
three dimensions resulting in a quasi-zero-dimensional system
with discrete states [1–5]. The chemical synthesis of colloidal
quantum dots is a very active research field [6–9], since the
controlled growths of these materials lead to many real life
applications like dyes for, e.g., television [9] or as markers
in biology [10]. Colloidal quantum dots may have a higher
potential for applications than epitaxial grown quantum dots,
which are more difficult to grow [9].

On the other hand, epitaxial grown structures like quantum
wells serve very well in many lighting applications like
LEDs [11–13]. In quantum wells the electron and hole are
only in one dimension confined and can move freely in two
dimensions (2D). Optical excitation creates in these quasi-2D
system bound electron-hole pairs: excitons [14–16]. Colloidal
nanoplatelets (e.g., CdSe) can be grown with monolayer
precision [17–25], therefore nanoplatelets may be a chemical
grown alternative to epitaxial quantum wells. However, sizes of
nanoplatelets are not as big as quantum well sizes. Therefore
the size of most nanoplatelets is not large enough for their
exciton states to have the same properties like a quantum
well. On the other hand, most nanoplatelets are too large
for quantum dotlike properties and photoluminescence spectra
show similar features as quantum wells [17,19,20,24], since
disorder in quantum wells like confinement within the platelet
area usually leads to a similar localization of states.

In the moment, the toy models used to describe the
optical relevant exciton states for nanoplates depend often
on the scientific background of the authors: Some papers
use an exciton wave function factorized in relative motion of
electron and hole and the center of mass motion of the whole
exciton [23]. This is the correct approach for a quantum well
with disorder, if the Coulomb interaction between electron
and hole dominates compared to the confinement or disorder.
Other papers from authors with a quantum dot background [24]
use the ansatz for the strong confinement limit, where the
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exciton wave function is factorized into an electron and an hole
part. This is the correct approach if confinement dominates
compared to Coulomb interaction. Treatments with a chemical
background [22] used a Frenkel exciton ansatz, which does not
reflect the properties of the more Wannier type excitons in the
nanoplatelets.

A detailed look at the typical model ansatz wave functions
for platelets, previously known from quantum wells and dots,
is necessary and is provided in this paper (this paper comple-
ments very early studies [26] using a variation ansatz focused
on the ground state, with a full solution of the four-dimensional
Schrödinger equation and an analysis of higher excited states).
The study should also complement the information obtained
through recent ab initio studies using periodic arrangements in
in-plane direction [21,27], since we use finite sizes in in-plane
direction. We start with the derivation and introduction of a
Wannier type model system for obtaining the four-dimensional
excitons wave functions. The four-dimensional wave functions
were numerically calculated using finite differences for various
nanoplatelet sizes as basis for an analysis of the exciton states.
The interplay between Coulomb coupling and confinement
is the main key to understand the exciton state properties:
therefore the approaches for the strong confinement regime and
the Coulomb dominated regime are discussed after this. The
full solution and the two approximations are then compared
and discussed for nanoplatelets of different size covering
different regimes.

II. MODEL SYSTEM: THE FOUR-DIMENSIONAL
WANNIER EQUATION

The main aim of this paper is to understand the interplay
of confinement and Coulomb coupling in nanoplatelets for
choosing the right model system in an analysis. For a
qualitative understanding the model should be as simple as
possible, at the expense of quantitative accuracy. Platelets
are boxlike nanostructures, which are typically in z direc-
tion only a few monolayers thin, while in x-y direction
their extent is much larger (cf. Fig. 1). For describing the
wave function of the platelet excitons, a standard multi-
band envelope ansatz can be used [14,15,28]: �(re,rh) =∑

λeλh

∑
ne,nh

�
ne,nh

λeλh
(ρe,ρh)ζne

(ze)ζnh
(zh)uλe

(re)uλh
(rh), with
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FIG. 1. Sketch of a nanoplatelet.

ri = (ρi ,zi). Here λi (ni) are the (sub)band indices for the
electron (e) and hole (h) of the exciton. uλ(r) are the Bloch
functions around the band edge k ≈ 0 (cf. Ref. [14]) describing
the wave function on scales below unit cell size. The envelope
function �

ne,nh

λeλh
(ρe,ρh) describes the exciton in-plane motion

and the envelope functions ζni
(zi) describe the carrier z motion

on scales above the unit cell sizes. Since CdSe is a wide gap
semiconductor, where band mixing effects are not dominant,
we can choose a simple parabolic two-band model for the
electron and hole carriers instead of a multiband approach
like the Kane model [29,30] to keep the discussion simple.
Furthermore, only the lowest electron and hole subband are
considered, since we are interested in the exciton states around
the band edge. This leads to the exciton wave function ansatz
(cf. Ref. [31]): �(re,rh) = �(ρe,ρh)ζe(ze)ζh(zh)ue(re)uh(rh).
Instead of using envelope functions ζi(z) also tight-binding
approaches can be used to describe the wave function z-
direction part and the Bloch part (like in Ref. [21]). In all these
approaches (including the limit of an infinite thin platelet), the
starting point for further discussion is the four-dimensional sta-
tionary Schrödinger equation of the envelope function for in-
plane motion �(ρe,ρh): [− h̄2

2me
�⊥e − h̄2

2mh
�⊥h + Vc,e(ρe) +

Vc,h(ρh) + Ucoul(ρe − ρh)]�(ρe,ρh) = E�(ρe,ρh) [32]. The
first two terms describe the motion of the electron (hole) with
the effective masses me and mh in the conduction and valence
bands [14–16]. The independent free motion of the electron
and holes is an important property that distinguishes Wannier
excitons in inorganic semiconductors from Frenkel excitons in
organic semiconductors. Please note, a model with excitons at
different sites like in the Frenkel case with coupling between
the excitons [22] is not sufficient for describing this inorganic
semiconductor nanostructure, since electron and holes can
move independently to some extent determined by Coulomb
interaction. Instead, in the case of a site model, independent
tunneling Hamiltonians for electron and holes like in Ref. [33]
are required to include the independent motion of electron
and holes in the two bands. Vc,e(ρe) and Vc,h(ρh) are the
confinement potentials of the electron and hole. In order to
keep the model system simple, an infinite deep confinement
potential is used with Vc,e/h(ρe/h) = 0 for ρe/h inside the
platelet and Vc,e/h(ρe/h) = ∞ for ρe/h outside of the platelet.
The actual confinement potential may be smooth and have
finite depth in reality. However, e.g., for quantum wells, a
finite depth potential well can be approximated with an infinite
potential well with a larger effective size. Therefore, the
platelets from the model system with the infinite potential well
are slightly smaller as the platelets in reality. Ucoul(ρe − ρh)
is the Coulomb potential between the electron and holes. In
atomically thin 2D materials, the Coulomb potential is modi-
fied [34,35] and described by the asymptotic approximation of

the potential [35] Ucoul,K (ρ) = 1/[4πε0(2εr,out)ρ0]{ln[ρ/(ρ +
ρ0)] + [γ − ln(2)]e−ρ/ρ0}, with ρ0 = z0εr/(2εr,out), with the
platelet thickness z0 and εr of the platelet material and εr,out of
the solvent that surrounds the platelet and the Euler constant
γ . Platelets are only a few monolayers thin, so in this respect
the potential may describe platelets well, and may be better
than using a vacuum Coulomb potential together with envelope
functions in z direction—the standard approach for quantum
wells [36–38]. However, their size in the perpendicular
direction is not large enough that the assumption of an
infinite two-dimensional material holds. The approximation
is better suited for larger platelets, but it is a good first
rough approximation. The potential Ucoul,K (ρ) has a logarith-
mic singularity, for a calculation using finite differences a
very high discretization is required. This is not numerically
feasible for the full four-dimensional problem. Therefore
the parameter α0 of a model potential [37] Ucoul(ρ) =
−1/(4πε0εr )1/[

√
ρ2 + (α0z0)2] is adjusted, so that the bind-

ing energies of the lowest energy eigenstates for eigenfunctions
of the relative wave function of an infinitely extended platelet
match approximately the corresponding eigenenergies of the
Keldysh potential Ucoul,K (ρ) [39]. This approach is similar
to the procedure used in Ref. [37], and allows us to the
describe the Coulomb induced correlated motion of electron
and hole. The approximation allows a qualitative discussion,
but the quantitative exciton energies of the higher excited
states should be discussed with care. The numerical solution
of the full four-dimensional problem is calculated using
the effective potential Ucoul(ρ). For a consistent discussion
all approximate solutions use the same effective Coulomb
potential.

The interband optical transition strength for creating
excitons is determined by the product of overlap integrals∫

dzζe(z)ζh(z) of the envelopes ζe(ze) and ζh(zh), the inter-
band dipole (or momentum) transition element dcv( pcv), and
overlap integral between electron hole in in-plane direction
On = ∫

d2ρ�n(ρ,ρ) (see Refs. [14,15,31,40,41]). In order
to quantify the oscillator strength for creating the exciton
states with different envelope functions, the relevant overlap
integral between electron and hole: alone On is sufficient
for the following analysis in this paper, since we focus
on the exciton states around the band edge. We used the
following parameters: z0 = 0.302 nm × 4.5 monolayers [19],
me = 0.22, mh = 0.41 [21], α0 = 1.1, εr = 9.5, and εr,out =
5.0 for the calculations in this paper.

Before the discussion of bound exciton eigenstates of the
full four-dimensional Schrödinger equation the strong confine-
ment limit and the weak confinement limit are recapitulated.

A. Strong confinement limit

Electrons and holes of an exciton state are correlated by
Coulomb interaction. In the strong confinement limit [42,43]
the confinement potential restrains the motion of electron and
holes on a smaller distance as the typical distance between
electron and holes in a bound exciton states in the unconfined
case. Though the shape of the wave function is almost
completely determined by the confinement potential and is not
influenced by the Coulomb potential in a first approximation.
So that the four-dimensional Schrödinger equations can be
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approximated in zeroth order as [42] [− h̄2

2me
�⊥e − h̄2

2mh
�⊥h +

Vc,e(ρe) + Vc,h(ρh)]�(ρe,ρh) = E�(ρe,ρh). The factorized
ansatz �(ρe,ρh) = ψe(ρe)ψh(ρh) yields two equations one
for the electron [− h̄2

2me
�e⊥ + Vc,e(ρe)]ψe(ρe) = Eeψe(ρe) and

one for the hole [− h̄2

2mh
�h⊥ + Vc,h(ρh)]ψh(ρh) = Ehψh(ρh)

wave function. The exciton eigenstates are described by an
electronic eigenfunction ψe,n(ρe) and an hole eigenfunction
ψh,m(ρh). The overlap between electron n and hole wave
function m [40]: Oeh,nm = ∫

d2ρψ∗
e,n(ρ)ψh,m(ρ) enters the

dipole strength as a factor and thus determines if an exciton
composed of electron n and hole m is a dark or a bright
state. The exciton has the energy Es

nm = εn + εm relative to
the band gap. Even if Coulomb coupling does not deter-
mine the shape of the exciton wave function in the strong
confinement limit, it shifts the exciton energy considerably.
The Coulomb shift can be obtained in first-order perturbation
theory by [43] Vcoul,nm = ∫

d2ρe

∫
d2ρh|ψe,n(ρe)|2Ucoul(ρe −

ρh)|ψh,m(ρh)|2, giving the Coulomb corrected exciton energy
E′s

nm = εn + εm + Vcoul,nm. Higher order Coulomb correction,
e.g., using second-order perturbation theory [43] or Hartree-
Fock equations [24], are also used in the literature and may
extend the validity range of the strong confinement model
towards larger platelets. We will see in the numerical analysis
that the strong confinement limit describes small nanoplatelets
very well.

B. Weak confinement: Coulomb dominated limit

If the confinement area is large, the Coulomb attraction
between electron and holes creates bound exciton states,
showing a correlated electron and hole motion. Exciton states
with a higher binding energy have a lower average
distance between electron and holes. The first step
to attack the weak confinement limit is to ignore the
confinement potential and to solve the Schrödinger equation
including only Coulomb interaction beside the kinetic
terms: [− h̄2

2me
�⊥e − h̄2

2mh
�⊥h + Ucoul(ρe − ρh)]�(ρe,ρh) =

E�(ρe,ρh). The problem without the confinement
potential is translational invariant, a formulation using
relative coordinates r = ρe − ρh and center of mass
coordinates R = meρe + mhρh is beneficial [14,15]:
[− h̄2

2mr
�r − h̄2

2M
�R + Ucoul(r)]�(r,R) = E�(r,R) with the

reduced mass 1/mr = 1/mh + 1/me and overall mass
M = me + mh. Using the factorization ansatz �(r,R) =
ψr (r)ψCOM(R), we obtain the Wannier equation for the relative
wave function: [− h̄2

2mr
�r + Ucoul(r)]ψr (r) = Erψr (r).

The Coulomb interaction between electron and holes
in the Wannier equation creates bound states of the relative
wave function, analog to the hydrogen atom. The mean
distance between electron and hole of a particular state
compared to the confinement dimensions is an indicator, if
the factorization in relative and center of mass wave function
is a good approximation. For the lowest energy eigenstate, the
average distance is not far away from the exciton Bohr radius
aB (factor 1.5 for the ideal hydrogen 1s state). Of course the
exciton Bohr radius alone is not a sufficient indicator for higher
energy eigenstate with bigger radii (see later the discussion
of states including 2s and 2p and higher contributions). The

confinement energy compared to the binding energy is also
a good indicator, whether the strong or weak confinement
is the correct limit. For a selected eigenfunction ψr,n(r) of
the Wannier equation, the full Schrödinger equation can
be used for obtaining an equation for obtaining the wave
function of the center of mass motion (COM) [14,15]:
[− h̄2

2mr
�r − h̄2

2M
�R + Ucoul(r) + Vc,e(R + mh

M
r) + Vc,h(R −

me

M
r)]ψr,n(r)ψCOM,n(R) = Eψr,n(r)ψCOM,n(R). Multiplying

the equation by ψ∗
r,n(r) and integrating over r yields [15]

[− h̄2

2M
�R + Ṽc,e,n(R) + Ṽc,h,n(R)]ψCOM,n(R) = (E − Er,n)

ψCOM,n(R). Here we introduced the effective
confinement potentials [31] Ṽc,e/h(R) = ∫

d2rVc,e/h,n(R ±
mh/e

M
r)|ψr,n(r)|2. We replace the potential Ṽc,e/h(R) with

the confinement potential of the electron and holes as a
first approximation. Another approximate way would be
using a confinement potential for the COM wave function
reduced in its size by the averaged diameter of the relative
wave function, however this does not work for structures
smaller or around the diameter of the relative wave function.
The full wave function in center of mass approximation
�n,m(R,r) = ψr,n(r)ψCOM,n,m(R) is characterized by the
quantum numbers n of the relative wave function and by the
quantum numbers m of the COM motion. It is important to
note that in general the solution of the COM is not independent
of the eigenstate for the relative wave function part. In the
weak confinement regime the overall energy of a state is
ECOM

nm = Er,n + ECOM,n,m relative to the band gap energy.
The weak confinement regime is more suitable for lower

energy excitons in larger nanoplatelets. In this case, we may
have to include the variation of the optical field over the
nanoplatelet for the calculation of the nanoplatelets dipole
moments. For an in-plane wave vector of the external optical
field k‖, the dipole strength is determined by the following inte-
gral [15]: OCOM,nm = ψr,n(r = 0)

∫
d2Re−ık‖·RψCOM,n,m(R).

To simplify the comparison to the strong confinement regime,
we apply the limit k‖ ≈ 0 assuming small platelets compared
to the wavelength of the radiation [31].

III. EXCITON STATES AND ABSORPTION SPECTRA

In this section we will calculate simple absorption spectra
using the full solution and the approximate solutions for the
weak and strong confinement case. We use the formula α(ω) =
−Im[

∑
{n} |O{n}|2/(E{n} − ω + ıγ )] for the absorption

spectrum using an artificially set broadening γ and sum over
all quantum numbers {n} of the respective ansatz [14]. This
allows a quick estimation, how well optical spectra in the
different limits are described by the respective ansatz.

The full four-dimensional wave function �(ρe,ρh) is
hard to visualize, accordingly for comparing the full wave
function to the two approximate solutions, we project the
four-dimensional wave function �(ρe,ρh) to the coordinates
used for the different factorizations of the approximations.
For a factorization in electron and hole part the projection
is (exact within the strong confinement limit) |ψ̃e(ρe)|2 =∫

d2ρh|�(ρe,ρh)|2 and |ψ̃h(ρh)|2 = ∫
d2ρe|�(ρe,ρh)|2. Fur-

thermore, for a factorization in relative and center of
mass coordinates (exact in weak confinement limit), the
projection has the form |ψ̃COM(R)|2 = ∫

d2r|�(R,r)|2 and
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Platelet 6 nm x 4 nm
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FIG. 2. Normalized calculated absorption spectrum for a 6 nm ×
4 nm platelet (strong confinement).With the following nomenclature
for the different absorption spectra: full for using the full exciton
wave function, COM for the factorization into relative and center of
mass coordinates, strong for factorization into electron and hole wave
functions without Coulomb shift, and strong coul for factorization
into electron and hole wave functions including Coulomb shifts.

|ψ̃r (r)|2 = ∫
d2R|�(R,r)|2. For optical transitions, the in-

tegral over the full wave function with electron and hole
at the same position �(ρ̃,ρ̃) = �(R = ρ̃,r = 0) determines
the oscillator strength for interband transitions, therefore
plots over �(ρ̃,ρ̃) help furthermore to understand the optical
properties of the full solution.

In Supplemental Material plots of projections of all cal-
culated wave functions for different platelets are included
together with absorption spectra calculated using the full
solution and the approximate solutions (cf. Ref. [44]).

A. Strong confinement

For discussing an example of the strong confinement case,
we take a 6 nm by 4 nm platelet, which almost reaches
strong confinement. The calculated absorption spectrum in
Fig. 2 uses exciton states obtained from the calculation of the
full wave function and from calculations using the different
approximations. The absorption spectra provide a quick way
to judge the quality of exciton energies and optical selection
rules (resulting in the oscillator strengths) in the respective
approximations. The energy is always given relative to the
band gap of the material, this allows us to see immediately for
the exciton ground state, if confinement (positive) or Coulomb
binding energy (negative) dominates.

The spectrum of the full calculation shows mainly two
peaks: an s-s exciton build up from an s-like electron and an
s-like hole (cf. projected electron and hole wave functions for
state 0 in Fig. 3) and an p-p exciton consisting of an p-like
electron and p-like hole (see state 5 in Fig. 3). As expected for
a strong confinement case with a confinement in the order of
or below the exciton Bohr radius, the factorized electron and
hole wave function yield an overall good agreement and only
the oscillator strength of the higher energy p-p state is slightly
overestimated in the approximate solution. The Coulomb
coupling between electron and hole in first-order perturbation
theory is sufficient to correct the s-s and p-p exciton energy for

E O r = 0 Electron Hole COM relative
0 0.162 1.155
1 0.241 0.000
2 0.309 0.000
3 0.334 0.000
4 0.364 0.186
5 0.389 0.818
6 0.413 0.000
12 0.546 0.000
13 0.560 0.000
14 0.560 0.000

FIG. 3. Plots of selected exciton states and table of exciton energy
E in eV and oscillator strength O in arbitrary units (only comparable
to the same platelet) for a 6 nm × 4 nm platelet, an example for the
strong confinement case. Here r = 0 is a plot of �(R = ρ̃,r = 0),
which integrated over r̃ determines the oscillator strength, Electron
means the projection of the full wave function to the averaged electron
wave function |ψ̃e(ρe)|2, Hole, COM, and relative does the same for
averaged hole |ψ̃h(ρh)|2, center of mass |ψ̃COM(R)|2, and relative
wave function |ψ̃r (r)|2.

the factorized electron and hole wave function ansatz. Without
considering the Coulomb correction the energies of the strong
confinement solution differ considerably. Despite the good
agreement with the Coulomb corrected strong confinement,
a small deviation between the full solution and factorized
electron and hole wave function is visible: state 4 has a
small nonnegligible oscillator strength (cf. Fig. 3) in the
full solution as opposed to a vanishing oscillator strength,
which would be expected for a strong confinement regime.
Looking at the averaged hole wave function |ψ̃h(ρh)|2 in
Fig. 3 shows the reason: the factorized hole wave function
in one dimension for an infinite deep quantum box is a sinus
function having equally spaced zeros along the axis, but here
the projected hole wave function has unequally spaced zeros
caused by influence of the Coulomb interaction. Overall the
Coulomb coupling changes �(R = ρ̃,r = 0) compared to the
approximate solution, so that the overall oscillator strength
does not completely vanish for the state build up mostly from
an s-like electron and a d-like hole. However, the oscillator
strength is weak enough compared to the other states that
it will be very hard to detect this state spectroscopically, if
inhomogeneous broadening is present.

As expected for the strong confinement case, the exciton
states obtained from the COM ansatz do not describe at all the
spectrum for the 6 nm by 4 nm platelet. The energy of lowest
exciton state is off by several hundred meV and the overall peak
structure of the COM ansatz does not match the full solution.
Now we have a closer look to the plots of the averaged full
exciton wave functions in Fig. 3 of selected dark exciton states
between the two dominant bright excitons. (Full plots of all
calculated exciton states can be found in the Supplemental
Material [44]). First of all we see that the averaged relative
wave functions |ψ̃r (r)|2 appear blurry, this is a hint that a
factorization into relative and center of mass parts is a bad
approximation in this limit. Since the mass of the hole is
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FIG. 4. Normalized calculated absorption spectrum for a 21 nm ×
7 nm platelet (weak and intermediate confinement). See caption of
Fig. 2 for nomenclature.

higher than for the electron, the dark states consists mainly
of states with holes with a higher orbital momentum. Only
one exciton state energetically between the two bright states
involves a p-like electron state. Multiple dark intermediate
states between the two optical bright states carry very different
angular momentum, although angular momentum is not a
good quantum number here. The presence of dark states
and their angular momentum properties will be important for
exciton-phonon relaxation studies, which will be subject to
future studies.

B. Intermediate and weak confinement

In this section we discuss the intermediate and weak
confinement regime.

We start with a 21 nm × 7 nm platelet, which is larger
than the previously discussed 6 nm × 4 nm platelet. It is
an example of the intermediate regime between strong and
weak confinement. The 7 nm length suggests that strong
confinement regime is close, while 21 nm length suggests weak
confinement. The absorption spectra calculated using the full
wave function and the approximations are plotted in Fig. 4. The
results from the strong confinement ansatz using factorized
electron and hole wave functions show almost no similarity to
the absorption spectrum calculated using the full calculation.
Neither the overall distribution of bright states, oscillator
strength nor the exciton energy match the full solution. Only
the energy of the lowest energy exciton of the exact result is not
far from the Coulomb corrected strong confinement result. The
weak confinement approach using a factorization into center of
mass (COM) ψCOM(R) and relative wave function ψr (r) yields
at least roughly qualitatively a similar arrangement of the
peaks as the full solution. However the COM exciton states are
shifted towards lower energies compared to the full solution,
because the COM approach uses a free relative wave function
resulting in a circular wave function for states with a s-type
relative wave function ψr (r). But in reality the relative wave
function should be more elliptical (cf. the averaged relative
wave function of the full solutions for states 0–3 in Fig. 5).
This deformation induced by the 7 nm confinement length
reduces the Coulomb binding energy. So for this platelet a
strong confinement approach in the smaller direction and a

E O r = 0 Electron Hole COM relative
0 0.010 2.887
1 0.016 0.000
2 0.025 0.574
3 0.037 0.000
4 0.044 0.000
5 0.051 0.025
6 0.052 0.532
7 0.060 0.131
8 0.063 0.000
9 0.068 0.000
10 0.068 0.000
11 0.069 0.000
12 0.074 0.000
13 0.079 0.346
14 0.081 0.055
15 0.083 0.000
16 0.086 0.000
17 0.089 0.301
18 0.093 0.104
19 0.095 0.000
20 0.095 0.000
21 0.100 0.000
22 0.102 0.000
23 0.104 0.000
24 0.107 0.000
25 0.110 0.000
26 0.112 0.000
27 0.115 0.134
28 0.115 0.000
29 0.119 0.093

FIG. 5. Plots of selected exciton states and table of exciton energy
E in eV and oscillator strength O in arbitrary units (only comparable
to the same platelet) for a 21 nm × 7 nm platelet, an example for the
weak and intermediate confinement case. See Fig. 3 for nomenclature
of the different columns.

weak confinement approach in the larger direction may be a
more appropriate ansatz.

We discuss the spectrum of the full solution in order to
understand the remaining qualitative and quantitative differ-
ences between the full solution and the COM solution: The
full solution in Fig. 4 shows four groups of peaks: one group
around 0–0.02 eV, a second group around 0.04–0.06 eV, a third
group around 0.07–0.1 eV, and a fourth group beyond 0.1 eV.
The first group consists of states 0 and 2 (cf. Fig. 5), whose
averaged relative wave function |ψ̃r (r)|2 looks like a deformed
1s exciton state, which explains the energy shift compared
to the COM solution with an undeformed 1s state in the
relative part. The averaged COM wave function |ψ̃COM(R)|2
shows one maximum for state 0 and three maxima for state
2. The second group of peaks consists of states 5, 6, and
7, their averaged relative wave function |ψ̃r (r)|2 looks like a
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FIG. 6. Normalized calculated absorption spectrum for a 12 nm ×
10 nm platelet (intermediate confinement). See caption of Fig. 2 for
nomenclature.

superposition of 1s, 2s, and 2p states, where 2s contribution
should be bright and 2p contributions should be dark. The
bigger mean radius of the 2s and 2p states compared to
the 1s contribution cause the superposition of these states.
A superposition of 1s, 2s, and 2p relative states cannot be
described with the simple COM approach. This causes here
the deviation between the full solution and COM approach.
The third group (states 13, 14, 17, and 18), fourth group (states
27 and 29) of bright states show similar features as the first
two groups, the states include deformed relative 1s states (state
17) and higher energy excited p states (states 13, 14, and 18).
For higher energy excitons the averaged relative wave function
form increasingly deviates from unconfined s-, p-, and d-type
functions due to the confinement area. So the underestimated
dipole moment and shifted exciton energy of higher energy
states in COM solution compared to the full solution is caused
by the disregard of confinement potential in the calculation
of the relative Coulomb dominated wave function. However,
overall the qualitative agreement is acceptable for the COM
solution for lower energy exciton states. On the other hand, our
analysis clearly showed that the factorized approach is beyond
its validity for the higher excited states in the platelet and the
full solution is required. Since the radius of the relative wave
function increases for higher excited states we will never find a
platelet that is completely inside the weak confinement regime.
However, depending on the platelet size more and more lower
exciton states will enter the weak confinement regime.

The comparison between the full solution and the COM
solution allows us also to review the validity of a rule of thumb:
The exciton Bohr radius (connected to the classical radius of
the 1s state) is often used to discriminate the weak and strong
confinement regimes. We noticed that for the low energy 1s

like states 0 and 2, the COM solution is a good first estimation
even in the intermediate regime, since the averaged relative
wave function is mainly smaller than the platelet box (at least
in the 21 nm direction). However for the higher energy excited
states this is not true, since in the COM approach, the 2s

and 2p states of the relative wave function supply another set
of bright (2s) and dark (2p) states for higher energy excitons.
The averaged radius of the higher excited states is much bigger
than the 1s state and does not at all fit within the platelet area,

E O r = 0 Electron Hole COM relative
0 -0.006 1.994

1 0.015 0.000

2 0.024 0.000

3 0.042 0.000

4 0.044 0.579

5 0.044 0.000

6 0.054 0.000

7 0.063 0.842

8 0.067 0.468

9 0.070 0.000

10 0.074 0.000

11 0.075 0.000

12 0.081 0.000

13 0.084 0.633

14 0.087 0.000

23 0.117 0.158

28 0.126 0.273

29 0.127 0.000

30 0.130 0.000

31 0.134 0.051

32 0.135 0.134

33 0.138 0.039

34 0.140 0.000

35 0.140 0.000

36 0.141 0.000

37 0.145 1.076

38 0.148 0.000

39 0.152 0.299

FIG. 7. Plots of selected exciton states and table of exciton energy
E in eV and oscillator strength O in arbitrary units (only comparable
to the same platelet) for a 12 nm × 10 nm platelet, an example for the
weak to intermediate confinement case. See Fig. 3 for nomenclature
of the different columns.

so the rule taking the 1s exciton Bohr radius (connected to
the average radius by a factor) as measure does not apply for
higher energy exciton states.

For the 21 nm × 7 nm nanoplatelet, the 21 nm length
suggested weak confinement, while the 7 nm length suggested
strong confinement. We will now turn to nanoplatelets, which
are more quadratic, so that is clearer, which limit is expected.
A 12 nm × 10 nm nanoplatelet should be in the intermediate
regime but still close to strong confinement limit. The energy
of the lowest energy exciton state of the full solutions in
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FIG. 8. Normalized calculated absorption spectrum for 24 nm ×
20 nm (weak and intermediate confinement). See caption of Fig. 2
for nomenclature.

the absorption spectrum in Fig. 6 is well reproduced by the
strong confinement case with Coulomb correction. But also
the lowest energy state from the COM ansatz is not far off.
The lowest energy exciton state averaged electron |ψ̃e(ρe)|2
and hole wave function |ψ̃h(ρh)|2 (see Fig. 7, state 0) show
that it is an s-s state, i.e., it has s-type electron and hole
wave function. The s-s type symmetry clearly matches the
strong confinement solution for the lowest energy exciton. For
the strong confinement solution of bright states, the electron
wave function have to match the symmetry of the hole wave
function (e.g., s-s, p-p, d-d states should be bright). Beside
the s-s state 0, we find p-p states 7 at 0.063 eV and 13 at
0.084 eV and higher angular momentum states 31–33, 37, and
39 around 0.11–0.15 eV (cf. Fig. 7). The Coulomb corrected
strong confinement solution reproduces the contribution of the
bright states well (cf. Fig. 6) and only the oscillator strength
differs and the energies are slightly shifted. However, if we
inspect averaged electron |ψ̃e(ρe)|2 and hole wave functions
|ψ̃h(ρh)|2 in Fig. 7, we can see small deviations from a perfect
p shape for, e.g., states 7 and 13. This deviations are also
visible in the plot of �(R = ρ̃,r = 0), which is connected to
the overlap of electron and hole wave function and determines
the oscillator strength. Of course these deviations are caused by
Coulomb interaction and the onset of the intermediate regime.
Similar deviations from expected shapes are also visible for
higher exciton states. Besides the bright excitons matching
states expected from the strong confinement approach, we see
bright exciton state like states 4 and 8, which should not be
bright, if we were strictly in the strong confinement regime.
Here the averaged electron |ψ̃e(ρe)|2 and hole wave function
|ψ̃h(ρh)|2 for states 4 and 8 show an s-type electron and a
d-type hole and should not yield oscillator strength. This is
the same type of additional bright state, which was already
present at the 6 nm × 4 nm nanoplatelet, but now these states
have similar oscillator strength like the close p-p type states
and cannot be ignored. These additional bright states are an
additional sign of entering the intermediate regime.

An almost quadratic 24 nm × 20 nm nanoplatelet should
enter at least for the lower energy exciton states the weak
confinement regime. The two COM calculations (with and

E O r = 0 Electron Hole COM relative
0 -0.027 6.032

1 -0.022 0.000

2 -0.020 0.000

3 -0.015 0.000

4 -0.015 1.218

5 -0.010 1.408

11 0.001 0.000

12 0.002 0.278

13 0.004 0.000

14 0.005 0.401

15 0.005 1.162

16 0.006 0.000

17 0.007 0.000

18 0.008 0.000

19 0.009 0.366

20 0.011 0.000

32 0.019 0.000

33 0.020 0.305

34 0.020 0.713

35 0.021 0.000

36 0.022 0.000

37 0.022 0.257

38 0.022 0.119

FIG. 9. Plots of selected exciton states and table of exciton energy
E in eV and oscillator strength O in arbitrary units (only comparable
to the same platelet) for a 24 nm × 20 nm platelet, an example for the
weak confinement case. See Fig. 3 for nomenclature of the different
columns.

without area correction) have the most agreement with the
full calculation in Fig. 8. For the lowest energy exciton the
calculation with area correction underestimates slightly the
exciton binding energy, whereas the calculation without area
correction overestimates slightly the exciton binding energy.
This means with a platelet of this size, we are leaving the range
where the COM approach without area correction is appropri-
ate, but the platelet is still too small for a perfect approximation
using an area corrected COM calculation. For higher energy
exciton states, the two COM calculations show some similarity
regarding their peak distributions and exciton energies to the
full solution, but the result is not completely convincing. The
oscillator strength is underestimated and the exciton energies
are shifted especially for higher energies. An effect which we
have already seen for the 21 nm × 7 nm platelet. The strong
confinement ansatz shows a significantly higher energy for the
lowest exciton state than the full solution. Furthermore, the
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oscillator strength distribution differs qualitatively from the
full solution. However, the overall peak structure shows some
similarities, but we will see by inspecting the exciton states
that in the full solution none of them shows the properties of a
exciton state separable in electron and hole wave function as
it is expected for strong confinement. Actually, this is a quite
dangerous situation for yielding a proper interpretation, when
using approximate techniques. Since someone using the strong
confinement approach might get a similar spectrum as the full
solution by slightly adjusting some material parameters, while
the nature of the states differs completely.

Now, we discuss the bright exciton states of the 24 nm ×
20 nm nanoplatelet in detail: We have several bright exciton
states with an averaged 1s relative wave function |ψ̃r (r)|2
(states 0, 4, 5, 12, and 38, cf. Fig. 9). The averaged electron
and hole wave functions |ψ̃e(ρe)|2 and |ψ̃h(ρh)|2 of state 4
looks roughly like a d-d state. On the other hand, if this
interpretation holds, the same arguments lead to the conclusion
that state 1 is a bright p-p state, but state 1 is dark. Furthermore,
�(R = ρ̃,r = 0) of state 4 shows positive and negative peaks,
this would not be the case with a bright exciton wave function
separable in an electron and hole part, which both have the
properties of a d like state. These points clearly show that the
wave function cannot described within the strong confinement
limit.

We have again higher energy excitons with an averaged
relative wave function looking like a superposition of 1s, 2s,
and 2p states and higher angular momentum states (states
include 14, 15, 19, 33, 34, and 37). Again especially the size
of 2p relative state |ψ̃r (r)|2 is larger than the platelet size,
so that here the deviation from the COM result is caused by
the confinement, which is not included in the calculation of
the relative wave function in the COM approach. So many
of the higher excited states are in an intermediate regime and
cannot be described by the simple approaches from the strong

or weak confinement approach. In general weak confinement
is only achieved for the lower excited states.

IV. CONCLUSION

In this paper we have recapitulated common toy models
for nanostructures in the context of nanoplatelets. Namely
approximations using the typical approaches for strong and
weak confinement were compared with results from the
full four-dimensional Schrödinger equation. We laid special
emphasizes on the higher excited states. The analysis showed
that nanoplatelets can be in a weak or strong confinement
regime depending on their size. But there exist many examples
where the nanoplatelet is actually in an intermediate regime.
Weak confinement regime was always only achieved for the
lower energy exciton states. Also the typical rule of thumb
using the exciton Bohr radius for discriminating the weak and
strong confinement is only applicable for the lowest energy
exciton states. The qualitative simple model system used for
the analysis showed that approaches relying completely on
either strong or weak confinement have to be used with care for
quantitative and qualitative analysis, if the size of the platelets
are varied. This is especially true for higher excited states. At
least approaches that correct for the effects of the intermediate
regime have to be used to compensate for the effects shown in
this paper.
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